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Thomas-Fermi treatment. To a 6rst approximation
we find

S,= &,Xs~esao(Z&Z. /Z) (v/ep), (6)

with Z= (Z|&+Z2 ) and where $, is of order of 1—2,
but may vary with Z& approximately as $,=Z&'. The
dependence of S, on Z~ and Zs in (6) is an expedient to
get simple estimates. Empirically, the formula (6) is not
far in error. Of course, for n)v' the formula (6) no
longer holds, and the stopping cross section will reach a
maximum and decrease at higher velocities.

We observe that (6) and (3) become equal at some

energy E,. If we put Z~=Zs we And E,=Zs~As($„/(, )'
&750 ev=Z~A2X500 ev, i.e., e,=6A~Z2 ', but already
somewhat below this energy S„has fallen below (3) and
dc „approached the Rutherford scattering cross section.
In many measurements, then, one observes a nearly con-
stant S at energies about E,. However, it is composed
of a decreasing S„and an increasing 5,. This eGect
will show up, e.g. , as a reduction of relative straggling
in range, since the straggling from collisions with
electrons is negligible.

An instructive application of the above scattering
formulas for power potentials is the hydrogen-deuterium
isotope effect. In fact, when a heavy ion moves through
a, light substance (3I~))cV,), S„varies with Ms as

M~' '~". To 5, should be added S, which is independent
of M2, accordingly, -for m=. 2 the stopping is independent
of M~. For e—2 positive, the heavier isotope will give
the larger stopping, and vice versa. This result leads
to an interpretation of range differences observed in

hydrogen and deuterium. For large e the value of e
is between 1 and 2, and therefore ED)XII.4 9 For sraall

~ we expect e to increase beyond 2, so that RD&E~~.'
Another interesting isotope effect is observed when

3f1 is varied for fixed Z1. Davies' has measured the shift
in projected range between Na" and Na' of energy 24
kev in Al. Here, we expect a small energy loss to elec-
trons, so that Eqs. (1), (3), and (5) are approxirrately
valid. The results of navies are in fair accord with

Eq. (5).
i%ore extensive publications are forthcoming on these

and related subjects. Several of the above results were

obtained. 6ve years ago, following discussions with Dr.
R. B. I,eachman on his observations of range distribu-
tions. ' We are much indebted to Dr. I.eachman for
these discussions. We are grateful to Dr. J. 15I, .Alex-

ander, Dr. B.G. Harvey, and Dr. N. O. I,assen for com-
munication of experimental observations prior to
publication.

' J. K. Bgggild, 0, H. Arrive, and T. Sigurgeirsson, Phys. Rev.
71, 281 (1947).
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The properties of the scattering length obtained by Kohn's method, which is one of Hulthen's variational

methods, are studied by assuming a linear trial function with n adjustable parameters. The. scattering length

A (") decreases monotonically as the number of adjustable parameters n increases, if there is no bound state

in the system. This conclusion essentially comes from the upper bound theorem of Spruch and Rosenberg.

When the system has m bound states, the scattering length increases in value only m times, and otherwise

decreases monotonically. Therefore, after one veri6es the presence of rn increases, the calculated value is

certain to give an upper bound on the scattering length. The connection between the result above and the

condition of Rosenberg, Spruch, and O' Malley is considered. In the Appendix comparison is made of the

scattering length A( ) obtained by Hulthen's original method and Kohn's method when m bound states

exist in general.

I. INTRQDUcTIoN AND sUM+ARY

PRUCH and Rosenberg' have recently proved that

~ ~

the Kohn method, which is one of the Hulthen
variational methods, gives an upper bound on the
scattering length if there is no bound state in the system.
Rosenberg, Spruch, and O' Malley' have extended the

* Now at Department of Physics, University of Tokyo, Tokyo,
Japan.' L. Spruch end L. Rosenberg, Phys. Rev. 116, 1034 (19&9}.

