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Recombination of Electrons and Donors in n-Type Germanium~
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A calculation is given of the recombination cross section of an electron having a spherical effective mass
and a donor impurity whose bound states can be described by a hydrogenic model. The recombination
takes place with an initial capture of the electron in an excited state of the donor center followed by successive
transitions to lower lying states. Each of these processes takes place with emission of a phonon. The calculated
cross section agrees with the experimental one within a factor of the order of unity. The agreement between
the temperature dependence of the calculated and the experimental recombination cross sections is good.
Also we obtain a small but significant dependence of the recombination cross section on the binding energy
of the ground state of the donor.

1. INTRODUCTION

E are concerned, in the present work, with the

~

~ ~

kinetics of the recombination of electrons in the
conduction band of a germanium crystal with ionized
impurity donors of the group V of the periodic table.
We assume that the bound states of such donor atoms
can be described by considering the electron that does
not participate in the cooperative bonding in the crystal
to move around the impurity ion in the same fashion as
it moves around the proton in a hydrogen atom. How-
ever, the Coulomb interaction is reduced in strength by
a factor E equal to the optical dielectric constant of
germanium and the electron has an effective mass m*

which can be regarded as the geometrical mean of the
principal effective masses in the crystal. ' We take K= 16
for germanium and m*= 0.22m, where m is the free mass
of the electron. The factor 0.22 is obtained from the
results of cyclotron resonance experiments. ' We shall
disregard, for the time being, all complications arising
from the band structure of germanium and assume
simple spherical bands with effective mass m*.

Under these conditions the ionization energy of a
donor impurity is

E,=nt*e4/2A'E'= 0.0117 ev, (1)

where e is the charge on the electron and A is Planck's
constant divided by 2m. The effective radius of the first
Bohr orbit is

a*=EA'/rrt*e'= 38.5 A. (2)

Because of the extension of the bound states in space,
one expects a rather large recombination cross section.
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~ G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368
(1955).

In fact, at 4'K for As and Sb impurities in Ge the cross
sections for recombination turn out, experimentally, to
be of the order of magnitude of 10 " to 10—~ cm'.
Furthermore, they vary with the temperature approxi-
mately as T ".

One can conceive of a number of recombination
mechanisms. For example, a conduction electron may
make a transition to the ground state of the donor center
accompanied by emission of light or of a phonon of the
appropriate frequency. It is also possible for the electron
to recombine with an ionized donor by collision with
another electron in the vicinity of the donor center; one
electron is captured while the other carries away the
excess kinetic energy. These mechanisms have been
studied by Sclar and Burstein' who conclude that none
of them is able to account for the large cross sections
of recombination observed.

The cross section for direct recombination with
emission of light is obtained by making the appropriate
changes in the well-known4 results for the radiative
recombination of electrons and protons to form hydro-
gen. The result is

o.= 1.71)(10 "E&(sn/nt~)'E;(ev)/T cm' (3)

o = 256srEIshsc, s/ptz*sE, sk T. (4)
' N. Sclar and E. Burstein, Phys. Rev. 98, 1757 (1955).
4See, for example, H. A. Bethe and E. Salpeter, Quantum

Mechanics of One and TIoo P!/ectr-on Atoms (Ac-ademic Press, Inc. ,
New York, 1957), p. 3208.' H. Gummel and M. Lax, Ann. Phys. 2, 28 (1957).

where E;(ev) is the ionization energy of the donors ex-
preseed in electron volts and T is the absolute tempera-
ture in degrees Kelvin. The magnitude of 0. when
T=4'K is 4.15&10 " cm'. This mechanism is, there-
fore, too slow to account for the experimental results.
Furthermore, the temperature dependence is in con-
siderable disagreement with experiment.

If we regard direct recombination with emission of a
phonon as the main process responsible for the removal
of electrons from the conduction band, we find a cross
section'
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TABLE I. Values of P„(sec ").

