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The existence of a nonvanishing Hall eGect in the "impurity conduction" regime of a semiconductor is
demonstrated. In this regime (prevalent at low temperatures and at low impurity concentrations) the
dominant electron transport mechanism is the phonon-induced hopping of charge carriers from occupied
to unoccupied majority sites. The basic element of the theory is the existence of a (magnetic) Geld-dependent
contribution to the jump probability between two sites. This contribution is computed and is shown to arise
from the interference between the amplitude for a direct transition between the initial and final sites and the
amplitude for an indirect, second-order transition, involving intermediate occupancy of a third site.

The theory is applied to the case of an ac applied electric Geld. For values of the physical parameters
representative of those occurring, for example in the ac measurements of Pollak and Geballe, the maximum
Hall angle, though small (~10 '), is found to exceed the "normal" value P(H/c)us„«) by a factor ~10'.

INTRODUCTION

'HE existence . of a Hall-effect in hopping-type
electronic transport has been a question of

interest for a number of years. In some recent studies
of Friedman and the present author' on a particular
hopping process —that of thermally activated small-
polaron' motion —it has been established that a Hall
effect comparable to, or even larger than the "normal"
effect (Hall constant R= —1/nec) should exist. The
present paper constitutes an extension of the ideas
developed in the above-cited small-polaron studies to
the investigation of the Hall eGect in another hopping-
type transport process, namely intpursty conduction

The physical picture of impurity conduction may be
described briefly as follows. I.et it be assumed, for the
sake of definiteness, that the sample is n type, with
donor and acceptor concentrations E~ and Eg
(iVD) Xz). At sufficiently low temperatures, such that
the number of electrons in the conduction band is
negligible, the acceptors and an equal number of
donors will be ionized, negatively and positively,
respectively; a fraction (ÃD X&)//X& of the d—onor
sites will be occupied by electrons. Charge transport
will then occur by virtue of the hopping of these
electrons from filled to unfilled donor levels.

An integral feature of the hopping process is its
dependence on electron-lattice interaction. This depend-
ence arises from the circumstance that, because of the
random nature of the Coulombic potentials of the
ionized constituents (donors and acceptor s), the
energies of any two local donor states are not coincident.
It then follows that, in order for a hopping transition
to occur, energy must be exchanged with some
"reservoir. " Such an exchange is provided by inter-

*This research was supported by the United States Air Force
through the Air Force Once of Scientific Research.

' L. Friedman, thesis (unpublished); L. Friedman and T.
Holstein, Bull. Am. Phys. Soc. 6, 302 (1961);and to be published.
The present treatment does not require reference to the small-
polaron studies.' T. Holstein, Ann. Phys. 8, 325, 343 (1959).' An extensive theoretical treatment of impurity conduction is
given in the recent paper of A. Miller and E. Abrahams, Phys.
Rev. 120, 745 (1960), to which further reference will be made.

action with the lattice vibrations. A consequence of
this interaction is that hopping is always accompanied

by the emission or absorption of one or more phonons.
In the case of ordinary (nonmagnetic) transport

phenomena, the basic elementary process is the above-
described hopping transition between two sites. Now,
from symmetry considerations alone, the eGect of a
magnetic field on such two-site processes cannot give
rise to a nonvanishing Hall eGect. A minimum of three
sites is necessary; as will be shown below, it is also
sufhcient. In particular, it will be demonstrated that
the relative probabilities of an electron, initially
located on one of three sites, hopping to one or the
other of the remaining two sites (assumed to be initially
unoccupied) is modified by a contribution which, both
in sign and magnitude, is linearly proportional to the
applied magnetic field. As in the case of the small

polaron, ' the eGect will be seen to arise from the inter-
ference between the amplitude for a direct transition
between the initial and final sites, and the amplitude for
an indirect, second-order transition, involving inter-
mediate occupancy of the third site.

The treatment of the effect of the magnetic field on
three-site transition processes is given in Sec. I. Results
comparable in generality to, e.g., the expressions given

by Miller and Abrahams for the ordinary two-site
transitions Lcf. Eq. (II-14) of reference 3j are obtained.
However, just as in the treatment of the cited authors, s

in order to arrive at bulk transport properties, such as
electrical conductivity (or, as in the present work, Hall
mobility) it is necessary to consider sequences of two-
site and three-site jumps, in which (by virtue of the
random distribution of impurity centers) the elementary
jump probabilities undergo large fluctuations. The
solution of the resultant statistical problem is beset
with formidable diKculties. In the present paper, these
difhculties are largely avoided by restricting the treat-
ment to the case of an applied ac electric field. Here, as
shown by Pollak and Geballe, ' when the applied
frequency is sufficiently high, the dominant contri-
butions to, e.g. , electrical conductivity, arise from

' M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961).
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single hopping acts between individual pairs (with
sequences of jumps among larger aggregates of sites
playing a negligible role). In Sec. II of the present paper,
an analysis comparable to that of Pollak and Geballe is
given for three-site transitions in the presence of an ac
electric 6eld and a dc magnetic 6eld. Semiquantita-
tively accurate expressions are obtained for ac Hall
conductivity and Hall mobility. As in the case of the
small polaron, ' it turns out that, at least under condi-
tions prevailing in the experiments of Pollak and
Geballe, these quantities, though small, exceed their
"normal" values by a factor in excess of 10'.

In the last section, a brief discussion of the sign of
the Hall coeKcient is given. It is concluded that the
sign is negative.

I. THREE-SITE TRANSITION PROBABILITIES

Ignoring the effects of the magnetic field for the time
being, one has for the Hamiltonian of a (one-electron)
three-site system

H= He+H ia1+Hr.

Here B, is that part of the Hamiltonian which depends
only on the electronic coordinate; it takes the form'

H, =T+V (r)

—(e2/x) + +, (1.2)

where T is the effective-mass kinetic-energy operator,
—e2/x

~

r—R;~ is the potential energy of the electron in

the field of the 2th donor site (the center of which is

located at E,), and V, is the potential due to other
ionized constituents. ' In the present work, the multi-

valley features incorporated in the treatment of Miller
and Abrahams' will be ignored; the kinetic energy
operator will thus be taken to have the form

(13)

5 cf. reference 3, p. 747; the expression given here is a straight-
forward generalization of the two-site Hamiltonian used by these
authors.' Strictly speaking, the case being considered here is appropriate
to the regime of almost complete compensation. In order to treat
the more interesting regime of small compensation, some modifi-
cation of (1.2) will be required to take account of the circumstance
that, in this latter domain, the most of the donor sites are occupied,
so that conduction occurs via the motion of "holes" (rather than
electrons). A proper treatment of this case would require taking
explicit account of the many-electron nature of the problem.
From this standpoint, the present one-electron treatment is to be
regarded as preliminary; it is however anticipated that, within the
domain of an over-all Heitler-London description of the electronic
state of the system, the generalization to the actual many-electron
case will be straightforward. In' anticipation, it may here be
remarked that in the case of small compensation, as pointed out
by Miller and Abrahams, U, (r) is to be considered as arising from
the nearest acceptor.

The second member of (1.1) is the electron-lattice
interaction; in the case of the simplified model repre-
sented by (1.3), it is given by the standard deformation-
potential expression

H;„1——L~tr) (r), (1.4)

where E-i is the deformation-potential constant, and
where

~1y-'tr
2)(r)=2 g q& e1] —I I

EÃ) (23fo11,

&& (bi,e'2" '—bi,*e '21 ') (1 5)

is the lattice-dilatation, expressed in terms of the
polarization vectors, ez, frequencies co&, wave vectors
q~, and creation-annihilation operators by*, b), of the
individual lattice-vibration modes (indexed by the
subscript X); the remaining undefined symbols in (1.5)
are the atomic mass M and number S of atoms in the
host crystal. It will eventually be assumed that the
crystal is elastically isotropic; in that case only longi-
tudinal modes will contribute to (1.4).

Finally, the lattice-vibration Hamiltonian Bz, is

given by the expression

HL Qx ~x(bi bi+2) ~

Turning first to the discussion of the eigenstates of
H„one notes that, in the event of sufficiently large
inter-site separation, they take the form of isolated
donor wave functions, '

p;(r) =p(r —R,), (2=1, 2, 3).

At separations which, though hnite, are still large
compared to the spatial extension of the P s, the (three
lowest) eigenfunctions of H, may be approximated by
linear combinations of the p s, viz.

1t =Q, C &y;(r); n=1, 2, 3.

Explicit expressions for the f are obtained in Appendix
I by the standard atomic-orbital approach. The results
a.re [cf. Eqs. (I16) of Appendix I]

' In the present work, p(r —R;) will be assumed to refer to the
ground-state donor wave function; complications due to energetic
proximity oi exicted states (occurring in some cases) will be
ignored.

$1 $1+[J21/(ei c2)]&2+—[Jsl/(et es)]d 2,
—(1.»)