2L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev.
118, 184 (1960); 119, 164 |,'1960).

theorem to the case where m bound states exist and
showed that the calculated scattering length also gives
an upper bound. if the trial function is chosen so flexible

that m approximate orthogonal-wave functions for the
bound states with negative-energy expectation values
can be formed by a linear combination of the terms
involved in the trial function. The upper-bound theorem
is useful because we can judge which is the better
calculation and. how the result is improved.

The purpose of the present note is to study the nature
of convergence in the variational calculation with a
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linear trial function. It will be shown that the calculated
scattering length A&"&, with m adjustable par'ameters,
decreases monotonically as the numbers .e increases, if
the system has no bound state. This is quite analogous
to the usual variational calculation of the energy
eigenvalue. If there are m bound states, it will be shown
that A'") increases in value aI; most, m times, as e
increases from zero to infinity, and that the m positive
jumps actually occur if the trial function series is
properly chosen so that I'") converges to the true
solution. Since A&") decreases monotonically after m
increases, this provide a proof of upper boundedness of
the scattering length. In other words, the existence of
res positive jumps is the (necessary and sufhcient)
condition required for A'"' to give an upper bound.
This statement can be useful in actual applications.

In the course of the discussion we shall also see that
when only one bound state exists, 2'"' (e&1) gives
an upper bound if II~~&0. Rosenberg, Spruch, and
O' Malley have used the theorem due to Hylleraas and
Undheim' in their proof of the minimum principle for
the cases where m bound states exist. The same theorem
will be used more critically to get the above result. An
illustrative example will be given in Sec. III. Inthe
Appendix it will be shown that, if a certain condition
is fulfilled, A'"' obtained by Hulthen's original method
is larger than the one obtained by Kohn's method.

Pote added il proof (1) R. .Konno (University of
Tokyo) has recently obtained the conclusion that the
stationary value for the effective range Lsee T. Ohmura,
J. Math. Phys. 1, 35 (1960), Eq. (8)] is certain to give
an upper bound after one verifies the presence of one
positive jump. He follows closely the procedures used
in the present paper. (2) C. Schwartz (University of
California) has recently noticed, in the course of his
variational calculation on the elastic scattering of elec-
trons (with positive energy) by hydrogen atoms, that
the "stationary" value for the phase shift does not con-
verge smoothly, but may on occasion turn out to be
grossly inaccurate. This fact may be understood as
follows: For the scattering with positive (nonzero)
energy E the number of states of the system with smaller
energy than E is iujieiie. Therefore, it can be shown
that the stationary value of the phase shift jumps
iejieAe times as the number of adjustable parameters
increases. One example of this statement can be found
in footnote 6. The variational method proposed by
Rosenberg and Spruch requires a "cut" at some distance
from the center. As the distance is taken infinitely large
(a,s in the usual variational methods), cV becoines
infinite.

II. VARIATIONAL METHOD WITH LINEAR
TRIAL FUNCTION

Consider the s-wave scattering of a particle by a
short-range central potential at zero energy. The

3E. A. Hylleraas and B. Undheim, Z. Physik 65, 7S9 {1930).
See also J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).

A'"'= a + u~"&Hui"ldr1

=Hpp+2Hioai+ ' ' ' +2Hnoan

where

+Hiiai'+ +2H ia~ai

'+ H.a'

H,,= ~t u;Hu, dr, i~ j;
0

(8)

H= (ds/drs)+W(r) W—e have used the. equality:

uo(d'u /dr')dr = 1+ u (d'uo/dr')dr
0 0

in the course of deriving Eq. (8). H, ,(j (i) will be
defined by H, ,=H,,(i& j) for later convenience. This
definition is a natural one except for Hpi. From the

' W. Kahn, Phys. Rev. 74, 1763 {1948).

