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Rigorous Calculation of the Nucleation Field in a Ferromagnetic Film or Plate*
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The rigorous methods of micromagnetics have been used to calculate nucleation Gelds and corresponding
incipient-domain widths for a ferromagnetic Glm or plate with the applied Geld along its faces and with a
direction of easy magnetization perpenchcular to them. The calculation requires Gnding the largest zero of a
fourth-order determinant whose elements depend on the roots of a cubic equation, and then maximizing the
result by trial-and-error variation of the parameters that determine the period and direction of the sinusoidal
oscillation in the plane of the film. The calculation was therefore programmed for an electronic digital
computer; and to narrow the area of search for zeros, preliminary calculations were done by use of two
types of approximation, one of which set an upper and the other a lower limit to &he correct zero. The
results show that Muller's approximate method of solving the same problem is satisfactory in the range
of parameters for which it was designed. Experimental data of Huber and Smith agree satisfactorily with
the theory.

1. INTRODUCTION

IGOROUS calculations in micromagnetics' ' en-
counter two obstacles. The 6rst is that the general

equations are nonlinear. This obstacle is not present
when attention is concentrated on the determination of
the nucleation Geld (deGned as the value to which the
applied field must be decreased in order that an initial
uniform magnetization may become unstable). The
second obstacle is the importance of "imperfections, "
be they of geometry, of structure, or of homogeneity.
The easy nucleation-6eld calculations relate to ideal
specimens, dificult to realize experimentally; the easy
experiments involve specimens subject to unknown
random perturbations, dif6cult to include in the theory.
An exception is the single-domain (or almost single-
domain) particle; here imperfections apparently play a
minor role, and nucleation-field theory and experiment
agree satisfactorily. '4 In bulk material the difFiculties
mentioned have not yet been surmounted.

The calculation to be presented relates to another
case in which we expect the effect of imperfections on
the nucleation 6eld to be minor. This is the case of a
film with a direction of easy magnetization perpendic-
ular to the 61m faces, and with the applied 6eld parallel
to them. Some experimental data' have been taken on
such 6lms. In contrast to the usual 6lms, where an easy
direction is parallel to the faces and the nucleation field
is negative, here the nucleation 6eld is positive and may
be quite large; it should therefore be comparatively
insensitive to imperfections. '

*This work was assisted by a grant from the National Science
Foundation.
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Additional calculations were originally planned. After the Glm,

other geometries were to be investigated, by modification of parts
of the digital-computer program; and after determination of the
nucleation Geld, the subsequerit nonlinear process was to be
investigated. It proved impossible to carry out these plans because
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in the notation of reference 3 (except that J, is now
written M,). The four terms are, in order, the exchange,
anisotropy, external magnetic, and internal magnetic
energies. The 6rst three integrals extend over the volume
of the specimen, which must be supposed 6nite until the
later variational procedures have been completed. The
internal magnetizing force h= h i+h, j+h,k= —VU
must be computed from the transverse magnetization,

the available computer, unlike that used in previously reported
calculations PW. F.Brown, Jr., J.Appl. Phys. 29, 470—471 {1958)j,
was not provided with fiexible symbolic-programming routines or
with fast input-output devices. Programming even of the calcula-
tion reported here proved almost prohibitively laborious and time-
consuming; transformation to a structurally similar program,
diff'ering only in the particular mathematical functions used, would
have been almost as laborious as the writing of the original
program; and attempting any calculations beyond those reported
was out of the question with the time, funds, and sta6 available.

2. GENERAL THEORY

The theory'4 when applied to a 61m takes the follow-

ing form. We take the film surfaces in xz planes at
y= &b, and the applied 6eld Hp along the s axis. The s
axis is assumed to be a direction of (not necessarily
stable) equilibrium of the anisotropy forces by them-
selves.

Starting with a large Ho, we decrease Hp. At any
value of H&, we consider the possibility of a small
deviation (a,p) from the original uniform magnetization
along z; here n and p are the x and y direction cosines of
the spontaneous magnetization M, . The free energy
associated with such a deviation is, to the second order
innand p,
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M, u= M, (ni+Pj), by the methods of potential theory.
In the numerical calculations to be discussed, g~~=g~2
=0 and g22= —g, with g)0.