T(0

3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

2.46X 104
1.17X10'
4.56X10~
1.38X 106
3.12X1«
1.03X10'
2.63X107
4.95X10'
8.41X10'
1.29X 10s

1.17X10'
2.37X10s
4.53X 1Ps
7.71X10s
1.12X10'
1.97X10'
3.01X10'
4.15X10'
5.34X 10'
6.54X 10'

3.23X10"
4.88X10'
7.29X 10'
1.POX 1PM

1.24X10"
1.77X1P'0
2.29X 10"
2.78X10"
3.23X10'o
3.66X 10'0

In Eq. (4) E& is the deformation potential (to be intro-
duced in section 2; we shall take its value to be that of
bulk germanium, i.e., approximately 20 ev), c, the
longitudinal velocity of sound in Ge (c,= 5 && 10' cm/sec),
p the density of Ge (p=5.35 g/cm'), and k the Boltz-
mann constant. At O'K this cross section is 0-=5.9
)&10 "cm'. The same remarks regarding the applica-
bility of the mechanism hold here as in the case of re-
combination with emission of light.

In the same manner impact recombination is not able
to account for the observed phenomena. ' Lax' has re-
cently proposed a mechanism of recombination which
consists of the capture of an electron in a highly excited
state of the donor with a subsequent cascade process by
means of which the electron slowly diffuses to the ground
state of the impurity center. The treatment of Lax is
similar to that given in the work of Thomson' on gaseous
discharges and is entirely classical. The recombination
cross section turns out to be of the correct order of
magnitude but varies as the inverse fourth power of the
temperature.

In the present work we suggest that the recombina-
tion takes place by capture of a conduction electron in
an excited state of the donor (not necessarily a highly
excited state) with a subsequent transition to lower lying
states. These transitions turn out to be faster when they
are accompanied by emission of phonons rather than
light.

In Sec. 2 we give the results of a calculation of the
cross section for capture of a conduction electron in a
bound state of the donor center. In Sec. 3 we consider
subsequent transitions with emission or absorption of
phonons or light. Finally, in Sec. 4 we give the recom-
bination cross sections based on the mechanism con-
sidered in this paper together with a comparison of these
results with the available experimental information.

the principle of detailed balance to relate the capture
cross sections to the transition probabilities for thermal
ionization. Let us label the stationary states of the donor
by subindices j.These subindices will represent the set
of quantum numbers (nlm) associated with the different
bound stationary states of the donor. The number of
electrons captured per unit time in the state j is

pj = V(Ng+n) de n(e) f(e)ea, (j,e). (5)

n(A) = de n(e) f(e)A.

The second equality in Eq. (6) is simply the definition
of the mean capture cross section o-, (j).Now, the num-
ber of electrons in states j which are excited per unit
time into the conduction band is

(s)

where p; is the probability per unit time for thermal
ionization of an electron in state j.The quantity SD'~'
is the number per unit volume of un-ionized donors in
the state j. In thermal equilibrium we must have

so that

where
a.(j )= Ãz f,P~/n„(V&+n„)(7?), (10)

TAsLz II. Values of o, (n) (cm').

Here E~ is the concentration of acceptor atoms, m the
concentration of conduction electrons, n(e) the density
of electronic states (per unit volume) in the conduction
band, v the velocity of an electron whose energy is e,
o.,(j,e) the cross section for capture of an electron with
energy e in the jth state of the donor center, f(e) the
Fermi distribution function, E, the energy of an electron
at the bottom of the conduction band, and V the volume
of the crystal. Equation (5) can be rewritten in the form

v, = V(N&+n)n(va, (j,e))—= V(N&+n)n(w)a, (j) (6).
The symbol (!1)indicates the average of the quantity
A over the thermal distribution,

2. CAPTURE IN EXCITED STATES

The purpose of this section is to give the results of a
calculation of the cross section for the capture of a
conduction electron in a stationary state of an impurity
donor. In order to obtain these results we make use of

' M. I ax, Phys. Rev. 119, 1502 (1960).' J. J. Thomson, Phil. Mag. 47, 337 {1.924).

3.0
3.5
4.0
4.5
5.0
6,0
7.0
8.0
9.0

10.0

6.65X10 1'

4.62X10 "
4,11X10—13

3.84X10 "
3.30X10 "
2.43X10 "
2.03X10 "
1.61X10 "
1.35X10 "
1.15X10 "

5.91X10 ""

4.30X10-»
3.68X 10—»
3.25X 10-»
2.74X10 "
2.02X10 "
1.58Xip "
1.27X10»
i.osX io-»
8.87X10 "

1.82X10 "
X1P

1.14X10-1
9.78X 10-»
8.11X10-»
6.03X10 "
4.69X10-»
3.75X10»
3.06X10»
2.56X 1P
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is the probability of having the jth state occupied at
temperature T, and g, is the degeneracy of the level j
(2 for an s state, 6 for a p state, etc.). The quantity i' is
the Fermi energy, E; is the energy associated with the
state j, and e„ is the equilibrium concentration of
electrons 3.0

TABLE IV. Sticking probability 5„.