4'2 [J12/(e2 e1)]+42+[J82/(e2 e8)]d 8 (1 gb)

4'2=[J12/ es —ei)]&1+[J22/(es —e2)]42+@, (1 Sc)

where [cf. Eqs. (I12), (118), (I19), and (I20) of
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Appendix I)
2, /, IR,.—R„ ly V.(R,.),

transformation

with
0,(r) =u, (r)e-' '~ &, (1.16)

S,,= p,*p,d V,

g;*P,w;, (r)d V—(,—,)S,,/2,

(1.10)
x;(r) =eA (R;) r/kc = (e/2Ac) (H&& R,) r,

one has, in place of (1.15)

1 e

2'* 2c
p+—H&&(r—R~)

~

(1 17)

—e'/s /r
—R;

/
u, (r) =E~u,;(r), (1.18)

1 1 1
e a

/r —R
/

2/R; —R~[ 2~/R; —R~[)

the solution of which is clearly of the form

I,;(r) =m(r —R;). (1.19)

+(V-()—lLV. (R:)+V.(R:))),

1 eA'
H, = p+—+V, (r) —(e'/~)

2m* c

X + +, (1.13)
1'—

where the vector-potential, A, is taken to have the form

A =-,'HXr, (1 14)

H being the (spatially constant) magnetic field and r
the electron coordinate, measured from an arbitrary
origin. Following a procedure due to Zilberman' one
redefines the basic local functions P;(r) to be solutions
of the equations

1 t' eA' e'
I p+—— y, (.)=E,q, (r). (1.1S)

2m*& c

with the index k now denoting the third site (k&,s j).
The stage has now been reached where the eGects

due to a nonvanishing magnetic field may conveniently
be considered. Neglecting the spin-Zeeman energy of
the electron (this neglect being equivalent to the
assumption that the spin-state of the electron remains
unchanged in hopping transitions), one has for the
electronic Hamiltonian

e;(H) = e, , (1.20)

J,,(H) = rs(r —R;)e(r—R;)w, ;(r)

&&exp((ie/2hc)LH&((R; —R,)) r)d V

Just as in the absence of the magnetic field, one now
assumes that the eigenstates of the total electronic
Hamiltonian (1.13) may be represented as a super-
position of the three P, 's. Then, upon following the
atomic orbital "projection" routine of Appendix I,
one reobtains equations (1.8a,b,c), together with (1.9),
(1.10), (1.11), and (1.12), the effects of the magnetic
field being contained entirely in the p, (r) [as given by
(1.16)).

It should at this point be remarked that the basic
local functions, u(r —R,), as well as the associated
energy eigenvalue, Ez, depend upon the magnetic
field. If, however, for the sake of simplicity, the zero-
fieM functions be assumed to be non-degenerate s
functions, first-order terms in H disappear from (1.18),
and one is left with the II' diamagnetic corrections to
u(r —R,) and Eq. These corrections are irrelevant for
the theory of this paper, which is concerned only with
effects linear in II. Hence, in what follows, they shall
be ignored. This means in particular that the field-

dependence of the P, 's is contained entirely in the gauge
fact rs, e '&*'&' defined by (1.17).

Thus, upon inserting (1.16) into (1.9), (1.10), and
(1.11),and employing (1.17), one obtains'

These solutions will obviously not be of the form
@(r—R;); however, if one introduces the gauge

(e,—e,)
N(r —R;)u(r —R,)

8 G. E. Zilberman, Soviet Phys. —JETP 2, 650 (1956); the
procedure used in the present paper is actually slightly different
from Zilberman's in that, as pointed out in the text contained
between Eqs. (1.19) and (1.20), the first-order dependence of the
local wave functions on the magnetic field is expressed entirely
in the exponential factor of (1.16), whereas Zilberman's local
functions contain an implicit (linear) field dependence. Neglect of
this implicit dependence, while not serious for the problem treated
by him, would yield incorrect (in fact, non-gauge-invariant)
results for the case treated here. (cf. reference 1, Appendix E of
Friedman's thesis).

Xexp((ie/2Ac)(H)& (R,—R;) r)}dV, (1.21)

where e; is, as before, the zero-field value of local site
energy.

In proceeding further, one conveniently takes the
origin of the coordinate system to be located within the

' n(r —I;), being nondegenerate, may be taken to be real.
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(eH/2kc)
l
R,—R;

l

'((1, (1.22)

triangle defined by the geometric centers of the three
sites. Then, subject to the assumption

will not coincide exactly with the geometrical" area,
A221.

The next stage in the treatment is the computation
of the matrix elements of electron-phonon interaction,

one may replace the gauge-exponentials by their Taylor
expansions to terms linear in H. One then obtains, after
some algebraic manipulation

& *(r)~(r)4'(r)d V (1.35)

where

(e,—e;)
J;,(H) = W;,e' i"— —S,,e'»',

n, ;= [HX(R;—R,) y, ,&'~j,
2kc

W;,= u(r —R,)u(r —R;)w;, (r)d V,

(1.23)

(1.24)

(1 23)
where

X(f1~ '"'—f1'~„'""), (1.36)

, (1) g . .eiq1 Ri+(1 g . .)
8', ,

Ciq1 Rj &iq1 Rqt)C+iuji

The detailed computation of these matrix elements is
given in Appendix II; the results are [cf. Eqs. (II4),
(II7), and (II9)$

22i

(jlH'-mls) =2&12 e e1I
(23Au1

y
"&=W" ' u(r —R,)u(r —R,)w, ;(r)rdV, (1.26) 1 P . .(&iq1 Ri+&iq1 Ri)csPii (1 37)

5,,= u(r —R,)u(r —R,)d V, (1.27)

P, ,= [HX(R;—R) p &»g

2Ac
(1.28)

p "&=S, ' u(r —R,)u(r —R,)rdV. (1.29)

It may here be observed that, by virtue of the s
character of the I's, y;;"& coincides with the point
(R;+R;)/2 midway between sites 2 and j. Inserting
this equality into (1.28), one has

where
P, ,= (e/jsc)H A;;,

A;;=R;XR;/2

(1.30)

(1.31)

is the vector area of the triangle defined by sites i and j,
and the origin of the coordinate system. From this
result, it follows immediately that

P21+P22+Pls (c/&c)H A22ly (1.32)

where A221 is the vector area of the triangle defined by
the three sites under consideration.

Unfortunately, the quantities g;;&') and n;; do not
appear to be describable in comparably simple geo-
metrical terms. Namely, because of the presence of
V, (r) and —e2/sir —Rzl (k/s, j) in the integrand of
(1.26), the vector y;, "& will not, in general, terminate on
the line joining sites ~ and j; hence, the effective
"Aux" area

In proceeding further, it appears desirable, at least in
this initial study, to effect some simplification of (1.37),
which will nevertheless retain the essential physical
effects. A possible simplification, already contained in
the work of Miller and Abrahams, ' consists in the
neglect of the terms proportional to 5,, ; its physical
basis is the (presumed) relative smallness of local
energy differences, e,—e;, as compared to the principal
term, —e2/s

l
r—R, l, in the "transfer potential, " W;, (r)

(which occurs in the integral for W;,). In this connection
the following observations are pertinent:

(a) As will be seen later in Sec. II, the three-site
configurations which are of principal significance for
the ac Hall effect are "equilateral" (R;;=X,z R;z). —
For such geometries the contributions to ~;—e, arising
from the third site, k, [cf. (1.9)) essentially cancel.

(b) As will also be seen later in Sec. II, the inter-site
distances of the important three-site configurations are
somewhat less than the average distance between
donors, and therefore rather less than the average
distance between a donor and an acceptor atom. In this
case, V, (R,)—V, (R,) is also small.

Under these circumstances, it appears that the
proposed simplification should not give rise to any
gross errors; since the treatment of the present paper
does not pretend to be more than semiquantitatively
accurate, (1.37) will forthwith be replaced by

, (1I—g . .ciqz Ri+ (1 g ) sindhi

x (&iq1 R~ ciq1 R;)

where

5321 521+522+512)

5;;=—(R;—R)Xp "'

(1.33)

(1.34)

"However, in view of the usual smallness of V, (r) and
es/z~r —Rs~ (relative to the principal two-center perturbation
term, es/rc

~
r R„~, i—n the in—tegrand of (1.26), 5&2& and A»1 may,

at least, be expected to have the same sign as well as the same
order of magnitude.
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The matrix elements of (1.36) between different lattice-
vibration states may now be written down. They are

(j, ¹%1IFIi~& Is', Ai,)= EiDi'+' s, ,e+'~" "'

+.(1-g ") e ~'(e"'~& ~' —~'i" R~), (1.3g)
~i—6j

where
A

Di'+'—=+s (q). .ei) I I (¹+-,'~-,') i, (1.39)
(2MXcoi j

it being understood that all the Eq's other than the
given one under consideration remain fixed.

The stage has now been reached where the various
higher order processes giving rise to the (magnetic)
field-dependent part of the jump probabilities may be
formulated. Broadly speaking, they are of two varieties:

(1) A superposition of two two-stage processes, one
of which is (s, Ei„¹—+j¹,%1, ¹

—+ k, ¹%1,
¹ %1), the other being (i, ¹,Vq ~i, ¹Wl,
¹

—+ k, ¹&1,¹ W1).
(2) A superposition of a one-stage and a three-stage

process; the first is of the form (~, IVY, ¹

~ k, ¹T1,¹)whereas, a typical three-stage process is (i,¹,
/& —+i, E&%1,Xz —+ j, Xz+1, X& W1 —+ k, S&~1,
¹ ).These transitions, together with those which result
from alterations of the sequences of various subprocess
have all to be considered.

+Ah)),

(k, ¹wlla~., lk, ¹)(k,¹.w1III;„, Ig,¹.)

6s—6It, &AMys

(1.40)

A degree of simpli6cation can be effected by noting
that, in any real transition, the energy-conservation
condition

6A; +Acv)I, +fscoyI =0 (1.41)

must apply. Also, as will be seen later, the phonon
energies are not arbitrary; one of them, say A~)„will be
shown to obey the "intermediate" energy-conservation
relationship"

so that
6g+Scog= Oq (1.42)

phonon modes, X and ) '. Denoting the amplitude of the
6rst subcategory, in which only the sites i and k ire in-
volved, by (k, ¹T1,¹ %1

I
T& Is,¹,¹ ), one has

(k, ¹+1,¹.+1
I
T, I~,¹,¹ )

(k, ¹
w1 IH~„, lk, ¹)(k,¹w1IH;„,It', ,¹)

6;—CIt;+A~

6&
—6g+AMgs =0.