If W is positive for all vector functions u(x,y,s), the
original state is stable. This is certainly the case if Hp is
so large that the quadratic form ,'(g—ii+M,Ho)&'+gi2&P
+—',(g»+M, HO)p' is positive definite; for the exchange
and internal magnetic terms in 8' are non-negative. In
the special case under consideration, this sufhcient
condition for stability is satis6ed if M,Hp&g.

If t/I/' is negative for some vector function u, the
original state is unstable with respect to a deviation of
the form u. This is certainly the case if Hp is suKciently
small (algebraically). For corresponding to any partic-
ular function u, there is a critical value of Hp, say H.,
for which 8'=0; and if Hp&H„ this particular u makes
W negative. From Eq. (1),

M,H, = ——,'C [(Vn)'+ (VP)']dr

dence oD x and z through a factor e'("~").The partial
differential equations thereupon reduce to second-order
ordinary differential equations in y. For any given P

and v, solutions exist only for certain discrete values of
Hp,' but X and v may have any real values. Our problem
is to find the largest eigenvalue of Hp as a function of
X and v, and then to maximize it with respect to X and v.

To solve the difterential equations of the internal
region, we may assume a dependence on y through a
factor e'» then

g ~i (A, x+py+vz) g +~i P,x+py+vz)
)

U C~ei (Xx+py+v z)

The constant p need not be real. The three differential
equations reduce to three homogeneous linear equations
in 3,8, and C'; permissible values of p, are found by set-
ting the determinant of the system equal to zero. This
gives, in general, a cubic equation in p, and therefore
six values of p, . p, ~, p2, p3, —p, ~,

—p2, —p, a. The general
solution for U in the internal region is then of the form

1
[giiCK +2gigQp+g»p ]d&
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the constant coefFicients that appear in the equations
for n and P can be expressed in terms of the C's. The
solution in the external region y)b is of the form

Our problem is to maximize H, with respect to the
vector function u, i.e., with respect to the scalar func-
tions n and P; the value thus obtained is the value of
Hp at which the original uniform state becomes un-
stable, and the corresponding functions n and P de-
scribe the initial deviation from uniform magnetization
(either a uniform rotation or an incipient domain
structure).

Standard variational procedures lead to the following
pair of linear partial differential equations in the
region inside the 61m, together with the boundary
conditions Bn/Bn= BP/Bn=0 on the surface:

CV'0+(gii —M,Hp)n+gipP—+M,BU/Bx=O, (3)
—CV'P+g»u+ (g» M,HO)P+—M,BU/By=0 (4).

These differential equations also involve the magneto-
static potential U, which is related to n and P by Pois-
son's equation V'U= AM, V' u. The potential U' in the
external region satis6es Laplace's equation; there are
the usual two boundary conditions of potential theory
at the surface and the usual finiteness conditions at
infinity. One solution of this system of equations is
n=P=O, VU=VU =0; and if M,HO)g (more gener
ally, if Hp is so large that the quadratic form mentioned
above is positive definite), this solution is unique.
Nonvanishing solutions in general exist only when Hp
has one of a set of characteristic values or eigenvalues;
our problem is to 6nd the largest of these eigenvalues.

For the 61m, we may now allow the x and z dimen-
sions to become in6nite. We may then assume a depen-

U'= D+ exp[—(V+ v') &y+i Px+ pz),j; (6a)

in the external region y& —b, y is replaced by —y and
D+ by another constant D . Thus there are eight con-
stants to be evaluated by use of the four boundary
conditions at y =+b and of the four at y = b. The-
resulting system of eight linear homogeneous equations
has a solution only if its determinant vanishes; this
gives the secular equation that determines the per-
missible values of Hp for given P and v.

The problem is considerably simpli6ed by noticing
that the solutions can be classi6ed into two groups:
solutions for which U is even in y (then n is even and
P odd), and solutions for which U is odd in y (then n is
odd and P even). Separate treatment of even and odd
solutions halves the number of constants and boundary
conditions involved. The secular equation in each case
is obtained by setting a fourth-order determinant equal
to zero; it involves trigonometric functions whose
arguments must be presumed, in general, to be complex.