0.26
0.59

0.36X10-'
1.48X 10-~

Upper value for As, lower value for Sb

e„=1V. exp/
kr i (12) 0.15

0.42
0.24X 10-'
0.99X10 '

X,= 2 (m*k 7/2~A'):

After some transformations we get

g,~'k"'p,
o,. (j)=- exp(I;/kT),

2m*(kT)'
where

(13)

E, is a quantity that depends on the temperature and
the density of energy levels e(e) in the conduction band.
For spherical bands with an effective mass m* it is
given by

4.0

4.5

5.0

6.0

7.0

8.0

0.9988
0.9997

0.9966
0.9992

0.9900
0.9982

0.9762
0.994

0.932
0.983

0.891
0.972

0.083
0.27

0.050
0.18

0.036
0.13

0.020
0,080

0.013
0.054

0.98X10 '
0.040

0.16X10 2

0.66X10 '

1.15X10 '
482X10 '

0.93X10 '
3.90X10 '

0.66X10 '
2.75X10 '

0.51X10 '
2 ~ 12X10 '

0.42X10 '
1.75X10 '

is the ionization energy of the jth state.
We turn now to the task of evaluating the transition

probabilities P, for thermal ionization. This can easily
be done for the lower lying states with quantum numbers
e from 1 to 4. It turns out that these are the only ones
that we shall need. The fastest mechanism for ionization
is that which is associated with the absorption of a
phonon. We shall assume a simple model of the electron-
phonon interaction, namely one for which the change in
energy of an electron in the deformed lattice is given by

H'= E, divs(r), (16)

TABLE III. Values of P /P
' at T=4'K.

fs /fs
'

164
89
46
19

where E~ is the bulk deformation potential of germanium
and s(r) is the displacement of an atom in the lattice
occupying a position of equilibrium given by r. We now
expand s(r) in terms of operators that represent the
creation and destruction of phonon modes as follows:

s(r) = (is/pV)' *P,„e,„(a&,„) ~a,„"exp(iq. r)+H.c. (17)

The quantities e,„,a&,„,and a,„t (a,„) are, respectively,
a unit polarization vector, the angular frequency, and a
creation (destruction) operator associated with a phonon
characterized by the wave vector q. There are three
possible polarizations p (p= 1, 2, 3). We shall make the
assumption (which is only valid for an isotropic elastic
continuum) that for each value of q there are two possi-
ble polarizations at right angles with q and a third

9.0

10.0

0.837
0.955

0.804
0.929

0.76X10 '
0.021.

0.62X10 '
0.01.7

0.36X10 '
1.50X10 '

0.32X10 '
1.33X10-'

parallel to q. The latter lattice modes are called longi-
tudinal phonons and, in view of our assumption (16),
are the only ones that eGectively interact with the
electrons. All these assumptions clearly limit the validity
of our detailed quantitative result. However, we are
only interested in finding order of magnitude estimates
for the recombination cross sections so that our model is
sufhcient for the present purpose.

Some of the details of the calculation of the capture
cross sections are given in Appendix A. Here, it is enough
to mention that capture in s states (i.e., in states with
angular momentum /=0) is much more likely than
capture in states of higher angular momentum. The
results have been obtained for e ~& 4 using Coulomb wave
functions for the states in the continuum and are ex-
hibited in Tables I and II. The difference one obtains
when one uses plane waves instead of Coulomb wave
functions is discussed in Appendix B and summarized
in Table III.

Once the electron has been captured in a bound state
it may either remain attached to the impurity center or
it may be re-ionized by absorption of a phonon. The
probability that the electron will not be ionized is called
the sticking probability. Its evaluation constitutes the
object of the next section.