(k,¹%1,¹'%11TiIi,¹,¹')
(» ¹'~11»-~

I k, »') (» ¹+ll&'-~
I ~, v~) —(kP"+0

I
&'-~

I
~ »'~) (~, ¹'~1III'-~

I z, ¹ )

~1

Let us begin with category (1), i.e., the two-stage
processes, leading to changes in the population of two Introducing these conditions into (1.40), one has

(1.43)

(k ¹~1III~lk ¹)(k+& +11+ ~ls', ¹)—(k, ¹
+1 HI;„, iI,¹.)(i, ¹a1IH;„,Ii,¹)

(1.44)

Instead of proceeding further with (1.44), it is at this
point expedient to write down the other two-stage
process, namely, that involving the jth side in the
intermediate stage. In doing this, it will be convenient
to employ the arti6ce of adiabatic "switching on" of the
electron-lattice interaction, according to the time
dependence, e" (with eventual pa, ssage to the limit
s -+ 0). One then has

It will now be noted from (1.42) and (1.43) that, in
the first of the terms on the right-hand side of (1.45),
intermediate energy is conserved, whereas in the second
it is not (except in the very special case of e,—e,
= e, —e&, the occurrence probability of which is
negligibly small). As in the case of the small polaron, a
field-dependent constructive interference between the
two types of two-stage processes will be seen to result
only when the zero-6eld amplitudes are 90' out of phase.
Apart from the "phonon" phase-factors, e'i"'a' (the
coherence features of which will be considered in detail,
below) it can be seen from (1.38) and (1.39) that the zero-
field amplitude of (k, ¹%1,

¹ %1ITili,¹,¹)is
necessarily real (again with the exception of the negli-

(k, ¹%1,¹ %1
I
Ts Is', i', ¹ )

(k, ¹ ~II&. Ij,¹)(j¹~1I&-l~ &')

ej.—ej+AGO&+zAs

(»¹~1I&~lj &4(j ¹+1I»-~l~¹)
e,—e &Ace&,~+SA$ "That is, in the sense of time-dependent perturbation theory,

(1.45) in which e;—e;+Acuq=shs with s ~ 0.



1334 T. HOLSTE I N

gibly probable cases e;= e; or e;=ek); hence the zero-
field amplitude of (A, Nk&1, N&, %1 t Ts

~
i, Nk, Nk ) will

have to be imaginary. This requirement cannot be
fu16lled unless, in the course of summing over X or X', a
zero in one of the energy denominators is encountered.

By virtue of (1.42) and (1.43), such an eventuality can
occur only for the first term of (1.45); hence, it alone

will be retained in what follows. "Thus

(k, Nk~i, Nk w 1
~

Tzi"'& ~z, Nk, N&, )

(k, Nk %1 [B; z
~ j, Ãk;) (j, Nk+1 ~H; & ~i, %,)

s; sj +Ao&k+zA$

which, with the use of (1.39), becomes
(1.46)

(k, Nk~ 1, Nk ~ 1
~
T &s"'&

~
i, Nk, Nk )

Le+iqk' Rk s+iqk, Rijfs+iqk Rj c+iq& Ri]&i(nki+a7i&
= I)k(+&D„,(k&gts7gk .gT .

(ei sj) (eg ek) (Ei eg +Au'&k+zAS)
(1.47)

At this point it becomes expedient to examine
the phonon phase factors of (1.47)—in particular,
to compare them with those which are present in
(1.44). From (1.47) one sees that these phase factors will
occur in four possible combinations e'(+~"'"7'+'~~ "'),
e'+~"' '+~"'"~' e"+~"' ~+ "."~' e"+~"' '+ "' " In order7

that-the T&') and T~') amplitudes be capable of con-
structive interference, it is necessary for one or more
of the phonon phase factors of one set to be coherent
with one or more of the other; moreover, this coherence
must be maintained under conditions in which (a)
q& and q), independently take on all possible directions,
and (b) condition (II6) of Appendix II, namely,

q, (R;—R, ~»1, (1.48)

(A, Nk&1, Nk %1
~

Tr&'"& ~z, Nk, Nk. )

is valid.
These coherence requirements are suSciently severe

so as to result in the jettisoning of most of the above-
listed phonon phase factors, as will now be shown.

First of all, let us note that, since R; does not occur
in the phase factors of T&'), all the phase factors of T")
which contain R, cannot Lby virtue of (1.48)$ con-
structively interfere with those of T(2); the immediate
consequence of this conclusion is that, of all the four
factors listed for T&'), only e"~~" 'I'~~7') need be
retained. It then follows, by virtue of (1.48), and the
independent variability of q), and q), , that all terms of
T") except those proportional to this same factor may
be discarded. Applying this recipe to the expression
obtained by substituting (1.39) into (1.44), one arrives
at the result

(1.49) and (1.50) may now be superposed to yield
for the effective two-stage transition amplitude the
result

(A, Nk&1, Nk W 1 jT&"t& ~i, Nk, Nk )

D„(+&Dk, (+&&iikqk Rkdqk»'&

z(0fk7+Ofq'a) g .P . .—

X e'"'~k+
e&+Ao&k+ZAS

(1.51)

(152)1/(x+zs) =P(1/x) izri&(x), —

one has

Pkr &'& (z, N)„Nk -+k, Nk&1, Nk %1)

&1'~Dk'+'['~Dk'+'~'ll'k, ~;;If'k; sH Ak;; (2~)'

Ac

X b(ei s; &Ao&k) 6 (e; —ek+Ao&k+Ao&k—), (1.53')

The absolute square of (1.51), multiplied by (2zr/A)

Xl&(e;—ek&Ao&k+Ao», ) gives the total two-stage transi-
tion probability P &'& (z, Nk, Nk -+ k, N&,%1,N&, W 1).The
present work is, however, not concerned with this
quantity, but only with that part Pzz "&(i, Nk, Nk —k A,

Nk&1, Nk T-1) which depends linearly on the magnetic
Geld. This component is obtained by expanding the
phase factors and picking out the terms linear in the
phases, at;;. Kith the additional use of the standard
recipe,

X&iikqk nkkqk R'&&i~k' (1 49)
e;—eI,

By a similar procedure, the surviving term of (1.47) is
found to be

(»Nk~i, Nk ~1ITs'"'lz Nk Nk)

g, D„(+)g,(+)p „,p, ,

(e,;—e ) (e —ek) (e,—e,+Au&k+zAs)

X&i(kqx Rk+qk Rilsiink j+rii& (1 5O)

'~ This point requires some further clarification. Namely, if the
) and X' summations were each to extend over the whole lattice-
vibration spectrum, the zeros of both energy denominators would
be traversed, However, independent summation over ) and X' is
actually inappropriate, since it would count the same final state,
(k, lV&,%1, 37&, +1), twice. A suitable nonredundant summation
recipe is achieved by restricting, e.g., the X' sum to values such
that ku is either larger or smaller than ok. If, for example

~
q; —q; ~

& ~~;—ck~, and one wishes to retain (1.42), one imposes the
condition co), &cd,. In that case, by virtue of (1.41) or (1.43), one
may readily check that the energy denominator of the second term
of (1.45), namely q; qi&Acok +its—, cannot vanish, in accordance
with the statement in the text. (If, on the other hand, (q, —qi ~) [q;—sk ~, one chooses the alternate recipe, ku)&qki, and arrives
at the same result, )
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or, more symmetrically,

P~(2) (i, N&„N&, -+ k, N&,%1, N&, %1)

E&4 (D&,(+) ~' ~D&,
'+) ~'W&, W;,W&„eH 5&,;, (2&r)'

Ei—Ej 6j 6Ic

X8 (e, e—&'+h(d&) 8 (e&
—eg+AG)y~). (1.53)

In obtaining (1.53') or (1.53), use has been made of
Eq. (1.35), in conjunction with (IIa) of Appendix II.
In this connection, the sign of 'I&,;;is positive or negative
according to whether the circuit z —+ j—+k~i is
counterclockwise or clockwise.

As stated above, P~(2) (i, N&„N&, ) -+ k, N&,&1, Nq +1)
represents only part of the field-dependent jump
probability. The other component originates from super-
positions of the one-stage (i, N&, ~ k, N&,&1) amplitude
and those associated with various three-stage processes
of the type (i, Nz, N&, ~i, N&,+1, N&,.—+j, N&%1,
Ng wi-+ k, Nycti, 1V&, ), (i, N&„N&, ~ j, N&,&1,
N& —& j, N&%1, N&, %1 & k, N&%1, N& ), etc."

The amplitude of the one-stage process may be
obtained from (1.39), and is

O'I„
i, Nx) =E&Dg(+) e' &'

X
Le+'ax R» e+(e&. R'j (1 54)

From the rather large number of conceivable three-
stage processes, one has now the task of selecting those
which are coherent with (1.54). This task is carried out
in Appendix III, which also contains a detailed dis-
cussion of the various features relevant to coherence.
The results of the treatment are contained in Eqs.
(III3) and (III7), which give the two types of three-
stage amplitudes capable of interfering with (1.54).
These are

eH I&„, 5(e,—e&,ah(u&, )il(e,—e,+h(o&, )
X

hc (e,—e;)'(e,—e&,)'

b (e( 6&+hcg&&) (& (eg eq+
—fib)y~)

Ej 6p Ci Ck

(1.57)

Here, the superscript "(3,1)" has been used on the
left-hand side as an indication of the number of stages
of the contributing amplitudes. Also, the notation
"E~ +1" over the arrow indicates the intermediate
participation of the ) ' mode first in absorption
(emission), then the reverse.

Upon adding (1.57) to (1.53) and summing over
) and X' and the two possibilities of absorption and
emission, one obtains, as the total magnetic field-
dependent probability, the expression

(2&r)2
PIE(i & k) Q E&4 [Dg(+) ~' ~D&, '+) —~'—W&„W,~Wg,

It should here be mentioned that, since the X' mode
is involved only in intermediate states, and does not
really appear in the final state (i.e., N&, ~N&, ), the
total three-stage amplitude is to be obtained by
summing over all 'A', and over the. two possibilities of
absorption and emission. This summation will be
deferred.