A particular problem is speci6ed by giving the values
of C, M., and g (properties of the material) and the
value of the half-thickness b (property of the specimen).
By going over to dimensionless quantities, the number
of parameters necessary to specify a problem is reduced
to two: p= ~4M, ' '/bCand g=gb'/C. When values of
these two parameters have been given, the problem is:
For given /(=Xb) and n(= vb), find the largest eigen-
value of b(= HoM, b'/C, the dimensionless applied
field); then maximize this b with respect to l and n. The



% I LL I AM F ULLE R 8 ROKN, J R.

numerical procedure for finding the eigenvalue, for
given l and e, must consist essentially in computing
A(h), the determinant which is to vanish, as a function
of h over a sufhcient range of values to locate the largest
zero. For each h, the computation of A(h) requires first
solving the cubic equation to find the permissible values
mi, mq, and m3 of m(= pb), then substituting these in
the formula for h(h).

The solutions of interest turn out to be those with U
odd in y. In dimensionless form, the cubic equation is

(m'+n') (m' —s') (m' —s'+g)
+pm'(m' s'+g) y—pl'(m' s') =0 —(7)

where'
s'=g —h —g'&0 q'=P+n'
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0.40068
0.54763

0.35010
0.58241

0.55929
0.94143

0.33404
0.53955
1.10221

0.23890
0.09031

&0

1.17554
0.66360

&0

=2.166
1.56844
0.48346

4.16367
3.52404
1.55820

y —h

0.76110
0.90969

0.82446
1.33640

=0.834
1.43156
9.51654

0.83633
1.47596
3.44180

TAsr.z II. Underconstrained solution for film with
g11 g12 0) g22 g +0

The determinant A(h) has elements 6;, (i,j 1=to 4),
where for j= 1 to 3
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0.33082
0.52814
1.20711

9.16118
8.50223
5.61732

0.83882
1.49777
4.38268

Ayg = sin@i~)

A2,
——(mP —s'-+ p) m, (cosm, )/ (mP —s'),

h3;= mP(sinm;)/(mP —s'),

h4; =m;(cosm;)/(mP s'+g—),

and where
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0.32925
0.52312
1.22313

0.32808
0.51948
1.21894

19.16009
18.49375
15.16750

99.15929
98.48785
94.86850

0.83991
1.50625
4.83250

0.84071
1.51215
5.13150

3. APPROXIMATIONS

If the maximization of H, as given by Eq. (2) is
performed under an additional constraint, the nucle-
ation Geld so obtained will be equal to or less than the
correct value. If, on the other hand, it is performed
after a nonpositive term has been dropped from the

TABLE I. Overconstrained solutions for film with
gl1 g12 0) g22 g +0»

2
10
20

100
200

1000
2000

ca=0,

0.327
0.518
1.20
1.61
2.90
3.68
6.30
7.94

BP/By =0
y —h

0.8409
1.514
5.229
8.555

25.60
40.70

119.1
189.0

0.3272
0.5178
1.2128
1.6364
2.9860
3.7609
6.1471
7.4798

0.8409
1.5135
5.1964
8.3971

23.200
34.802
85.286

123.86

' Physically, the inequality given in (8) states that there are no
solutions sinusoidal in x and z for M,H0&g —C()P+v2). To prove
it, assume such sinusoidality in Eq. (1) and repeat the argument
previously used to show that there are no solutions for M,H0+g.
The integrations are now extended over the film thickness and
over an integral number of periods along x and z.

hy4=1, ~24= —q, Ag4= 644=0.

The procedure outlined is laborious, time-consuming,
and costly. Therefore it seemed desirable to find pre-
liminary calculation procedures that would locate the
solutions approximately, and that preferably would
place them between definite upper and lower limits.

right member, the nucleation Geld so obtained will be
equal to or greater than the correct value. Approximate
solutions obtained by these two methods may be
called overconstrained and underconstrained solutions,
respectively.

A number of such approximate solutions may be
found, but not all are useful. For instance, if p is con-
strained to be zero, the resulting problem is easily
solved, but all the nucleation fieMs so obtained are
negative; this solution is too severely overconstrained
to be useful.