3. STICKING PROBABILITY

Let S;be the probability that an electron in the bound
state characterized by j will not be ionized into the
conduction band. If p "' is the probability for ionization
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after v transitions of the electron between the state j and
other states j'/ j, we have

TAsLE V. 0 (cm') for As and Sb.

0 (As) (sb)

But

S,+Q p,'"'=1.
v=1

p (v) Q p, , p, (v—))
j'w j

(19)

where p,'; stands for the probability for the transition
from the bound state j to j';

3.0
3.5
4.0
45
5.0
6.0
7.0
8.0
9.0

10.0

2.27X10 I'
1.13X10 "
7.36X10 "
5.61X10 "
4.38X10 "
2.84X10 "
2.14X10 "
1.60X10 "
1.24X10»
1.ooX 1o-»

4.4/X10 "
2.42X10 ~
1.51X10 ~

04X 10
/. 37X10 "
4.30X10-»
3.04X10 "
2.22X10 "
1.63X10 "
1,32X10 "

pi'i=wi'iL Z w)'i+~ij 'v (20)

and
(21)

The quantity zv;, is the probability per unit time that
an electron in state j will make a transition to state j'.
It is suf6cient to compute m;; in order to obtain the
sticking probabilities 5; with any desired accuracy.

The transition probabilities are obtained from (16)
and (17) using the Born approximation. There are
several cases of interest depending on the magnitude
of the parameter

(22)

(e')s)'

pa"E (e e')'-(e+—I')'
648 'S4c,'

XL1—exp( —fio)„„/kT)] '. (23)

The frequency ~„„ is given by the Bohr relation,

(24)

Application of the principle of detailed balance yields
(e'& e)

w„„=w„„exp(—Ao)„„/kT), (25)

from which we readily establish that P„&„w„„is
negligible as compared to P„ for m~&4.

Table IV gives the sticking probabilities as a function
of the temperature 1and e. In Eq. (23) we use the

In equation (22) )s is the principal quantum number of a
level j described by the numbers m, l, m in the hydro-
genic model, and q is the wave vector of the phonon that
accompanies the transition. When )„„))1the largest
transition rates are those between two s-like states.
Transitions between states el and m'l' are smaller by
factors ()(„)'"+') so that they need not concern us
here. Also, transition probabilities between states for
which ) „„.is not large as compared to unity are neg-
ligible compared to the previous ones. We obtain for
X„„)&1and e'&n

value given in equation (1) for E, except for the case
e'=1, for which we substitute the experimental values
(E,=0.0127 ev for As and E„=0.0096 ev for Sb). In
fact, it is known that the energy levels of the excited
states of a donor center are given approximately by
E„=—E,/e' with E, obtained from (1).But the ground-
state energy differs from the simple hydrogenic value
and depends on the nature of the impurity atom. The
justi6cation of the above procedure is that the factor
E,s in the denominator of (23) arises entirely from the
energy of the phonon associated with the transition so
that it is different for different donor impurities. The
term a*' originates from the choice of a hydrogen-like
wave function for the ground state and so we assume it
to be given by (2). Naturally, it would be more rigorous
to use the precise wave function for the ground state,
but this should not appreciably alter the dependence of
the transition probability m&„on the binding energy of
the ground state.

Once an electron has been captured in an excited
state, it can make an optical transition to a lower lying
state. Here, however, the usual spectroscopic selection
rules must be satisfied because the extension of the
orbits is much smaller than the wavelength of the light
associated with the transition between two bound states
of the donor center. In other words, the dipole approxi-
mation is adequate. The rate for an optical transition
from j to j' turns out to be 2.15&10 ' times the corre-
sponding transition probability for the hydrogen atom.
The latter are given in the literature. The transition
probability to go, for example, from a 3s state to a 2p
state is 1.36)& 10' sec '. Optical transition rates are thus
extremely small as compared to those occurring with
emission of a phonon. The rate for the transition 3s —+ 2s
with phonon emission is of the order of 10' sec ' so that
roughly 1 in 107 recombinations will occur with emission
of light.

~=K ~.(J)~, (26)

See reference 4, p. 266.

4. RECOMBINATION CROSS SECTIONS AND
COMPARISON WITH EXPERIMENT

The cross sections for recombination are obtained
simply by substituting in the equation
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the values given in Tables II and IV. It is immediately
observed from Tables II and IV that the most important
contributions to the recombination cross sections arise
from capture in the 2s and 3s levels with subsequent
transitions to the ground state with emission of a
phonon.