One has now to superpose (1.54) with (1.55) and
(1.56), take the absolute square of the resultant, "and
multiply by (2&r/h)(&(e; —e&&Ace&, ). As before, it is not
the total result which is of interest, but only that part
which varies linearly with the magnetic phase factors;
the rest is therefore discarded. The result of this
procedure is

Eg %1
PIg(' "(i, N&, - k, N&,&1)

(2&r)'
Ei' iD&, (+) i' iD&, (+& i'W&„W, ,W&„

h

=Ei g)~, (+)
(

D~(+)

e'( '+ 7')e+'~7, .R~kj' ji
6i 6j 6i

eH 5&„; lI(e,—ek+hco&)d&(e,—e,+h(d&, )
X

hc

and

(k, N&~1, N&, ~T3(') ~i, N&,wi, N&;

(D„,(+&
~

D„(+)

(1.56)

"It should be remarked here that the phonon modes 'A and ) '
are not the same as those involved in the previously discussed
two-stage processes. In particular, the frequency col, obeys the
energy condition ai —~7,+~=0.

(1.58)

wherein the double summation involves summing over
the two possibilities of emission and absorption for
each mode. Also, the delta functions of the last term
have been changed froni those in (1.53') through the

"In carrying out this operation, use is made of condition t',1.48)
in that only amplitudes of similar phonon-dependent phase factors
actually interfere.



1336 T. HOLS TEI N

use of the relation

b(x)b(x+y) =b(x)b(y).

It is now of interest to compare P~(i~ k) with the
ordinary zeroth-order two-site jump probability,
Po(i —& j), comPuted, e.g., by Miller and Abrahams. '
This quantity is gotten by inserting (1.39) into the
standard first-order perturbation expression. The
result is

4z W;,'
p'(i ~ j)—p gi !

Di(+)
!

+& ))2 (e,—e,)'

)&71(e,—e;+))2o)),), (1.60)

is clearly symmetrical with respect to interchange of i
alid J7 i.e.7

(1.65)L;, L,;,
and where

g C EE/ KT+e—EK/ KT+C K/ETK

AL,"L;HALI, ;Z' O', I„-' 8",,'
C2EE/KT+ e( +EE/)E/KT

Lki
P~(i ~ k) =

4$';,5";1,$'p; L;,
Jg. 3

1'2

+ e("+')/"T eH 5)„,/Ac
L;;

is the three-site partition function. Inserting (1.63) into
(1.61), one then has

wherein use has been made of (1.48) to discard cross-
terms involving trigonometric functions of the argument
(I), (R;—R;).

It will now be noted that P~(2 ~ k) can be expressed
in terms of the various Pp(i —+ j)'s. In fact, upon
comparing (1.58) and (1.60), one has, without further
ado,

P11(i~ k)

where
—=Zg,.;Ze"'~, (1.66)

ZA L;;L;pLI,; 'H/';k' 8'I„'
eEE/KT+ CE7 /KT

4 W;,W;p8'g, . L; g

W; —eH. ge;;
+ eE7:/KT (1 67)

LW//2Po(i —+ k)Po(i —+j)
48';;O', I,B'p,

+Wo,2Pp(i ~ j)P()(j—7 k)
eH. 5/„,

+W,72Po(i —+ k)Pp(k —+ j)] . (1.61)
AG

For the purpose of the next section, it is desirable
to formulate "reversibility" relationships between the
various transition probabilities. It is erst expedient to
consider these relationships for the zeroth order two-site
transition probabilities, Pp(i ~ j). Making use of the
formula

~ +2 ~ 2 1/! 1 ey/7. ),/KT! (1.62)

(which, as can readily be verified, holds for Planet's
distribution) together with the energy restriction
imposed by the delta function in (1.60), one has Lupon
substituting (1.39) into (1.60))

4x
Po(i ~ j)= Z =—K2(q~ e) )'

*& h 2MÃcoy

II. ac HALL EFFECT

In Sec. I, explicit expressions were derived for the
elementary jump-probabilities in the presence of a
magnetic field. In the present section, these expressions
will be applied to the study of electron-hopping in a
three-site system in which, in addition to a dc magnetic
field, there is also an applied oscillatory electric field.
This case constitutes the simplest generalizations of the
two-site problem treated by Pollak and Geballe' (in
their analysis of their experimental results on ac
impurity conduction) which is capable of yielding a
nonvanishing Hall e6ect.

The basis of the treatment is a Boltzmann-type
equation, of the form

,= p p (j~ i)f, p(i ~ j)f,], - (2 1)

where i and j may both take on the values 1, 2, and 3
(subject, of course, to the condition iAj) Also, .

is readily seen" to be antisymmetric with respect to
interchange of indicesi, j, and k, i.eE7

2/. 7;= 2;/, =Z;;o= 2,77
= —2—;k,= —Zp;, . (1.68)

where

W;,2/(e, —e,)'
X l) (e;—e;+&~),)

! 1—e('* ~7')/KT!-

=Z~ei/~7'L . .
&27

i2

L'/—=~ 'Z —&12(e e)21
h (2'(o),

W;;2(e;—e;) 2lI(e;—e &A(d),)
X

(1.63)

(1.64)

e, =e;(o)+eE R;'b7 (2 2)

"The 6rst two factors of t,
'1.67) are obviously symmetric in the

indices i, j, and k. The last factor is antisymmetric, in that the
sign of Q»; depends upon the sign of the rotation in the cycle
i —+ J —+k —&i.

P(i~ j)=Pp(i~ j)+P~(i~ j),
where Pp(i —+ j) and P&(i ~ j) are given by (1.63),
(1.64), and (1.66), (1.67), respectively. Finally, the
presence of the electric held E is taken into account
implicitly in the site energies via the relation
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where 8,&') denotes the local energy in zero electric field Concurrently, (2.7) may be written as
(it corresponds to the e; of Sec. I).

It is expedient to introduce, in place of the f;, new 11+r2+ i 3 =0
variables g, , defined by the relations

(2.13)

where
y, = (1/Z) e-& '(1+y,),

P—= 1/~T,

The solution of (2.12) is considerably facilitated by
the circumstance that, as is readily verified, the
determinant of the coefficients

and
Z= e-e~i+e-e~s+e-e~s (2.5)

is the partition function for a single electron (or,
eventually, a hole) in the three-site system.

Substituting (2.3) into (2.1), and utilizing (1.63),
(1.66), and (1.68), one has

plus two other equations obtainable from (2.6) by
cyclic permutation of the site indices.

A certain simplification of the left-hand side of (2.6)
can be eGected by so choosing the origin of the spatial
coordinates so that

exp (—Pei"')Ri+ exp (—P 82"))Rs

+ exp( —P cs&8) )Rs ——0. (2.7)

With this choice, one sees that (to first order in the
impressed electric field)

E=Z '(—PeE) Q; exp( —Pe;is))R;=0,

so that, with the additional assumption of harmonic
time variation of E( e

'
'), (2.6) becomes

z—'i(upeE R,e—)3'&= (io)z 'e ~" Lis -Lis)&—1—
+L124'2+Llds ~821(42 4'3)) (2'8)

wherein, and in what follows, e; will be written in place
of e;( &, and will denote the zero-electric-field value of
the local energy of the zth site.

For convenience in subsequent algebra, let us intro-
duce the notations

r,= R;e-~"Z—' (2.9)

(2.10)

(2 11)

Equation (2.8), together with the two obtained there-
from by cyclic permutation of site indices, then take
the form

(Ndi L12 Lls)$1+ (L12 Z)$2+ (L13+g)$8
=i(ori peE,

(L21+@)$1+(~2 L23 L21)$2+ (L23 +)$3
=2Mrs peE

(I 31 Z)$1+ (L32+2)$2+ (N08 I 81 L82)$8
=i(mrs PeE.

(2.12a)

(2.12b)

(2.12c)

Z 'e &"j—i+ Z'e —~"=—(Lis+Lis)41+Lu42+Lig43
dt —assi(&2 —

&f 3) (2.6)

z1 L12 L13
L12+2
L31—Z

zC02 L23 L21
Lss+&

Lis+&
L„—g

Z(O3 —L31—L32
(2.14)

depends quadratically on Z. For the purposes of the
present paper, in which only effects linear in the
magnetic field are of interest, this quadratic dependence
may be ignored, i.e., 6 may be approximated by its
zero-field (2=0) value. It then follows that the p;
obtained from the solution of Eqs. (2.12) will have the
form

@,=y, 0&)+@,(H) (2.15)

where the p, &') are independent of 2 (and hence of
magnetic field) and the P,~~) are linear in 2. Since
only the latter are of interest, as far as the Hall effect
is concerned, they alone will be considered. One finds,
by straight-forward algebra,

@1~ ) = —(oZA 'peE (rs(us —rs(us),

ys~") = —~ZA-'peE (rsM1 lings),

) = —co2A 'PeE (r)(os —rsvp)1).

(2.16a)

(2.16b)

(2.16c)

Knowing the p H', one may compute the (magnetic)
field-induced component of electric current. It is
given by

j &~) —= —e g, R;f,= —(i(u/Z) e P; R;e ~"y;&")

io) g, r,y,'~) (2.17—)

Lthe last two equalities holding by virtue of (2.3) and
(2.9)J. Substituting (2.16) into (2.17), one has

j'~) =is&'e'6 'PE
t (rscvs rs(02)ri

+ (rsssi —ri~s)+ (ri~s —r&1)rs)
=iaPe26 'pE L(rui+&os+~3) (rsri —rirs) j, (2.18)

the last equality resulting from the use of (2.13) and
some algebraic manipulation.