The double constraint n=0, BP/By=0 leads to a
problem that requires only solution of the potential
problem and evaluation of the average magnetizing
force through the thickness of the Glm. The single
constraint +=0 leads to a problem similar to the rigor-
ous one except that only a quadratic equation has to be
solved, instead of a cubic; in this approximation, the
parameters l and e occur only in the combination
g'= P+n', and the eigenvalues of g

—h are independent
of g. Thus this approximation requires specification of
fewer parameters than does the rigorous calculation.
Calculations were made of both of these overconstrained
solutions; the results of the two (with, for the second,
U odd and p even in y) agree quite closely with each
other until p becomes very large, i.e») until the exchange
forces become very small. Representative results are
given in Table I.

Dropping of the nonpositive term in (V'n)' in Eq. (2)
leads to another problem that requires only a quadratic
equation; in this case, however, unless t=0, g and the
value of l (as well as the value of p) enter explicitly. For
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TABLE III. Rigorous solutions for 6lm arith
g»~g»=0~ g»= —g&0
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1
2

10
20

100
200

1000
2000

20
200

100
1000

200
2000

n(=f)

0.33694

0.33451
0.53668

0.32961
0.52482
1.1g961
1.45142

0.32905
0.52242
1.21193
1.56624
2.04740

0.32753
0.51864
1.21386
1.62949
2.72636
3.09995
3.51827
3.58080

1.63417
3.38437

2.96277
5.41001

3.72236
6.55185

0.16595
(0

1.16411
0.52609

&0

9.16072
8.49831
5.34745
3.53959

19.15995
18.49273
15.09718
12.74659
8.08268

99.15927
98.48779
94.86556
91.86411
81.29878
76.73827
70.72039
69.71406

191.73545
172.59086

97738088
935.44763

1966.18
1907.38

0.83405

0.83589
1.47391

O.g3928
1.50170
4.65255
6.46041

0.84005
1.50727
4.90282
7.25341

11.91732

0.84073
1.51221
5.13444
8.13589

18.70122
23.26173
29.27961
30.28594

8.26455
27.40914

22.61912
64.55237

33.82000
92.62000

l=0, this underconstrained solution coincides with the
overconstrained solution n=0. This fact implies (as is
easily verified directly) that for l= 0, the rigorous solu-
tion coincides with these, and the cubic equation re-
duces to a quadratic. Results of calculations of this
underconstrained solution are given in Table II. From
physical considerations one expects (and the numerical
results confirm) that when g is large, thisundercon-
strained solution and the overconstrained solution n=0
will agree well; but that when g is of order unity or less,
they will differ considerably.

The over- and underconstrained solutions were first
explored by hand calculation and then programmed
for the computer (a Remington —Rand Univac Scientiic,
model 1103).

The rigorous calculation was then programmed. In
it, selection of parameter values and of starting values
was guided by the previous results of the approximate
methods.

TABLE IV. Calculated values of h/p as a function of p& at
constant g/p. (Values marked ~ are from Table III; the rest
were calculated independently. )

