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The total absorption cross section for a photon by an electron gas is calculated in the high-density limit.
The calculation makes use of the Green's function formulation of the many-body problem. Only the simplest
final states leading to a nonvanishing cross section, consisting of an electron-hole pair and a plasmon, are
taken into account. This contribution has a threshold near the plasmon energy and is peaked owing to the
initially rapid rise of the available phase space, with a total cross section for real metals of 10 ' —10 ' cm'

per electron. This compares favorably with other absorption mechanisms.

I. INTRODUCTION
' UCH progress has been made in the theory of the

- ~ many-body problem during the last several
years. ' In particular, from the point of view of pertur-
bation theory, we have learned how to select and
calculate those terms (diagrams) for many physical
quantities which give the most important contributions
in the high- and low-density limits. In this work we
shall be interested mostly in the high-density limit,
which in application to electron gases in metals has
served to illuminate some important features of their
behavior. In particular the existence of plasmons in
metals indicates that the long-range correlations empha-
sized by the high-density approximation still play an
important role, although electron gases in metals cannot
truly be classified as high-density gases.

The fundamental advance in the treatment of this
limit' came with the realization that the leading con-
tributions arise from matrix elements, of whatever order
in the coupling, in which the interaction always transfers
the same momentum, and that these contributions can
be summed.

* Supported in part by the U. S. Atomic Energy Commission.
f Present Address: Physics Department, Columbia University

New York. , New York.' For a general review see The ilfarIy-. Body Problem, edited by
C. Dewitt (John Wiley R Sons, Inc. , New York, 1959).
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Before going on to discuss the extension of this idea
with which the present work is concerned, we shall
entertain a brief outline of the present status, ' partly to
establish the language and notation with which we

shall work. Ke consider a Hamiltonian for the many-
fermion system of the form

IIo=&os+&I,
where

Hoo ——~dx It t(x) (—Pg (x),

HI
~

dxdx' v(x —x')Ibt(x)ibt(x')P(x')f(x),
2a J

and P(x) and ft(x) are, respectively, the fermion de-
struction and creation operators with spin indices
omitted. These operators obey the usual anticommuta-
tion relations

As is well known, and as will be illustrated again in
the following pages, many of the observables of interest
can be related to the propagators or Green's functions
for one and two particles. ' Ke follow the notation and

' A. Klein and R. Prange, Phys. Rev. 112, 994 (1958); V. M.
Galitskii and A. B. Migdal, Soviet Phys. J.E.T.P. 34, No. 1, 139
(1958);P. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959);
H. Kanazawa and M. Watabe, Progr. Theoret. Phys. (Kyoto) 23,
408 (1960);D. F. DuBois, Ann. Phys. 7, 174 (1959);8, 24 (1959).
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Fro. 1.Representation by Feynman diagrams of the sum of matrix
elements which de6nes the effective or screened interaction.

definitions in the paper of Iaein and Prange, ' defining

G(x—x')=i(OI Tg (x)Pt(x')} IO)=G(xlx'),
G(~~'I yy') =io&0

I T(4 (~)1((~')1t«(y')0&(y) & IO). (4)

Here IO) is the exact ground state of the Hamiltonian
IIO, and T' is the usual time-ordering operator, and the
symbol x stands for (x,t).

For example, the ground-state energy of an interacting
fermion gas is given by

~ dX'

E(N,O)=E (No, O)+ (i2i)' —~ Idr ~dr'
J, y'J

&( lim v(r —r')G(rt, r'tl rt, ', rt')

=Eo(N, O)+-', (—i)'
"0

X g v, lim G(pt, p'tl p+il t', p' —q t'), (5)
pp'q t'-+ t+

where Eo(N, O) is the ground-state energy of the non-
interacting gas, i.e., of the filled Fermi sphere. As a
second example the distribution of particles in momen-
tum space is given by

1
N(p) =lim dpo exp( —ipot)G(p, p,), (6)' 0+2@i"

where G(p,po) is the Fourier transform of G(x, t).
In studying these quantities, we shall use the method

of power-series expansion and (where necessary) selec-
tive resummation of terms. In so doing, we shall employ
extensively the representation by Feynman graphs, and
the associated rules for recording of matrix elements as
given, for example, in the first paper of reference 3.