Schrodinger equation is

Hu(r) —=
t
—(d'/dr')+W(r)]u(r) =0. (1)

The boundary conditions are taken to be

u(0) =0, (2)

u(r) ~A r, —for r —+ oo. (3)

The normalization of u(r) is usually arbitrary. The
condition (3) is the same as the one employed by Kohn, '
and the only condition which always leads to the upper
boundedness of the scattering length when there is no
bound state. We shall be interested only in (3) through-
out the paper. The trial function u, (r) is chosen to
satisfy the boundary conditions

ui(0) =0, (4)

uI(r) ~A, r, for—r~ ~, (5)

where Ai is an approximate scattering length. u, (r) is
assumed to be continuous and to have a continuous
first derivative. The linear trial function I& is written,
without loss of generality, as

u"=up+a»i+apus+ . +a.u» (6)

where u, (r) has the following boundary condition
(ai =—A&): As r~ ~,

uo(0) =0, u, (r) ~ r+O(r'), — (7a)

u, (0)=0, u, (r) —+ 1+O(r'), (7b)

u, (0)=0, u;(r) ~ 0(r'), s &2, (7c)

where c(0. We can take a trial function n&"), with up

as the first term, but a different order than Eq. (6) in
the following terms. The conclusions which are obtained
in the following will not be altered for such a diGerent
n("'. All quantities are assumed real. The stationary
value of the scattering length, A'"', is
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Cn

n

Notice that the elements B;0 or Hp, do not appear in
B . H, ;(A) and B„(X) are continuous' at )&=0 as
functions of ),. After diagonalizing H,;()&) we have the
eigenvalues H, ("). The energy expectation values 8;(")
of these eigenvectors are proportional to H,&"'. B„()&)
is expressed in terms of E;("),

|'2zzz) "
B„(»=H,'-'H, '-'" H.'-'=

i( &zzz )

0 1 2 3 4 5

FIG. 1.The behavior of A (") is schematically shown as a function
of e when two bound states exist in the system. C is the maximum
number of orthogonal states with negative energy expectation
value which can be constructed by linear combination of NIe "",
~ ~ ., zz„e "" (X)0, && ~ 0). A &"& increases in its value only when
C„ increases. After two increases, A(") converges from above to
the true value of scattering length. In general C„=m is the neces-
sary and sufficient condition required for A('") to give an upper
bound. This is true even if some of the adjustable parameters are
included nonlinearly in the trial function.

where X is a positive constant determined by the
normalization of N,e "". The sign of B„())&is thus

(—)a", where C„ is the number of negative energy
eigenvalues (C&&

——0). We shall now make use of the
following inequalities on the energy eigenvalues'.

P (n+1) (P (n) QP (n+1)(g (n) g. . .(P (n)

i&~i+i& (12)

From (12) we see that the number of negative eigen-
values C„+i in the (zz+1)th approximation is either

requirement that in Eq. (8) A&"& be stationary, we have C~i=C +1, (13a)
&)A&"&/&)a =2(H s+H. iai+ +H a )=0

('=1, .", ) (9)

It is assumed that (9) has a meaningful solution. (If
not the variational procedure breaks down. ) Equations
(9) determine a, ; substituting the solution, a;, into (8)
gives the final result for A in the eth approximation:

A&"&=Hop++ Hipa;, A&'& =Hpp. (10)

It will be proved in the last section that

g &a+i& 4 &nl — (1& s/B B )
where

Bp=i,

H11

H 1

Hnl
Hn+1, 1

Dp= Hlp)

H1„

H

Hl„

Hnn
H +1

Hlp

H„p
H„+1 p

H;;(X)= zz;e ""Hu,e idr=H, ,(),), (i& j&1),
~p

Hit()&) Hi„()&)
B-() )=

H „t()&) H „„()&)

The nonvanishing of B„comes from the existence of
the solution (9). The sign of A'"+'& —A'"' thus entirely
depends on the sign of 8 8„+l. Let us consider the
behavior of 8„.In order to see the physical meaning
of B„we shall define H,, (X) and B„()&)by introducing
the factor e "' ()&&0) into all zz, (r):

or
C„+1=C . (13b)

' We assume that D '&0 for zz which satisfies (13a).
6This criterion is also applicable to the variational method

proposed by Rosenberg and Spruch for positive (nonsero) energy
scattering; namely, a bound on some function of the phase shift
is obtained if we verify M positive jumps. See Phys. Rev. 120,
476 (1960).