g/f

0.001

0.002

0.005

0.01

0.02

0.05

0.10

0.20

100.00
141.42
173.21
223.61
316.23

70.711
100.00
122.48
158.11
223.61

44.721
63.246
77.460

100.00
141.42

31.623
44.721
54.772
70.711

100.00

22.361
31.623
38.730
50.000
70.711

14.142
20.000
24.495
31.623

*44.721

10.000
14.142
17.321
22.361

*31.623

/.0711
*10.0000
12.2475
15.8114
22.3607

0.096
5.9827

12.825
27.818
6g.619

0.1130
6.0018

12.846
27.841
68.652

0.1522
6.0495

12.898
27.901
68.721

0.2067
6.11.88

12.977
27.994
68.839

0.3030
6.2449

13.122
2g.169
69.067

0.5624
6.5895

13.525
28.660
69./14

0.9661
7.1195

14.1456
29.4182
70.7204

1."/217
8.0827

15.2653
30./823
72.5261

h/p

0.0000096
0.0002991
0.0004275
0.0005564
0.0006862

0.0000226
0.0006002
0.0008564
0.0011136
0.0013730

0.000076
0.001512
0.002150
0.002790
0.003436

0.000207
0.003059
0.004326
0.005599
0.006884

0.000606
0.006245
0.008748
0.011268
0.013813

0.002812
0.016474
0.022542
0.028660
0.034857

0.009661
0.035598
0.047152
0.058836
0.070720

0.034434
0.080827
0.101769
0.123129
0.145052

1.585
2.136
2.477
2.939
3.638

1.587
2.136
2.477
2.938

=3.65

1.592
2.136
2.476
2.936
3.633

1.597
2.136
2.473
2.931
3.627

1.604
2.134
2.456
2.922
3.614

1.618
2.125
2.450
2.895
3.581

1.627
2.103
2.416
2.849
3.518

1.609
2.047
2342
2.756
3.401

and underconstrained values of h bracket the rigorous
values, for given p and g.

Muller' has studied this problem, but with emphasis
on a thick slab rather than a film, and with approxi-
mations appropriate to that case. To obtain dimension-
less quantities, he uses the magnetic energy-density
parameter M,' rather than the exchange energy-density
parameter C/b' as denominator, and he assumes that
the latter is relatively small. Table V shows a compar-

4. NUMERICAL RESULTS

Results by the overconstrained solutions are tabu-
lated in Table I, by the underconstrained solution in
Table II, and by the rigorous solution in Tables III and
IV. The rigorous results of Table III are also plotted in
Figs. i and 2. As was predicted, the overconstrained

0.50 3.1623
*4.4721
6.3246
/. 7460

10.0000
*14.1421

0.7304
3.5396

10.3652
17.9025
33.9784
76.7383

0.07304
0.17698
0.25913
0.29838
0.33978
0.38369

' M. W. Muller, Phys. Rev. 122, 1485—1489 (1961).

1.127
1.451
1.824
2.117
2.499
3.100
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TABLE V. Test of Muller's approximation.

f0—

gOO

ZOO

%000

400O o

1
2

10
20

100
200

1000
2000

10
100

2
20

1
2

10
20

100
200

1000
2000

20
200

1
10

Rigorous

0.16595
0.52609
5.34745

12.74659
81.29878

172.59086
935.44763

1907.38
3.53959

76.73822
1.16411

15.09718

h

Approximate

0.09130
0.32936
4.47584

11.50888
79.1204

169.88
931.02

1901.89
4.16637

76.61758
0.36899

12.58416

range g) 0 explored, the anisotropy favors a relatively
large p and therefore a relatively large hp.

I

10
I

J,O 10' y
FIG. 1. Calculated values of reduced nucleation held

h =H03l.b'/C as a function of reduced magnetic energy
p=47r3IIPh'/C, for various values of reduced anisotropy energy
g=gb'/C (C=exchange constant, b=half thickness, 3II,=spon-
taneous magnetization, g=anisotropy constant, Ho=applied Geld
intensity at nucleation). Nucleation 6eld has been maximized with
respect to wave number and orientation of incipient domain
structure. From Table III.Reduced wave number (q/2s-) increases
from left to right along each curve.

5. COMPARISON WITH EKPERIMENT

It, is possible to compare the predictions of the theory
with a few experimental values of nucleation field given
in Fig. 2 of Huber and Smith. ' In the experiments, the
thickness 2b was varied, and the nucleation field Hs (H,
in Huber and Smith's notation) was observed; pre-
sumably the film properties, including the anisotropy
constant g, remained constant during the variation of
thickness. In terms of our dimensionless quantities, the
experiment measures h/p as a function of p'* at constant

ison of the rigorous values with the approximate values
calculated with Muller's formula.

For the overconstrained and underconstrained solu-
tions the function P(y) (with the factor e'&"*+"' omitted)
was calculated in some cases; it showed no sudden
changes or other unusual features. For the rigorous
solution, this calculation was not programmed for lack
of time and manpower. The variation of P in the xs
plane, in this incipient domain structure characteristic
of nucleation, is sinusoidal; the more abrupt changes
characteristic of a fully developed domain structure
evidently depend in an essential way on the nonlinearity
of the later stages of magnetization reversal.