As an essential ingredient of these expansions there
then occurs the one-particle Green's function for a
noninteracting particle,

We return now to a description of the diagrams which
contribute most to the one- and two-particle Green's
functions in the high-density limit. As was shown in
reference 2, we must consider mainly the ring diagrams.
These are summed by means of the effective interaction,
which is given by the sum represented in Fig. 1 by a
wavy line. This sum acts, for many purposes, like a boson
propagator.

As a first illustration of its use we consider the lowest
correction to the free-electron propagator iri a dense gas.
This is provided by the diagram of Fig. 2, and it is
immediately obtained according to the above discus-
sion. 4 As a second example, we consider the correlation
energy, 13E, of the ground state' (exclusive of the ex-
change contribution). This is given in terms of the
particle-hole propagator which is a particular case of the
two-particle Green's function. In order to compute hL&'

for the dense gas we must sum over all the diagrams
indicated in Fig. 3(a). Using the definition of the
effective potential we obtain the result illustrated by the
diagram of Fig. 3(b).'

We are now prepared to illustrate the method for
choosing the important diagrams for the problem of
interest in this work. Let us consider the high density
approximation for the following process: A photon or
external field excites a particle-hole pair in the electron
gas. The pair propagates, undergoing all kinds of inter-
action with itself and with the rest of the electron gas.
The excitation finally disappears by means of a second
electromagnetic interaction.

As we shall see in Sec. II, the above description
applies, among others, to the total cross section for
photon absorption by the electromagnetic field which
we shall wish to calculate. We thus have a process of
second order in the external field, of which a diagram-
matic representation is achieved by taking all vacuum-
to-vacuum diagrams and inserting a pair of crosses
either in any of the electron lines or in place of any of the

FIG. 2. Diagrammatic represen-
tation of the leading correction, in
the high-density limit, to the free
electron propagator.

)&exp(ip x—ip't), (7)

where ep(p)= i—8r(p), etc. The Fourier transform of
G(x, t) is given by

t)~(p) t)F(p)
G(p p)= +—po+ p' —ii) —po+ p'+ii)

'The most complete discussion of the plasmon similar to our
point of view is given in the papers of D. F. DuBois mentioned in
reference 2. See also J.Lindhard, Kgl. Danske Videnskab. Selskab,
Mat-fys. Medd. 28, No. 8, (1954); J. Hubbard, Proc. Roy. Soc.
(London) A240, 539 (1957);A234, 336 (1958).

~ A complete discussion of the correlation energy can be found
in the papers by Bohm and Pines, Gell-Mann and Brueckner,
Sawada ef al. , and Dubois mentioned in reference 2.' &Ve consider here only the ring diagrams even though we have
an additional contribution to the correlation energy from one
exchange diagram.
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intera, ction lines. We immediately observe, for example,
that there are only three basically diferent second order
diagrams which exhibit the same momentum transfer in
each of their intera, ction lines. These are illustrated by
Fig. 4.

Proceeding to higher order, one finds that the major
contribution to each order results from three similar
diagrams. Their sum is given in Figs. 5(a)-(c). The
contribution from the diagram in Fig. 5(c) alone consti-
tutes the random-phase approximation. ' In the high-
density limit it represents the most important contribu-
tion, since, unlike the other two diagrams in Fig. 5,
which depend on electron and/or hole scattering matrix
elements, it contains only the electron-hole pair creation
and annihilation parts of H~.

It is, of course, well known by now that a theory
which includes only the latter matrix elements leads
precisely to the random-phase approximation, which
can be characterized equally well as the one-pair ap-
proximation. Since also the effective potential is gener-
ated by pair Quctuations, the contributions from Figs,
5(a) and (b) go beyond this approximation.

As intimated above, the diagrams of Fig. 5 are meant
to represent contributions to the cross sectiorI, for photon
absorption. The final state contributing to the matrix
element is obtained by cutting the diagram in two with a
horizontal slice. At this point we must recall that the cut
effective potential line represents either a free-pair or a
plasmon (bound-pair) final state. Where this represents
the full final state, the corresponding matrix element
vanishes, indeed for two reasons, because of energy-
momentum conservation, and because the longitudinal
plasmon cannot be excited by the transverse photon.