The recombination cross sections for As and Sb donor
impurities are given in Table V.

In recent years there have been several measurements
of the parameters necessary to describe the kinetics of
the recombination of electrons and donors in ger-
manium' " followed more recently by some data on
similar processes in silicon. "

The erst measurements of the recombination of elec-
trons and donors in germanium made by Koenig' were
followed by those of Ascarelli and Brown. "The cross
sections measured by these authors differ by nearly a
factor 20 at 4'K; this difference can be attributed in
large part to Joule heating of the sample during the
previous breakdown process. The reader is referred to
reference 10 for a discussion of this question. If this
source of error is taken into account the resulting cross
sections differ by a factor 3.5 and have a similar tem-
perature dependence: approximately T "between 9
and 3'K. Similar results were recently obtained by
Michel and Rosenblum. " The absolute values of the
cross sections measured by Ascarelli and Brown are
affected by very large unknown systematic errors con-
nected with the evaluation of the compensation of the
samples. The experimental data of references 9 and 10
are shown in Fig. 1.

The cross sections given in Table V are those corre-
sponding to a nondegenerate spherical effective mass.
If the fourfold degeneracy of the conduction band edge
of germanium is taken into account there will be an
increase of a factor 4 in the capture cross section. Under-
lying this statement is the assumption that the capture
probability of an electron from one valley of the con-
duction band into the excited state of the donor is inde-
pendent of whether this excited state is made out of
Bloch functions from the same minimum from which
the electron is captured or from another one degenerate
with it. Details of such an extension to the case of the
multivalleyed semiconductor are given in Appendix C.

Further attempts to refine the calculation could be
envisaged: an attempt to take into account the non-
sphericity of the effective masses and the differences at

' S. H. Koenig, Phys. Rev. 110, 988 {1958).
' G. Ascarelli and S. C. Brown, Phys. Rev. 120, 1615 (1960).
"R. E. Michel and B. Rosenblum, Bull. Am. Phys. Soc. 6,

115 (1961).
"G. Ascarelli and S. C. Brown, Bull. Am. Phys. Soc. 4, 227

(1961).
"S.H. Koenig and R. D. Brown III, Phys. Rev. Letters 4,

t70 (t960l.
'46. Weinreich, T. M. Sanders and H. G. White, Phys. Rev.

114, 33 (1959).
~5 G. Bemski and B. Szymanski, Jour. Phys. Chem. of Solids

17, 173 (1960).

8-
6-

Al 5E 4-EJ

IO"-
8-
6-
5-
4-

4 56 8 IO

T('K)

Fio. 1. Experimental and calculated values of the cross section
for recombination. The solid lines represent the results of the
theory developed in the present paper. The experimental points
are taken from the following sources:

0
+

Reference
10
10
10
9
6

Sample
BTL1
LL2

n WLB 28-6
n WLB 28-6
n WLB 28-6

Impurity
Sb
As
Sb
Sb
Sb

the donor site between the wave functions of electrons
bound to different types of donors. ' This last effect
should further enhance the difference of sticking proba-
bility between As and Sb in view of the more rapid
decrease of the modulating part of the Bloch function of
the ground state of an electron bound to As rather
than Sb.

In Fig. I we have also plotted the results of Table V
multiplied by 4 in order to take into account the increase
in 0., due to the degeneracy of the electron states. The
agreement between this simplified theoretical calcula-
tion and the available experimental data is reasonably
good.

With less success we can compare other experimental
data with the results of our calculation. Ascarelli and
Brown" and Koenig and Brown" detected far infrared
radiation emitted during low-temperature breakdown
of a sample of n-type germanium. Koenig and Brown
found that if they used a sample of broken-down n-type
germanium doped with Sb as infrared source and a
sample of As-doped germanium as detector, the eK-
ciency was 50 times larger than in the case in which the
roles of source and detector were inverted. This is
astonishing in view of the fact that the binding energy
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of the ground state of As donors is larger than that of
Sb donors. This difference cannot be explained even if
one takes into account the valley-orbit splitting and
assumes that the populations of the singlet and triplet
state in which the ground state splits are in the ratio
exp( —'6/kT) (where 6 is the valley-orbit splitting).
Koenig and Brown evaluate that the cross section for
radiative transitions is 10' times smaller than that for
the nonradiative ones. Our theoretical estimate would
indicate that this ratio should be only 10~.