It is now of interest to average j(~' over all orien-
tations of the triangular configuration, i.e., over all
values of r1 and r2, subject to the restriction that the
magnitudes of these vectors and the angle between
them remain constant. In carrying out this average,
it is necessary to take account of the dependence of 2
on orientation. Referring back to (1.6/), one sees that
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this dependence is essentially of the form"

(r2Xr1) H
g=Zp

f rrxrr/
(2.19)

where go ——@321&3) differs from (1.67) in that the scalar
product H. 532] is replaced by 5321.

Inserting (2.19) into (2.18) and simplifying the
square bracket, one has

able approximation, provided that

(2.23)

In this "high-temperature" case, the procedure should
certainly be adequate for order-of-magnitude estimates
of j&~'. Since the present study is concerned primarily
with such estimates (rather than with precise, quanti-
tative results) the procedure of replacing each e &" by
unity will be followed without further ado. The result is

21oe'ZpPH (r2Xrt)
j (H)— Lrort E—r1r2 E$(&ot+ro2+4o3)

~
r2Xr1i where

2ioooeogpP
P"'=— ~321(HXE),

Z„4a„
(2.24)

i4o'e'ZopH (r2Xr1)
t (r2xrr) XE)(ror+ro2+4o3).

(2.20)

The average of (2.20) over orientations is clearly
equivalent to its average over all directions of the
vector cross-product, r2Xr1, one has )with subsequent
use of (2.9)j

(2.25)

and where the determinant E„Lthe limiting form of
(2.14)j as e ~' -+ 1 (oo; -+ Z 'co) becomes, upon expand-
ing and discarding of terms in 2',

r4 =ico&„'P 4o' 2—i4o (t1—+l2+ f3)

+3(f14+i14+lot3) j, (2.26)
the notation

1,—=Z.L„, t,=Z.L„, i,=Z„L„ (2.27)24ooe2Z oP (4ot+4O2+4O3)

~ ~

r2Xrl
~
(H xE)

trcor+ o12+ro3)
!=ioPe ZoP

~
R2XR1~

~

3

having been introduced for convenience of writing.
At this point, it is desirable to exhibit explicitly the

dependence of the "Hall-probability coeKcient" Zo on
the two-site probability coeKcients l&=—ZL;;. This
dependence becomes simple in the above-introduced

Xe-P( 1+»Zog(HXE). (2.21) high-temPerature aPProximation, e ~"Z ' —+ Z„', for
which the I;„asgiven by (1.64), reduce to

Now, the area of the triangle defined by the geometrical
centers of the three sites is

where
L;,=Z„'~TIE;,~B, (2.28)

2 321——P (R2—R1)X (R3—R1) i

=—'~ R2XR1~ (1+eel'4 "'+e&&'3 '»)

41r ( ff32 8(e;—e;+iron)
+1 (411 e1)'~ (2.29)

f3 ~2M'S (@co),)4

2 24eo'Sop cor+oo2+4o3)
X ~&321

3Z36
(2.30)

the last equality holding by virtue of (2.7). Comparing Luse having been made of the delta function to replace
(2.21) and (2.22), one then has (e;—e;)2 by (Ace&,)2). In the case of sufficiently low

~
o;—e,

~
(compared to the Debye energy), one may use

the further approximation

Xe ~i"+'2+'» (HXE). (2.22)

At this point, it is desirable to introduce a simplification
also employed by Pollak and Geballe. This simplih-
cation consists in replacing the various Boltzmann
factors e &'& by unity. It would appear to be a reason-

"The basic assumption involved in (2.19) is that the vector
direction of the effective Aux area, 1.3~1, coincides with the direction
of the geometrical area, R2XR&/~R2XRil =12Xrx/lroXrxl.
This coincidence certainly obtains when the term U, (x') in Eq.
(1.26) is negligible. Moreover, even when this term is taken into
account, it is only its asymmetry with respect to reQection
through the plane of the triangle which could tilt the direction of
Q»& with respect to that of the geometrical area. It appears quite
reasonable to assume that such an asymmetry vanishes on the
average.

where c&, depends only on the direction of q1 (and on the
particular vibrational branch under consideration).
Introducing the replacements

V z( )&&= z
SH ~. Sm i

( )qodqdn,

1
E12 --Q c; '(n e;)2dQ

27/ k 2ph
(2.31)

(where V is the volume of the sample, dQ and element
of solid angle in q space, and j= 1, 2, or 3 designates a
particular one of three acoustical branches), one then
has, upon integrating with respect to q
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3A e8831
zp —— (AT) &8&- — — (E,l zip)'.4Z„Ac (2.32)

(where p is the mass derisity and n a unit vector in the zl

direction). By virtue of the fact that c, is a function of
n alone, (2.31) clearly depends only on properties of the
host crystal (mainly elastic).

Introducing (2.28) into (1.67), and again replacing
Boltzmann exponentials by unity, one has

3h e(H I„;;)
Z„&—(L,;L;3L3,) l(11TB)&

4 Ac

which, by virtue of (2.27) and the remark subsequent
to (2.19), is equivalent to

2''e' 3h B&e
@381~331 H XE

Z„s( 1')& 4 Ac

(lllzlp) '
X (2.33)—zp' —2zol(ll+lz+/3)+3 (/lls+lll3+lzl3)

In what follows, attention will be focussed principally
in the imaginary component of j(~), i.e., the one 90'
out of phase with the electric field. This quantity, after
a little algebra, can be put into the form

Substituting (2.32) and (2.26) into (2.24) (and re-

membering that p=—1/AT), one then has

j(Z)—

j .(H)—
2e 3A B~e 2o18 (lllzl3) (t1+is+l3)

@331~831(HXE)
Z„s(~T)& 4 hc zp +pp L3 (~1 +~3 +~3 )+(ll+lz+l8) ]+9(l14+lll3+lzls)

(2.34)

As contrasted with the real component, (2.34) attains
a maximum when the I's are all in the neighborhood
of co, this feature will be utilized in summing j;(~& over
all possible 3-site configurations, an operation which

is carried out immediately below.
The principal variable involved in the summation

are the mutual distances X~2, X~3, and 823, between the
three sites. These distances enter into (2.34) principally
via their effect on the t's, i.e., on the L;, (via the
dependence of the W;; on R;,). At this stage, rather
than entering upon an evaluation of the lV;;, as given

by Eq. (I13) of Appendix I, one may conveniently
utilize an expression given by Pollak and Geballe4

Ltheir Eq. (13a)$, which they in turn obtain from the

theory of Miller and Abrahams. ' The quoted expression
reads (in the notation of the present paper)

I.;,=Z 'C(R,;/a)&e 8~-*- (2.35)

where a is the radius of the donor wave function and
C a numerical constant, which for silicon has the value

C= l.65X1.0"T sec ' '

(2.36)

(T being expressed in degrees Kelvin" ).
One has now to compute the occurrence-probability

distribution of the R,, over all possible three-site
configurations. Selecting, e.g. , site 1 as a reference point,
one may readily write down the probability, W (R»)dR»,
that a second site (site 2) be so situated that its distance
from the first lies between Rlz and Rlz+dR18, it is

W (Rlz) dRll 4zrNDR, 8'dR»)—— (2.37)

where ED is the density of donor sites."
'7 It may be noted in passing that (2.35) incorporates the effect

of mass-anisotropy of the conduction band of the host crystal; for
the simple isotropic case actually considered in this paper, the
factor (R;;/o)8 would be replaced by a term proportional to
(2f;z/o)3. The use of (2.33) is more appropriate for numerical
estimation, in view of the fact that impurity conduction experi-
ments have been carried out principally with Ge and Si samples.

' Strictly speaking, one should introduce the restriction

R88 =R18 +R18 2R18R13 cos888

may be written as

(2.38)

W(R,R )dR dR
= 2zrND (R13R33/Rlz) dRlpdR33. (2.39)

Combining (2.39) with (2.37), one obtains the occur-
rence distribution for all the E;;, namely,

W (RlziR131R23)dR18dR13dR28

8zr ND R»R13R23dR121fR18dR83. (2.40)

Combining (2.40) with (2.35) and introducing the
notation

flf;=Ejj (2.41)

(i.e., rl—=R83 rs=R13 r3—=Rlz), one has for the occur-
rence distribution of the I,„=—L;;,

W(11,/8)l3)dlld~zdl3

=Sz'N g)'ry ~r3dr jdy2dg,

Sx'SD'a' 1—3c ' dig dl2 dI3
rlrzrpzr, ———, (2.42)

S 4r; lj l2 l3

that no other site lie closer than E». This restriction would
have the effect of multiplying (2.37) by the "exclusion. " factor,
exp( —43.ED2|!133/3). In what follows, as in the work of Pollak and
Geballe, 4 the distances of interest turn out to be rather smaller
than the critical cutoff distance ~(3/43.ÃD)& at which the
exponential factor becomes important. Physically, this means that
the intersite distances of the configurations which provide the
principal contribution to the current (both ordinary and Hall)
are less than the average distance between donors; for such
configurations, the likelihood of an additional site being still
closer to either of the t~o (or three) already under consideration,
is remote and may be ignored.