For given g, p, and rI, the maximum nucleation field
occurs at l=q, n =0 over the range of parameters ex-
plored. Physically this means that the incipient domain
walls are parallel to the applied field. Examination of
Eq. (2) shows that only the term containing h' is
sensitive to the angle 8= tan '(l/e) and that the
orientation 8=w/2 is favored if

( hp ~)) )
h (, where hp is

the part of h due to p and h the part due to a. In the

I

10
I

gp3

FIG. 2. Values of q (v/2s reduced wave number =wave
number)(half thickness) corresponding to the reduced nucleation
Qelds shown in Fig. 1.
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12--

Q.f0—

0.08—

0.06-

0.04-

0.02—

0.00
20 30 1/4

FIG. 3. Theoretical values of h/p Hp/4aM, as a function of
p&=2k', (~/C)& for several values of g/p=g/4sM, '. The calcu-
lated points (circles) have been connected by curves. The crosses
are experimental points of Huber and Smith, reference 5.

g/p, for

h/p =H p/47rM „p&=2bM, (7r/C) &,

g/p = g/4m M,s.
(14)

Table IV gives values of h/p vs p' for various values
of g/p. Some of these sets of values are plotted in Fig. 3.
Also plotted are experimental points of Huber and
Smith; these have been converted by taking AM,
=9.2X10s gauss, C=3X10 ' erg cm ' (C is twice the
exchange constant A used by some authors). Agreement
of experiment with theory is not expected at small or
negative nucleation fields because of the tendency of
imperfections to nucleate domains. The observed posi-
tive nucleation fields agree reasonably well with the
theoretical curve for g/p=0. 05 and deviate widely from
the curves for g/p=0. 02 and 0.10. From g/p=0. 05 we
get g=3.4&10' erg crn '.

Huber and Smith attribute the anisotropy to tension
isotropic in the xs plane. For simplicity we assume, in
the usual elastic notation, e =e„=const=e, I'„=0;
then the magnetostrictive contribution to the anisotropy
energy is of the form const+Beps, where B is the same
as the B of Huber and Smith. Therefore Be= —

~g= —1.7X10'erg cm '. The estimate of ~Be~ given by

Huber and Smith, and based on direct observation of
the strain, is i0' to 10' erg cm '. The agreement is
satisfactory.

By the Bitter pattern technique, Huber and Smith
obtained a clearly developed domain structure in a
field perpendicular to the film, but only a mottled
appearance when the field remained parallel to the
faces. This qualitative observation is consistent with
the theory, which predicts a sinusoidal variation with a
period of order 10 ' cm, about a thousandth the width
of the domains observed in a perpendicular field.

Kaczer and Gemperle' have observed domain struc-
tures in magnetoplumbite after application of fields at
various angles to the specimen surface, which is a basal
plane and is normal to a direction of minimum uniaxial
crystalline anisotropy energy. The present theory
should be capable of predicting nucleation-field inten-
sities and incipient-domain widths in such experiments.
The published data include neither but do include
detailed observations on the fully developed domain
structure characteristic of the remanent state. Unfortu-
nately, the values of p (10' to 10") lie in a range in which
the computer routines gave large-number overQow
alarms. Muller's approximations, however, should be
usable in this range. Calculations by this method and
by rough extrapolation of the rigorous numerical re-
sults both give domain widths that agree in order of
magnitude with those observed. Observations of nucle-
ation fields and of the structure at the instant of nucle-
ation would provide a direct test of the theory.

6. CONCLUDING REMARKS

Micromagnetics can be important in two ways.
First, it can produce some rigorous results that are of
interest in themselves; I hope that the present results
will be of some interest as further relevant film and
plate data are obtained. Second, it can provide syste-
matic methods of obtaining and assessing approximate
calculation methods. The latter function may well be
the more important of the two. In this respect, the
method of overconstrained and underconstrained solu-
tions, illustrated above for the film, may have general
usefulness. No great originality is claimed for this; it
goes back at least to Rayleigh. But it seems not to have
been applied consciously and systematically in this
field. Such systematic procedures should lead to more
reliable approximations, and to more reliable estimates
of their reliability, than can be achieved by the rather
haphazard procedures of present domain theory.
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