We must then study the contributions of Figs.
5(a), (b) which correspond to final states of two pairs,
one of which may be bound. Insofar as our theory goes
beyond the simplest high-density limit, it will represent
a further test of the applicability to real metals of the
plasmon concept which emerges in this limit.

In the work which follows we shall calculate that
contribution to the photon absorption cross section, in
which one of the pairs is a free pair while the other
represents the pair bound state or plasmon. For this case
we shall obtain a cross section which has a threshold at

(a) + I
~ + I

Ij'+' ~~ ~

(b)

FIG. 3. Contributions to the correlation energy in the high-
density limit.

(o)

(c)

FIG. 4. Contributions to the absorption cross section for light
by an electron gas of second order in the particle-particle
interaction.

a photon energy equal to the plasmon energy, thereafter
rising to a peak and then tailing oG as co

—', where co is the
photon energy. This calculated cross section will there-
fore exhibit a peak in the absorption cross section per
particle which may be detectable experimentally, as
discussed in more detail in the concluding section.

II. PHOTON-ABSORPTION CROSS SECTION;
HIGH-DENSITY LIMIT

In this section we develop a formula for the total
cross section for absorption of light by an electron gas,
to the lowest order in the electromagnetic field, while
taking into account as exactly as possible the properties
of the electron gas.

The Hamiltonian which describes the above process is

H=Hp+H',
where

1 f
Hp dx Pi(x) (—P——)P(x)+— ~ dxdx' n(x —x')

J

Xgt(x)ft(x')f(x')P(x), (10)

H'= —— j(x) A(x)dx,

and where the current j is given by

j(x)=ie(&4'(x)4 (x)—0 "(x)&0(x)}. (11)

ln Eq. (11) we have neglected the term in j which is
proportional to e'. We are using the natural units
2m=A= i.

The total-absorption cross section of a photon by an
electron gas is

2' 1 f
p'= ——g igx dx 8(E~~—E~ pi)—

c 2'&'~

Xexp) —ik (x—x')]e;(B.)e;(klan)

«»'OI i'(x) I
&')(»"

I ~ (x')
I
»'O) (»)

'It should be emphasized that throughout ~ve use the term
R.P.A. in a primitive but precisely defined sense. Recently the
term generalized R.P.A. has been introduced to characterize a
more inclusive approximation, arising from a linearization of the
6eld equations. In the latter approximation, the cross section
woqld not, vanish,

FzG. 5. Leading contributions
to the absorption cross section
for light by an electron gas in
the high-density limit.

tb)
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(e)

f /pe'+k

(c)
I'zo. 6. Some con-

tributions to the ab-
sorption cross section
for light by an elec-
tron gas.

where 0+, 7+ means the approach from more positive
values.

In Eq. (16), if we sum over initial polarization we
obtain

Z [e(k&) P3[e(@) P'l=P P' —(P k)(P' k), (17)
pol

where k is a unit vector in the direction of k.
We now turn to the calculation of the two-particle

Green's function for the special case of a dense electron
gas. We first consider the zero-order approximation, that
is, the absence of interaction between the electrons. In
this case the two-particle Green s function is given by

Here I1P), Ex represent, respectively, any excited
state of the electron gas; k is the photon momentum, &v

its energy, and e(B) its polarization vector (e k=o).
In order to sum over the excited states X', we use the

Fourier transform for the Dirac 8 function and also the
invariance of (Xo

I j;(x)j,(x r) I
1VO) under time transla-

tion to obtain

G(xo I yo+) G(x'r
I
y'r+) —G(xO

I
y'r)G(x'r

I
yo)

The 6rst of these terms does not contribute to the cross
section, as the terms arising here do not permit energy
transfer to the matter system. As for the second, or
exchange term, its Fourier transform is given by the
expression

where
o =o'g+ o'e*——2 Reo.g, (13) 1 0

"dqodqo' exp[ir(qp qp )j
(2')' (2m-)' "

og ———dx tdx' dr exp( —ia&r)
2Mc ~

e2 I' ~ t'0
ay=

~
dx, dx' dr exp( —ivor)

2orc ~

Xexp[—ik. (x—x')]e;(B)e;(kX)

paaqpaaqxI.iml —
I I

— IG(»'I yy'),
I ay; Bx;) (By,' Bx,'~

where
Llm = lim

yo)XO =0)yo )&0
I I Iy, y, yo, yp -+ x, x, xo, xo

To obtain the more familiar mornenturn representa-
tion form for o.~, we express the above two-particle
Green's function in terms of its Fourier transform.
Then, we carry out the integration over x and x'. This
yields the following expression for 0.& .