With respect to the third site, it is necessary to
specify not only its distance, 8», from site 1, but also
the angle 0», between R» and R». One readily obtains

W(R18)088)dR»d(cos888) =2zrNDR» dR»d cos883,

which, by virtue of the relationship
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where the product, goes over the values i= 1, 2, 3, and where r, is that value which satisfied (2.35), i.e. ,

7„=C(r,/a) &e

Introducing (2.42) into (2.34), together with the transformations

l;=—pimp,

one has

(2.35)

4e'p~'*3A B~e
j,&"~=- — (HXE)S+o& V &

Z '(~T)~ 4 Ac 0 ~ 0

p' 1+32lpri
1—3a/4r

($ '+k '+5 ')dHMk

1+9 (4'+4'+6')+(6'+52+ &2) ]+9(kl 4+f1 $3 +$2 $3 )'

where, in place of (2.35), one has

pigP/C = (r;/a) &e (2.44)

&p/C= (r,/a)Ie —'"o~ . (2.45)

This approximation is based (a) on the circumstance
that the r,'s are rather slowly-varying (logarithmic)

A considerable simplification is achieved by approxi-
mating the r s in the factors, r,/(1 —3a/4r;), by a
single constant value, rp, which is given by (2.43) with
each gp set equal to unity, i.e., by the solution of the
equation

functions of the $;, and (b) the anticipation that the
main contributions to (2.43) will come from regions in
which the $; are of the order of unity.

In a similar spirit, the area factors Sppi and Appi will
both be replaced by the area of the equilateral triangle
whose three sides are equal to rp, as given by (2.45).
Thus

@ppi ~ ~ppi ~ v3rp'/4.

With these approximations, one then has for the
magnitude of j;&~)

where

j'~& 4epi' 3A eH(v3r P ' r '
8&

~

— — Sm'a'iVD g,
E Z '(i~T)& 4 Ac" E 2 (1—3a/4rp)'

(5p+ 4'+6')d 6d$@h

/, 1+P(Pi'+4'+$p')+ (tP+b'+5P)']+9(6'h'+4'h'+h'$P)'

(2.46)

00

dQ (2.47)
p 1+Pl 1+3(n,'+I,'+ii, ')]+9( (riPnz +NPnP+nPz )

In (2.47), P=tP+$p'+gpP and I,=$;/par—e the direction
cosines of the vector (gi, gp, b) in a Cartesian space; in
the last equality the angle integration goes over the
octant for which the m; are all positive.

An approximate evaluation of the dimensionless

quantity g is carried out in Appendix IV. The result
is Pcf. Eq. (IVS)], /~0. 62. Inserting this result into
(2.46) and multiplying by the density of charge carriers
)which may be taken equal to the minority (acceptor)
concentration, E~], one obtains (as a lower limit) the
following expression for the imaginary component of
Hall conductivity

Epj, & ~ (3) (0.70)e'pi'"A v3rp')'

E Z '(KT)& 4 i

&( — Sn'a'Xr)'Ãg. (2.54)
Ac (1—3a/4rp)'

It is desirable to express this result in terms of a
quantity analogous to the Hall angle. Because of the
ready availability of a formula for the real part of the
ordinary rf conductivity a„namely, Eq. (15) of
Pollak and Geballe, ' which reads"

where

'r e' ro'u m
o-„=—EgEg) GO

3 KT 2 2

ro ——14.8——,
' ln~

(2.55)

Las computed by Pollak and Geballe from equations
equivalent to (2.45) and (2.36) of this paper] the
"equivalent Hall angle" will be defined as

g, (&)~p,.(&)/0, (2.56)
'~ The arc-tangent term of the square-bracket of Pollak and

Geballe's Eq. (15) is herewith ignored, in accordance with the
procedure of these authors.
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Dividing (2.54) by (2.55), and setting Z =3, one has
(with neglect terms a/rp)

Using the numerical values given in the text previous
to Eq. (2.61) for the various parameters, one finds

8;i~i = 9 80(.Nina'ro) (A'&uzTB) &air, (2.57) p, (&i/.p (&)= 191))1 (2.66)

where

nH =%3r—0'eH/4Ac (2.58)

is the "magnetic" phase shift associated with an equi-
lateral triangular configuration (in which the three
intersite distances are all equal to ro), and where the
quantity B is given by (2.31). The latter relation is
expediently simplified by the standard assumptions
that (a) the lattice-vibration modes may be considered
either as transverse or longitudinal, and (b) the longi-
tudinal velocity is taken to be a constant, c&. Eq. (2.31)
then reduces to

B=Ei2/s pA4ci5,

which, when substituted into (2.57), yields

0,'H&=9.80(NDa'ro)(ANTE /i2~ pc~')''a I.i

(2.59)

(2.60)

An estimate of the numerical value of 0;&~' as given

by (2.60) will now be carried out for the case of
phosphorus-doped silicon (under the conditions pre-
vailing in the experiments of Pollak and Geballe').
Numerical values of the relevant parameters are taken
as p=2.42 g/cm', ci=9&&10' cm/sec, Ei 6ev; don——or
wave-function radius a=20A (as quoted by Pollak
and Geballe). The quantity ro depends upon tempera-
ture and frequency. At e.0;., 10'K and co=2+X10' sec ',
ro 10a=2X10 ' cm. For ND a representative value
of 10" cm ' will be used. Finally o.lI is set equal to'

With these values (2.60) gives

0,(» =0.62' &0- . (2.61)

An alternate way of describing the magnitude of
the Hall eGect is in terms of the Hall mobility. In
analogy with the dc case, let us define the ac Hall
mobility —more specifically, its imaginary part —by
the relation

8,'0& =„,&iI'H/c—

From (2.62), (2.60), and (2.58), one has

(2.62)

The ratio is

e rp4a x
p, (D) =—ÃD co—.

3 KT 2 2
(2.64)

p, &~& 5.15a ~T phcu~TEi2
(2.65)

rp AM k mpA'c)'

'0This value corresponds to f0=2&10 cm and F5=20000
gauss.

p,''H' = [9.80(N a'ro')%3e/4A j
)& (A~~TEi2/m pA3ci5) ~. (2.63)

One may now compare (2.63) with the (real part of
the) ac drift mobility [obtained by dividing (2.55) by
eX~, i.e.,

It is thus seen that the Hall mobility is actually
much larger than the drift mobility. This result appears
to be characteristic of hopping-type conduction mecha-
nisms in low-mobility materials, in which (as in the
present paper) the dominant Hall-conductivity mecha-
nism involves the interactions between three sites. In
particular, the result p'~'/p'D'))1 has been obtained'
for small-polaron hopping conduction, in those cases
wherein the crystallographic arrangement favors the
three-site mechanism. "

Unfortunately, from the experimental point of view,
the numerically:favorable situation exhibited by (2.66)
is rather illusory. In particular, even though the Hall
field (specifically, its imaginary component)

8;&~' = (1/N~ec) (pP/p )J&"&H (2.67)

is large compared to the so-called "normal" value,
J'"' H/ Ngec, the resistivities of the materials under
consideration are extremely large ( 10' ohm cm) (cf.
reference 4). What one is actually measuring is a
change (due to the magnetic field) of the transverse
conductivity, which, according to (2.62), is some 10 6

times smaller than the ordinary conductivity and hence
10 " ohm ' cm '. Such conductivities are small

indeed.
It should however be remarked that the above

numerical estimates of ordinary conductivity and Hall
angle relate to conditions prevailing in an experiment
(that of Pollak and Geballe'), which was not designed to
measure Hall currents. It is to be hoped that the
exploitation of a number of possibilities (such as more
highly doped samples, and/or larger ac electric fields)
may yield the sensitivity required for an experimental
check of the theory.

III. SIGN OF THE HALL COEFFICIENT

In this section the sign of the Hall eGect will be
discussed. It should be remarked at the outset that
the discussion will apply only to the case of large
compensation, in which the number of electrons on
donor sites is small compared to the total number of
donors —this case, strictly speaking, is the one for
which the theory has been developed.

Referring back to the end of Sec. I, one sees [cf.
(1.66) and (1.67)$ that if, say, a three-site circuit
i —+ j~ k ~ i is counterclockwise and if the component

"Such arrangements are characterized by the feature that
each site has two nearest neighbors which are also nearest
neighbors of each other (e.g., face-centered cubic). On the other
hand, structures such as body-centered or simple cubic, in which
a closed path connecting nearest-neighbor sites contains a minimal
number of four sites, yield Hall mobilities which are considerably
smaller than those provided by the three-site mechanism and
which, for representative values of the parameters, are comparable
in magnitude to the drift mobilities.
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Of the field parallel to the normal of the enclosed area
is positive (i.e., H Si,,)0), the sign of P~(i —+ h)
coincides with that of 8';jW j~S ~;. If, as will be argued
below, the 8';i are all negative, it follows that.
Pir(i ~ h) is negative. Moreover, according to (1.66)
and (1.68), Prr(i-+ j)= P&—(i —& h) and is therefore
positive. It is then clear that, in the presence of a
magnetic field, P(i ~h) and P(i ~j) decrease and
increase, respectively, thereby providing a net Row of
electrons from k to j. Since the nonmagnetic zeroth
order electron current is, on the average, directed from
i to some point between j and k, the Hall angle is
negate e, as might perhaps be expected for electrons.

It remains to justify the above assertion that the
8';i are negative. The sign of a typical W'ji is determined

by that of the "transfer potential" function re, ,(r)
[given by Eq. (1.12)] in an ellipsoidal region containing
the sites i and j, in which u(r —R,)u(r —R,) is maximal.
The principal term in (1.12) is contained in the first
parentheses; it is the one which appears in all overlap
calculations, and is obviously negative in the intersite
region. For the case of a hydrogenic ground-state
wave function, its contribution to S',i is known to be

2e'/—~R,;5,; [cf. H. Bethe, Haudbuch der Physih 24, 1

(1933), especially p. 539].
Turning now to the other terms in w, ,(r), one notes

that they each represent differences between the value
of a potential function at r and an equally weighted
average of its values at sites i and j. These differences
will generally fluctuate in sign in such a way as to yield
relatively small net contributions of the form
(ye'/«, i)S;, and (p'e'/KR, ,)S;;, where R;, is the
distance from site i to the nearest acceptor ion and
where (as indicated by sample calculations) p and y'
may be expected to be small fractions of unity (apart
from exceptional cases in which, e.g., the acceptor ion
is abnormally close to one of the two donor sites under
consideration).