The sign of B„()&)B„+i('A) is negative for (13a) and
positive for (13b). Since C„cannot be larger than the
number of actually existing bound states m, the number
of places where A&"+'&—A&"' in Eq. (11) has a positive
sign does not exceed m.

If the trial-function series is properly chosen so that
it can converge to the true solution, the number of
negative energy eigenvalues should become m when
n ~ co. Thus it has been shown (for )&&0) that A&"'

makes m positive jumps' while e increases from zero
to infinity (see Fig. 1).The result is also valid for )& =0
by virtue of the continuity at ) =0. After m positive
jumps, A'") decreases monotonically, therefore it
always gives an upper bound.

It should be noted that C„=m is equivalent to the
condition of Rosenberg, Spruch, and O'Malley' (the
improved version obtained in the second paper of
reference 2) and is the necessary and sufficient condition
required for,4&"' to give an upper bound.

When there is no bound state, A(") decreases mono-
tonically. This is quite natural in view of the upper
bound theorem of Spruch and Rosenberg. If one bound
state exists (for example, the singlet system of the
electron-hydrogen atom scattering), and if Hit(0,
A&"&(zz&1) gives an upper bound, because Bi=H».
Another criterion' on the upper boundedness will be
furnished if one calculates initially several 2(") and
veri6es the m positive jumps. These conclusions may
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TABLE I. The scattering length obtained by the
variational method.

and (10) give us the result

A&"'=&po, el=~2= = c =0.

A (0)

A (2)

A (')
Exact

—2.00*
—5.37*
—5.983*
—6.003*
—6.007

—1.69

—3.38
21.99*
17.311'
17.310'
17.300

—15.68
0.6g—3.36

54.28*
42.29

In this new system A&n+') has the form,

A'"+"=Hpp+Htici'+ +H
+He+i, a+ice+i +2(Hp, n+lcn+1

+Hi „+icic„+i+ ~ +H„„+ic„c„+i). (16)

be important from a practical point of view. So far we
have dealt with the simpIest scattering problem
(1) (3), but extensions to more general cases are
clearly possible and the same conclusions are all valid.

III. ILLUSTRATIVE EXAMPLES

First example, Let us take the case of an exponential
potential well,

H = —(d'/dr')+) e

and choose the trial function,

Np
——r N„=e—&n—'&"—e "" m~1.n

The values of scattering length calculated by (9)
and (10) are shown in Table I. The number of bound
states m is zero for —1.446()t(+ po, one for —7.618
('A& —1.446, two for —18.72&) & —7.618, etc. One
jump of A &") occurs at A &" for A= —1.69, and two jumps
occur at A&'& and A"' for X= —7.84. Since II11&0 for
both cases, A&'))A&". The values with asterisks are
certain to give upper bounds on the scattering length.

The second example is given by Hara et al. The
scattering length of the electron-hydrogen atom scat-
tering is calculated there by assuming a linear trial
function. The scattering length in the triplet s ate
(where bound states do not exist) decreases mono-
tonically starting from A &')=5.00 a&, A&&') =2.35 a&,
to A "&=2.27 aii. (aii ——the Bohr radius). There is one
increase from A, &') = —7.00 a~ to A, &"= 10.90 ag in the
singlet state, where one bound state (namely, the H
ion ground state) exists. A, '"i decreases monotonically
from A, &') to the best value of A,")=6.22 a~ in their
paper.

IV. PROOF OF EQ. (11)

The difference between A&"+'& and A&") can be
evaluated in a straightforward manner, but it is not
very simple. We shall first make a linear transformation
of the basis vectors and diagonalize the e&(e m
(H,;). Ai"& in Eq. (8) now takes the form

A '"&=Hpp+HitcP+ . +H„„c„',

where the same notation H is used as in (8), but this
should not cause confusion. Similar procedures for (9)

7 Y. Hara, T. Ohmura, and T. Yamanouchi, Progr. Theoret.
Phys. (Kyoto) 25, 467 (1961).

The procedure corresponding to (9) is

BA'"+"/Bc,=2(H, ,c~+H, +ic„+i)=0,
(t', = 1, . n) (17a)

n

BA& "+'&/Bc~i 2(H p
——„+i++H;,„,ic;

i 1

+H „+t,~ic +i) =0. (17b)

