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Analysis of the Transition Region between a Plasma and its
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The problem considered here is the transition region separating a uniform plasma from its confining mag-
netic field. The geometry chosen is one-dimensional. A self-consistent solution of Maxwell's equations and
the equations of motion of the particles is obtained. This problem was formulated and solved numerically
by Tonks. It is the purpose of this paper to present an analytic solution. The most interesting feature of the
analysis is that the transition region is finite, the transition taking place entirely within the orbit of the
particle of deepest penetration into the confining field.

INTRODUCTION

"N a recent paper, ' Tonks considered the problem of
& ~ the transition region between a plasma and a con-
fining magnetic field. We shall not carry through the
details of the formulation and the assumptions on
which it is based, as these are given in Tonks' paper.
We shall only present the results and define the
notation.

We define a class g particle to be one which crosses
the area deeds (lying on the x—s plane at x= z) within a
time dt and whose velocity vector lies within &n/2 of
the vertical. We let

o (q)ndqdsdt

be the number of class q particles crossing the surface

deeds in a time dt. The current arising from all classes is

2e " o (g)(u(q) j(g,x)
j,(x) =— - —dp,

v „ Ii (q, x) I

dx

nY
= —5 — - dH, (4)

dX/dT=QY,

d Y/dT = —QX,

with X=dX/dT, etc.

The above system of equations was developed and
solved numerically by Tonks. We would like to present
an analytic solution of the problem.

First we introduce, following Tonks, the dimension-
less variables

Q= a)mc/eBo,

T= coot)

(X,Y,II)= (co/n) (x,y,q),
and

S= 8xmoo/Be'. .
Then

d8 —4~
Jv

—8m.e ' o (q)eo(q)j (g,x)
drl. (2)

co „i.) I x(q, x)
I

This field equation together with the equations of
motion of the particles in the field

where the integration is over all classes of particles
which have trajectories through the point x. The lower
limit characterizes that trajectory which just reaches x.
The field must satisfy Maxwell's equations so that

aild

X'+ Y2= 1,

Y= —A (X)+const,

(6)

ANALYSIS

We shall replace the integration variable H by the
angle between the velocity vector and the x axis (see
Fig. 1). First we integrate the equations of motion to
give

X=Mg)

g = —07$)

determine the solution, provided o.(q) is known. This
density distribution must be determined by a statistical
study of the thermal equilibrium and is beyond the
scope of this analysis. Since we are investigating a
plasma which is to be uniform at x= —~, we choose

a(g) to be a constant.

B= Bo -e
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FIG. 1. Trajectory of the particle of deepest penetration
into the confining magnetic field.
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0
0.01
0.05
0.10
0.15
0.20
0.25
0.30
1/n.

Eq. (12)

2.00
2.02
2.09
2, 19
2.32
2.50
2.79
3.43
6.39

Tonks

2.0
2.0
2 ' 1
2.2
2.35
2.5
2.75

TABLE I. Transition layer thickness.

D
Zq. (13)

2.00
2.02
2.08
2.19
2.31
2.47
2.71
3.23
4.00

so that
cos8d8= —Q (X)dX,

cosg
-d0.

obtain an expression for this thickness as a function of
S. We may do so without obtaining an explicit solution
for the Geld [Eq. (10)j. Let L be the transition thick-
ness. Then L=J'dX, where the integral is taken over the
outgoing part of that particle trajectory for which 8=0.
For this trajectory, sin8=1 —A (X). Differentiating,

where Q=dA/dX. These equations represent energy
and momentum conservation. Since Y=1 when X=8,

We may integrate Eq. (10) once to obtain Q as a
function of 8. This gives

Q'= 5(8+sin8 cos8)+ 1 7rS/2—
I'= —A (X)+A (H)+1.

From Eq. (6) we see that we may set

X=cose, Y= sin6.

Differentiating Eq. (7)

dY dA(H) d8
=Q(H) = cos8—,

dH
ol

Qdn= cos8d8,

and substituting into Eq. (4)

7
Inserting this in Eq. (11), we have

sin yd p

[1—S(y—sin y cos p)jl
(12)

where y=ir/2 —8. Although we cannot perform the
integral in terms of elementary functions, we can inte-
grate numerically to obtain I, for any given S. In
Table I we list several values of the transition thickness
for diferent S.We have included in the table the values
computed by Tonks and the diameter of the orbit of a
particle moving in a uniform Geld which is the average
of Q(0) and Q(~). [See Eq. (38) of reference 1.j

=5 sin8 sign(cos8) d8. D=4/[1+ (1—mS) lj (13)

We see immediately that if X lies outside the orbit of
the particle of deepest penetration (H=O) the limits of
integration are m./2 and —~/2 and the integral vanishes.
[We integrate over the outgoing trajectories only, since
the factor 2 in Eq. (1) takes a,ccount of the incoming
trajectories. ] We find then that the transition takes
place entirely within this orbit and the field is strictly
constant on both sides.

Inside this orbit

ir/2

sin8d49= —5 cos6I,

where tane is the slope of the velocity vector of the
particle of deepest penetration into the confining field
(H= 0) at the point X. X and 8 are related by Eqs. (7)
a,nd (8):

sin8= 1—A (X),

We have tabulated only as far as S= 1/m since the
integral becomes imaginary for 5) 1/m. The physical
reason for this is that the confining held must withstand
the pressure of the plasma and the pressure of the back-
bone field (8„).Thus for a fixed field the plasma density
may not increase indefinitely. The basis for these ideas
is contained in Eq. (37) of Tonks' paper

A certain amount of care must be exercised in inter-
preting L for 5=0 and S= 1/s. When S=O there is no
plasma and a transition layer thickness becomes mean-
ingless. Also when 5= 1/m. , Q(~) =0 and the particle
trajectories are not cyclic as we have assumed. Thus I.
must be interpreted as the limiting value of the transi-
tion thickness as 5~ 0 or 1/n. .The special case Q(~ )= 0
has been treated, using an entirely diferent technique,
by Grad' and Schmidt. '
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Perhaps the most significant feature of this analysis
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