If the above (admittedly crude) estimate of the
magnitudes of the different contributions to H/";i be
accepted (it may here be remarked that Miller and
Abrahams' discard the second and third terms in (1.12)
entirely), it follows that W;; is negative; from the above

discussion, one then concludes that the Hall coefficient

itself is negative.

APPENDIX I

(
g2 —y, (r) =E,y, (r)

~lr —R, l

(13)

with Ez the negative of the donor ionization energy),
one obtains the three equations (j=1, 2, 3)

E Q,T,,C,=Q, H;,C,, (I4)

T;,=8,;+5,;, (I5)

(I6)

H;, =EgT;;+U...
1

4;*(r) V.(r) ——E —4 ('r)d V (Ig)
ii i~' lr —R„l

g2

It is now expedient to multiply both sides of (I4)
by the matrix T;, ', inverse to T;i; then, upon summing
over the intermediate index j, and going over to the
appl" ox1rnatlon

~lj '—~lj —~lj (I9)

(applicable when the nonorthogonality integrals 5,,
are small compared to unity, as will here be assumed),
one has

(E Ed)C =Q [U,——Q 5;U;;]C,

=Q [Ui;—Si;U;~]C; (I10)

(the last approximate equality holding by virtue of the
relative smallness of the terms, p;~iSi,W;,, which
involve squares of overlap integrals). Equation (I10)
may more conveniently be written in the form

(E «i)Ci= Q J(,C;—,

where

«,=Eg+U;;

will be developed. The standard projection procedure
consists in substituting the general atomic-orbital
expression

y(r) =P, C,y, (r) (I2)

into Schrodinger's equation, multiplying on the left by
a particular P;, and integrating over r. Taking
cognizance of the fact that the isolated donor functions,
P;, are solutions of the equations

In this appendix, the atomic orbital approximation
to the eigenfunctions of the three-site electronic

Hamiltonian,

g2

H, = T+V, (r)——

=E~+ le'(r)l' V.(r) —g dv,
L 'iilr —R,

l

and

J"=U"—5"U-j'4 jz ji ii

(I12)

X + + , (I1)

g2

y;*(r)y;(r) V.(r) —p dv
'&' ~lr —R„i

—5;;U;,. (I13)
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e2

As in the treatment of Miller and Abrahams, ' it where

mill here be assumed that the differences in the "local
energies", s;, are targe compared to. the "transfer, i„) tr ~ )

' ' ' '-)
energies" J,j. In this case (I11) may be solved by
standard Rayleigh-Schrodinger perturbation theory.
The result, to first order in J;;, is

sf SCAN

C )=i); + (1—i); ).

Inserting this result into (I2), one obtains for the
eigenstates f of H, the result

e2ti 1
(I20)

APPENDIX II

or, more explicitly"

43s
&1 E3

J12 J82
gttr+A+ 43s

~31
4'1 41+ 4'2+

In this appendix, the matrix elements of electron-

(I15) lattice interaction

(jl& gl2)=&1 p j(r)n(r)p;(r) dV

(I16a) will be evaluated. From the form of 2)(r) given in Eq.
(1.5), it is clear that (II1) consists of a superposition
of matrix elements of the form

(I16b)
62 61 62 63 g ..i)t)= f.eeiqh rp dV (II2)

J23
4'1+ 42+43.

E3—61 63—62

(I16c)

g2

It is now desirable to transform relation (I13) for
Jg; into a form which will be more useful for the
extended treatment. Adding and subtracting the term
(U;;+U;;)/2 to the right-hand side and analyzing the
first equality of (I12), one has

Attention will therefore be focussed on these quantities.
A guiding principle of the calculation is that, in

view of the basic assumptions

the nonvanishing terms of only the lowest order in the
J;; and S,; need be retained. Thus, in the case of the
diagonal matrix elements, A;;("), it is sufhcient to
approximate each f; by the corresponding p;, so that

Uii+ Ujj
d V—(e;—e;)5j~/2. (117)

Further simplification is achieved by taking advantage
of the fact that, in all cases of interest, the radii of the
donor wave functions are small compared to intersite
distances. Under such conditions, U;; is well approxi-
mated by the formula

g2

U;;= V (R;)—Q~' a( R,—Re~

which, when inserted into (I17), yields

Following the procedure of Miller and Abrahams, ' one
may in addition assume that the q), of interest obey the
condition

q),a((1 (II3)

(where a is the radius of a donor wave function); it
then follows that

() ) = e'&&.R;

For the evaluation of the off-diagonal elements A;;(")
it is necessary to go to the 6rst order in J;; and S;;.
Thus, one has, e.g., for

J,,= gj (r)$,.(r)w, ,(r)dV (e, ej)S,,/2 . (Is19) g21(&)
62 &1

J21 J12
esq)t Rg+ eiq)t R1

e1—e2

22 The orthogonality (to first order in the J;;)of the P's may be
verified directly, if one takes account of the fact that the J&; are not
Hermitian, but obey the relation J,;—J;;*=S;iLd;—d;j.
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At this point, another approximation utilized by
Miller and Abrahams will be introduced. It is, namely,
that the distance between donor sites, lR,—R;l, is

large enough so that, for the q~ of interest, the condition

and the cyclic permutations of (II7) into the expression

(jlB'.zli)=iEiZ qi eel
E2Mjlio»,

„lR,-R, l»1 (II6) X (f&xA;, &"&—bi~A;;&'& t) (II9)

is obeyed. (Obviously, the condition can be satisfied
for sufFiciently low donor concentrations. ) With the
aid of (II6), one may show that the third term of

(IIS), namely,

&xi — @ zzezqi ry o&I&'

is small compared to the others. " It will therefore be
discarded in what follows.

Introducing Eq. (1.23) into (IIS), one has

&x& = —[e&s nz —ezsx»]earl21

Cj—E-2

e Pzz[e's—&, r&z+e s&, nz] (II7)

Pz'— (IISb)

(IISc)

(IISd)

which may, in turn, be verihed directly from the text
relations'4 (1.24)-(1.29) (and which, incidently, must
be valid in order that the P, remain orthogonal in the
presence of the magnetic field). The insertion of (II2)

In obtaining (II7), use has been made of the
relationships

(IISa)

yields the desired matrix elements of electron-lattice
interaction.

APPENDIX III

In this appendix, the selection of those three-stage
processes whose amplitudes are coherent with that
of (1.54) will be carried out. This selection is governed
by a number of conditions. One first notes (condition 1)
that, since the final lattice state diBers from the initial
in that only a single phonon belonging to the ) mode
has been absorbed or emitted (Xx~Xx&1), one of
the three stages must involve this process, the other
two must have to do with the absorption and re-
emission (or emission and reabsorption) of phonons of
another mode (X&, —+ jl)'&, .T1~ . . —+1(x ).

Secondarily (condition 2), it is necessary that the
energy of one of the two intermediate states coincide
with (i.e., be contained in a continuum which overlaps)
the energy of the initial state. This requirement is
needed in order that the net zero-6eld phase difference
of the two interfering amplitudes be ~90' (as discussed
in connection with the two-stage interferences [in
particular in the text between Eqs. (1.45) and (1.46)j).

Finally (condition 3), it is necessary [by virtue of
inequality (1.48)] that the "phonon" phase factors of
the three-stage amplitudes coincide with one of those
given by Eq. (1.54), i.e., they must reduce to either
e+''i"'"" or t,'+''i)' R'. These three conditions will now be
used to select the relevant three-stage processes.

' The reason is that the domain over which the magnitude of
@2 @I is of the order of its maximum value, is a prolate ellipsoid
with minor axis (&&~Rz—Rzl)1 and major axis ~R&—Rz~/2.
Over this domain, the oscillations of the factor e&'i) ' cause destruc-
tive interference.' This verification is straightforward except for the o.;;. In this
case, it turns out that y;&&'&, as given by the text relation (1.26),
is not equal to y;;('). However, it will be noted that the difterence
between, say, y;;(') and the obviously symmetrical quantity

P;&s&—=W, 'fzz(r —R )zz(r —R;) " " rdU

is given by Lcf. Eq. (1.20) of Appendix Ij
8

nf&;, &'&=W;; 'fzz(r —R;)zz(r —R, ) 2 & R ~ 2 & R ~

rdV,

which, in view of the symmetry of the donor functions, and of the
term in square brackets, has the form

At&;, &'& =A;;R;+B;;(R;—R;),
where A;;=A;; and 8;;=8;; are certain constants. With this
form it is seen that

p
..(I) y. .(1)—gy ..(1) gy, (1)

=A;;(R;—R;)+2B;;(R;—R;)= C;;(R;—R„),

which clearly makes no contribution to the triple scalar product in
the text relation (1.25), which defines u;;.

Let us begin by looking for those processes whose
amplitudes are proportional to e+''i" '. Since the ) mode
is (by condition 1) to be involved in only one stage, it
is necessary that (in going from i to j to k) the )t mode
participate either in the transition j—+k, or in a
"diagonal transition", k —+ k, The other stages, in
particular diagonal transitions on either i or j, or
transitions i —+ j, must "use" another X' mode.