From (16), (17a), and (17b), we have

- H;, ~to)-'
A'"+' =Hoo —Hp, ~i'~ H ~i, +i g—

~

. (18)
'=i H;; )

B„and B„+idefined in (11) are now, respectively,

~n +11+22' ' +nnI

+I,n+1

82,n+1

IIn, n+1

+n+1, 1 +n+1, 2
' ' ' +n+I, n +n+1, n+1

( H;„+il
H;; )

(19)

By combining (18) and (19), we have

&n+l, o'&n
A &n+1) A &n) (20)

If we notice that D„/B„ is reduced to H„+i,p in this
system, we finally get from (20)

A' +'& =A & "&—(D„'/B„B~i).
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APPENDIX. ORIGINAL HULTHCN METHOD

It will be shown here that Hulthen's original vari-
ational method gives a larger value for the scattering

Strictly speaking, a not smaller value.

The author wouM like to express his sincere thanks
to Professor E. Feenberg for useful advice and kind
interest in this work.
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A(~) —~, (A3)

length than Kohn's method does, if the same trial
function is used and if the Rosenberg, Spruch, and
O' Malley condition (in the first paper of reference 2)
is satisfied. This is, however, a suQicient (not necessary)
condition. The necessary, and at the same time su%-
cient, condition is expressed by saying that, for the
trial function (6) with zz parameters, B„and F„(see
below) have the same sign. The meaning of this state-
rnent will also be given.

To simplify the calculation we shall again transform
the basic vectors. The linear transform will be done
among (zzp zzs ' ' ' I ) only, and Ni remains unchanged.
A(") now takes the form

A " =Hpp+Hit+ ' '+Hnn+2(Hpt+i+Hst&s&i

+ . .+H„ta„gt). (A1)

The original Hulthen method consists of the following
equations:

BA'"'/BA, =2H;,a~+2H, tat=0, (z= 2, , zz) (A2)

The scattering length A K&"& in Kohn's method is given
by Lsee (10)]

A K'"& = Hpp+Ht pat

( ~HP)=H„—Hpis] H„—g
'=s H, , )

(AS)

If we take the difference of (AS) and (AS), we obtain

( n H~ts 'l

'=z H, , )

n H. 2 —1-2

X An&"&+Htpl H» —P ( (A9)
'=z H;, )

Since the second factor is always positive, the sign of
(AH'"' —AK'"') is determined by the first factor which
is written 8„/F„ in the original system, where 8„ is
given by (11) and

From (A2) and (A1) we have
H'y cy

A " =Hpp+Htiat'+2Htpat Q . (A4)
H;;

H2

H2

H„„

In the Kohn approximation, from the equation
BA&"'/Ba, =0, (z=1, zz), we have

a,= —(H, i/II, ,)ut, z &2 (A6)

On comparing (A3) and (A4) we obtain the value of
scattering length AH(") in Hulthen's original method
from the equation

A '"'=Ho +II,A &"&'+2HoA

H g2AH(")2

(AS)
i=2

Therefore we come to the conclusion that AH'"' is
larger than AK'"' if B„and P„have the same sign. The
sign of both B„and F„ is (—) (zzz is the number of
bound states in the system), if the condition of
Rosenberg, Spruch, and O' Malley is satis6ed. Their
condition is that m orthogonal states with negative
energy expectation value can be formed by taking
linear combinations of (Nz, ,u„). The sign of F„or
8„ is (—)" or (—)', respectively, where p or q is the
Inaximum number of orthogonal states with negative
energy value formed by (zzse i', ,zz„e i") or
(zzte X", ,zz„e ""),respectively. (X —+0, X)0.)

H, P ~ 'Hpi
~i= —

(
1—2

i=2 H»Hrq) H 11

' They assume square integrability. If u2, ~ u are assumed to
(A7) satisfy the weaker condition (7c), these should be multiplied by

e
—'Ar