To terminate the comparison of the experimental
results with our theoretical calculation we make a few
qualitative comments on the comparison with the case
when the electron distribution is not Maxwellian, as is
the case with "hot electrons. "

We can expect in this case that the principal change
brought about by an applied electric field will be to
decrease the sticking probability. Thus, electrons that
have not had the time to make a transition from the
excited state to the ground state will be easily re-excited
into the conduction band. The excited states of group V
impurity donors do not depend on the impurity atom
itself, thus the decrease in the sticking probability with
the externally applied 6eld will be of the same form for
each of the different donors. This has been shown experi-
mentally in the case of acceptors. "There is no apparent
reason to expect a substantial difference in the case of
donors.

the wave vector x characterizes one of the electron states
in the continuum. Conservation of energy requires that

»= »I = (2ns*/A'):(Ace —I;)-:. (A3)

The differentials dQ(q/I ql) and dQ(»/I»I) are elements
of solid angle along the directions of the unit vectors
q/I ql and»/I»l, respectively. The matrix element
M(», j) is given by the expression

M*(»,j)= V*' &p„exp(—iq r) p;*dr. (A4)

The wave function p„ is the Coulomb wave function
corresponding to the wave vector x:

p„= V—l (2~y) lL1—exp (2m') ]—'

X'exp (i» r)F&rtiy, 1,i (»r »r)]—, (A5)
where

p = 1/»a*. (A6)

q; is the hydrogen-like wave function which describes
the jth bound state of the donor (see reference 1).

The function F (a,b, s) is the confluent hypergeometric
function for which it is convenient to use the following
integral representation:
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APPENDIX A

F(ip, 1,z) = di' pr '(f' —1) '~ exp(si). (A7)
27ri

The contour of int:egration contains the points /=0 and
(=1 in the complex f plane. We need only concern
ourselves with s states as these are most easily ionized.
The wave function for the e-s state is

The probability per unit time for an electron in the ~.„(r)= (ensate')
—l

bound state j to be thermally excited to a state in the
continuum is

d (Are) (bee)'n(Ace)»
(2m)'phsc ' r.

«(q/I ql) «(»/I» I) I
~(» j) I' «1)

This result is readily obt:ained from equations (16) and
(17) using the expression for the transition probability
between two quantum states within the Born approxi-
mation. In Eq. (A1), n(Are) is the number of phonons
in a mode of energy Ace at temperature T.

We obtain M(», n) as a linear combination of derivatives
of the expression

J„(X)= drr ' exp i(»—q) r—
AQ

XFLiy, 1,i(»r —» r)], (A9)

evaluated at X= j..
After some rather simple manipulations we find'

(y) 4 s~esps+ (K Q )s] y—t

XLQ '+(X—iE )'] ", (A10)

n(Are) =
I exp (ho&/k T)—1] ', with

(A2)

"$, H. Koenig", and J. J. Hall, Phys. Rev, Letters 5, 550 (1960),

K„=na*»,

Q„=na*q,

(A11)

(A12)
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From these relations we obtain

M*(2~ 22) = —(27r2 Y«*)—2L1—exp( —22ry) j " (81)22„= v-& exp(22~ r).

Coulomb wave function (AS) we simply take the
plane wave

2" (e 1—
Xg —

I
I '"+". (A13)

~=2 (v+1)!5 v

The quantity J„&"' is the vth derivative of J„(X) with

. respect to) evaluated at the point X= 1..
For temperatures of the order of T=4'K and for

m~&4 we can make the approximation

The calculation of the matrix element M(2~, n) is carried
out exactly as before except that whenever the function
J (X) or its derivatives appear we substitute for them
the function

Xr-
E„P) = dr r 'ex—p 2(2~—q) r——,

SC

ri(Ace) = exp( —Aid/kT). (A14) and its derivatives, respectively. Equation (82) can be
rewritten in the form

Furthermore, the dominant contribution to P„arises
from values of Aid very near to I„=E,/n2 or, for values
of p))1. For n~&4 we can neglect unity as compared
with Q„'. In fact,

E„(X)=42re2a*2@,2+ (K„—Q )'j '.