The initial process could conceivably be diagonal
(i, E& ~i, E&, W1) giving rise to a phase factor
e+''i"'R. Since this phase factor does not occur in the
net three-stage amplitude, it would have to get elimi-
nated in the next stage, which would hence be of the type
(i, Ãx %1—+jEx), ,to be followed by (j, Ex —+k,
Xx&1). This possibility, however, would violate
condition 2, in that the two successive intermediate
states would have energies which di6er from the initial
by ako&x and e;—e;, respectively. It then follows that
the first stage must be of the form (i, E&, —+ j, X&& W1).
Furthermore, from the phonon phase factor (e ""'"z



HALL EFFECT I N I M PUP~I TY CON DUCTION

—e+&" a') in the matrix element Lcf. text equation
(1.39)$ only the first term, e+'q"'Rj, is to be retained.
(The other phase-factor, e+'q"'"', could never be
cancelled out in the second or third stage, since site i
will not participate in them. )

Coming to the second stage, there are the two
possibilities of a diagonal (j-+ j) or a nondiagonal

(j—+ A) transition. These will be considered in sequence.
(1) The diagonal (j—+ j) transition cannot use the

X mode; by virtue of condition 1, which requires that
this mode occur only once, its use must be reserved for
the transition involving site A (so as to provide the phase
factor e+'q" "'). The diagonal transition must therefore
be

(j, Nj, %1—+ j, Nj, ).
It then follows that for this case, the total sequence of
transitions is

(i, Nj„N& —+ j, Nj„Nj, %1~j, Nj„
Nj, —+A, Nj, &1, N), ).

I
One notes that the second intermediate state has the

same lattice quantum numbers as the initial, so that
it is necessarily virtual (with energy diBering from the
initial state by the amount, e;—e;).]The amplitude for
this three-stage process may now be written down, and
is"

(k, Nj, %1,Nj,
I
T&"j Ii, Nj, &1, Nj,

=pi ID~, (6)
I

g7~(ki

~ .~,'&-.;+-;;&,~'q&»
X— , (III1)
(E~ Ej) (ej Eg) (Ej ej+AMy'+zA$) (ej Ej)

(2) I.et us now consider the remaining possibility
for the second stage, namely a transition of the type
(j, N& %1—+ A, Nz ). The final stage is then necessarily
diagonal, of the form" (k, Nj, ~ k, ¹&1).The total
sequence of transitions is thus

(f, Ni, Nj, —+ j, N)„Ni.&1—+ k, N)„
iV), —+k, Eg~i, Ãg. ,

the associated amplitude is

(k, N, ~1, N. IT,&»It, N&~1, N, )
—jv 3ID~, (+i I~/)~(ki

~&". ,&'( I )+~gs)~kf'q) a

, (III2)
(eg ej) (ej ey) (ej ej+Aon, '+zA$) (e ' ep)

~~ In accordance with the above remarks, the relevant terms of
the Grst, second, and third stages are those whose phonon phase
factors are e+'~~' &, e+'&&' &, and e+'~& 'R~, respectively.

'qAn alternate order of phonon mode participation (for the
second and third stages) such as

(j, Nj, .~1, Nj, -+ k, Ng W1, Nj, W1 -+ k, Nj. ..Nj, ~1)
would yield terms proportional to

&+~q) Rj(Q&q) ay Q~qi aj)Q~qj
t

and hence incapable of interference. with (1.54).

wherein the energy of the first intermediate state 'is

I as in the case of (III1)]required to lie in the immediate
vicinity of the initial energy, since that of the second
intermediate state necessarily divers by the amount
&a—~'

The superposition of (III1) and (III2) yields

(A, Nj,ai, N, I T,i"j Ii, Nj, w1, Nj, )

=g jj
I
D~, (+i

I
2D„(hi

.P . .~s(aggg+ngs)~+eq), RA,
kg jiX,(III3)

(ej Ej) (Ej et) (e j eg+Aojj ~&zA$)

wherein the superscript "(k)" is used to indicate the
fact that the phonon phase factor is a function of the
position Rj, of the kth site.

Let us now consider the other contributing three-
stage processes; according to the remarks at the
beginning of this appendix, they must be such as to
exhibit eventual proportionality to e+'q"'n' (and to no
other phonon phase factor).

In order to realize the factor e+'~'R', it is necessary
that the ) mode participate in either the first or second
stages of the transition, since only factors of the form
e+'&" '"~ or e+'~" " could be generated in the third stage.
If the P mode participates in the second stage, the
transition must still involve the ith site, i.e., hence,
the first transition would have to be of the diagonal
form (i, Ni —+ i, ¹ %1), giving rise to the phase factor
e~'&' '. The required cancellation of this phase factor
would have to occur in the next (second) transition,
which would therefore have to be of the form
(j, N&, W1 —+ j, Nz ) contrary to hypothesis. It there-
fore follows that the X mode must participate in the
first stage. This stipulation still permits two choices,
either diagonal P, Nj, —+ i, Nj,&1) or nondiagonal
(e, Nj, -+ j, N&%1); these will now be considered in
order.

(1) With the first transition of the type (~, Nj, —+i,
Nj, &1), the remaining two must be (in sequence)
(i, Nj, W1, ¹

~ j, N&%1, ¹
%1~k, Nj,&1, N), ).

Let us here observe that the first intermediate state is
virtual; in fact, from footnote 13, the associated energy
denominator, %5~, may be set equal to ~A,

—~;. It then
follows that the second energy denominator,

e„e&&Aojj&Ao—jg~+jAs= ejf, e&&A4)j,~+—zAs,

must be of the "resonance" type, in which the
continuum of intermediate energies overlaps the initial
energy, thus requiring"

ej,—e;wAojj, =0.
~' The X' mode is here obviously difI'erent from that participating

in {III3). Ps will be seen later, this diRerence is inconsequential,
since the two types of amplitudes will never interfere.
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The net amplitude of the above described three-stage
transition may now be written down, and is

(k, »~1, N ~2'"'I2, N1, »)

p &
.p ..~i(aIsj+a7$)/+i'~ Ri

kj
X

(44—4j) (4j—t(t) ('42 2—4) (41. 4j+kM&'+LkS)
(III5)

(2) Assuming the first transition to be of the non-
diagonal type (2, Nz~ j, N&%1), one must then take
the second transition to be diagonal. Otherwise, one
would have (i, Nz, N& ~ j, Nz+1, Nz —+ k, Ni, W1,
Nz +1-+k, Nz+1, Nz ) in which, by virtue of footnote
13 (and the basic presumptions e;/4;44&), both energy
denominators are nonvanishing. One is thus left with

(2, Nz, Nz -+ j, N),%1,Ni, —+ j, N&%1,

N), %1~ k, N),%1, N), ),

in which the energy denominator of the second inter-
mediate state, namely,

4j 4j &5M1&—AMg'+sos = 4jt—4j&kM1 +2ksI

is of the resonance form, as long as (III4) is satisfied.
The net amplitude for this transition is

(k, Ni, +1,Ni,
~

T2(4&
~
i, Ni„N1, )

—P 2
[
g), (+i

~

2D„(&i

pl~ .g . ,gi(a4+a j'i) g+iq.& .Ri
kg ji

X
(44 Cj') (4j 4—2) (42—4j) (42 4 '+AM1~+ZAS)

(III6)

wherein use has been made of footnote 13 in rewriting
the 6rst energy denominator. The superposition of
(IIIS) and (III6) yields

(k, %,W1, »
~

T2"
~
2, iV)„N1;)

g,2
~

D„,(+i )2D„(+i

Hj( ~
.g1 ..gi(u7gj+aji)g+ic[g RiI j ji

X , (III7)
(44 42) (4j 22) (42 Cj +i2M1 +2'IkS)

wherein the superscript "(2)" has been used on the
left-hand side to denote the fact that the phonon-
dependent factor, e+'~"'R', depends on the location of
the ith site.

APPENDIX IV

In this appendix the dimensionless quantity,

ctant 1+p(1+3 (n14+2224+N24))+9/2(22122222+ 22 22222+ 222222 2)2'
(IV1)

given by the last: equality of (2.47) will be evaluated. Here, as pointed out in the text subsequent to (2.47), the
I;=$;/$ are direction cosines in a Cartesian space, and p=—)12+)22+(22.

The integration over ( may first be performed; the result is

ctant (3—t)' {1+b+y(& 1))'}'+—{1+b—[8(b—1))2}l

X dQ,
{1+&+I:8(&—1))'}'+{1+&—L8(b —1))'}'-

where
5=3(N14+n2'+ 2224). (IV2)

which, from (IV2) and use of the relation

The integrand of the expression for 0 can be simpli6ed
considerably by use of the algebraic relations

{1+&+L8(b —1)1'}'
+{1+5—L8(b —1))~}~=8~, (IV3a)

{1+b+L8(&—1)1'}'+ {1+&—L8(b —1))'}'
= 2&L2&+ (3—b) &)& (IV3b)

(each of which is readily verified by squaring both sides
of the relation in question). One obtains

1 SP+'s2 +'B3

may be written as

(8)3~ t t I 22124222+24122222+22222222)4

X (IV5)
(1+3 (22122422+I12022+22222422) $)f

dQ, (IV4)
(4)2: ......-(3-f)~ L2-:+(3-~)~)~-

At this point, the approximation of replacing the

quantity, $1+3&(ni'242'+221'n2'+ 222'222')&)& by its maxi-
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mum, namely 2&, will be introduced. . One then has

/~ am=
8(6)~ Og [N)20i2+'g~2iii2+Np'+i2],

To proceed further, it is useful to express E(k) as a
series in ascending powers of the argument

k'= (1—k')'*= ~~ sing.

~/2 ~/2

() 0
4 ln(4/k') —1

where 8 and p are polar and azimuthal angles, E(k) = ln —,+
respectively.

The integration over 0 now gives
9

+—(ln4/k' —7/6) k"+ .
64

One has (cf. Jahncke and Emde, TaNes of Functions,
(Dover Publications, Inc. , New York, 1945) p. 73.

Leos'0+~i sin'8 sin'2$]l

8(6)&

where P—=2Q, and where

EL(1—
~~ sin'P) '*]dP, (IV7)

which, upon insertion into (IV7), yields to a sufficient
degree of accuracy"

x/2

E(k) =
(1—k' sin'8) l

16(6)*'

1. 16
ln16+—ln—=0.70.

32 8
(IV8)

is a standard elliptic integral.
2' The contribution of the third term of the series is left out.

This omission again minimizes the result.