After some transformations we find the expression

(83)

e2 )2 1 188
Q-'&

I

&2Ac.E) ~2

IM(2~, 22) I'=
4.

expl ——
n2kqsa*' k riq2a*2)

With these approximations,

(A15)

(A16)

SR/Ac, '0' 2222*k T) '
exp( —E,/n2kT), (84)

pa*'8

for the rate of thermal ionization of an m-s state assuming
plane waves for the continuum states. In Table III v e
give a tabulation of P /P

' as a function of 22 for T=O'E.
In particular when e= 1 we obtain

so that the transition probabilities for thermal ionization
turn out to be

P /P '=32A/m*a*(v).

APPENDIX C

(85)

where

and

2~6~&'m*5'c, '
P = I( ,22gh),

2rpa*'222 (k T)'

h=E,/kT,

g= 2Ac,/a*kT.

n2/ h

The symbol I( , 22gh) stands for the integral

(A1/)

(A18)

(A19)

P—', eiiK +k) rii &(r) (C1)

In this appendix we attempt to extend the results of
the calculation given in the main body of the paper to
the case in which the conduction band has four diGerent
minima as occurs in germanium. However, we shall not
take into account the nonsphericity of the surfaces of
constant energy. We assume the minima of the conduc-
tion band are at positions K, (c2=1, 2, 3, 4). An electron
in a state

I(22,h,g) = d( P exp( ~1 2~2/i2) (A20) will be suPPosed to have energy

e k
——8 +A'k'/2m* (C2)

These integrations have been performed numerically on
an IBM 704 digital computer. In Table I we give the
results obtained for p as a function of 0 and T. In
Table II we show. the corresponding results for the
capture cross sections o, (22). We need not be concerned
with bound states with angular momentum higher than
zero because the corresponding transition rates turn out
to be of the order of those for /, =0 multiplied by Q„".
In no case do they contribute appreciably to the total
cross sec tion. 22(e) = Sg(e). (C3)

where I kl« I
K I. Here N 2 is a function having the

periodicity of the lattice.
Let g(e)de be the number of electrons having energy

in the range de at e associated with one of the minima
of the conduction band and having a de6nite spin state.
Because there are four equivalent minima of the conduc-
tion band and two possible orientations of the spin
we have

APPENDIX 8

The object of this appendix is to give a calculation of
the ionization rates p„, when instead of taking for &p„ the

The wave functions characterizing the stationary states
of the impurity center are

(C4)
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where f is P q for it=0. The four states (C4) which
are degenerate in the effective mass approximation,
split into singlet and triplet states in the presence of a
field of cubic symmetry. The wave functions are

Bloch states f, is

o, (jon) =
m'h' (8 8 i——P;, exp~

gee*(kT)' E kT j (C7)

4~(j)=2~ Z4-, (CS)

for the singlet state and

(C6)

for the triplet state. In general the triplet and singlet
states are separated in energy by an amount which is
usually designated by d. We shall assume, for simplicity,
6=0 and regard the states (C4) as degenerate. Pro-
ceeding in the same fashion as in section 2, we And that
the average cross section for the capture of an electron
in a bound state characterized by jan, where j desig-
nates the state p, , 0. the spin, and 0, one of the four

so that
P~.«=44~,

g o, (jon) =4o,(j).

(CS)

0' 0', (C9)

The left-hand side of (C9) is the quantity that is
actually measured experimentally.

In Eq. (C7) P,, is the probability per unit time for the
thermal excitation of the state jg-o, , which is given by an
expression identical to (A1) with the exception that

I M(x, j) ~' is to be replaced by P,
~
M(x,n', o'& g. on) ('

where the meaning of the symbols is obvious. Now,
M(x, 'no', jon) vanishes when o'&o, butneednotvanish
when n'Wn. In fact, because the wave vector g /see
(A4)] is not negligible as compared to K the values of
M(r.,n', o", jon) are of the same order of magnitude for
n'=n and n'4o. . We now make the assumption, which
we believe to be reasonable, that M(r. ,n', o", jon) is of
the same order of magnitude as M(x, j). Then