2/2
o'g= — Q [e(kX) p)[e(B) p'j

COC PP

dr exp( —k)r)

xG(po, p',
I p —k o„p'ykr,), (16)

Xexp[—ik (x—x')]e, (kX) e, (B,)
xp.ol j'( )j,(",,) leo). (14)

We now use the definitions of Eqs. (4) and (12) to
express the cross section in term of the two-particle
Green's function. We thus obtain

XG(p', qo')G(p, qo)~(p' —P—k), (19)

and its possible contribution to the cross section illus-
trated in Fig. 6(a). Here the "cross" at t= r describes
the transfer of momentum k to the system of the elec-
tron gas by the photon and the creation of a pair. The
"cross" at t=0 describes the annihilation of the pair
which gives its momentum back to the photon.

The first-order diagram is given in Fig. 6(b), and
represents a single interaction between the two-ferrnion
propagators. Similarly, the eth order diagram will be
a,ny diagram including e interactions (represented by m

dotted lines). Some of these diagrams are shown in
Fig. 6(c), (d), (e). The rules for building the two-
particle Green's function for these diagrams are iden-
tical to those given by Klein and Prange. ' In order to
obtain the cross section we must first multiply the two-
particle Green's function by the factor (e p)(e p')
represented symbolically in the diagrams by the crosses,
and then sum over the momenta p and p'.

Of course the contribution from diagram 6(a) vanishes
identically since it corresponds to a final state consisting
of a free electron-hole pair which cannot simultaneously
conserve energy and momentum. Many higher order
diagrams, as we shall see below, will vanish for the same
reason. [All this can be shown directly from expression
(16), of course. The inclusion of vanishing matrix
elements is a consequence of the technique for writing
the cross section in terms of the two-particle Green's
function. j

We turn now to a study of the high-density limit.
Following our discussion in the introduction we axe
looking for contributions to the two-particle Green's
function given by the diagrams in Figs. 5(a)—(c). We
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first notice that the effective potential defined before as
the sum of contributions of the diagrams in Fig. 1 can
be represented by an integral equation

V(s —s') =iv(x —x') — it (z—x)G(x—y)J

-Ix + a'ooo =
I

P

(0)

p~k

P

XG(y —x) V(y —s')dxd'y. (20)

(21)

The Fourier transform of V is given by

U(q, qo) = ip(q)/[1+e(q)Q(q, qo) j,
which constitutes the solution of (20), where

p+5+k~
'+k

Qo

SSo

p q x
~ah

p'+ 5 p'+k+ 5
I

qo+4 So &qo
'+ k I i .SSo

o ~, , /+k

p I+5
&o+So

(b) (c') (4) (e)

Q(q, qo) = dpdpo G(p, pp)G(p+q, pp+qo). (22) Fro. 7. More detailed representation of the hish-density approxi-

(2 )" mation to the absorption cross section.

The function Q in Eq. (22) represents the density
fluctuation function.

The first-order contribution to the cross section is now
given by setting G~2, the two-particle Green's function,
equal to these contributions which are obtained by
letting the effective potential act once. These are the
contributions shown in Figs. 'I(a)—(d). The diagram in
Fig. 7(a) represents the contribution from the random-
phase approximation; as we now show, however, the
contribution to the cross section from this diagram
vanishes. This conclusion is based on the fact that al-
though in general o.~ ~ J'(e p) (e p')dpdp'G»(pp'k),
we have from diagram (7a) a contribution to G» in the
separable form G» ——F(pk)F (p'k). Since necessarily

and (e k) =0, the contribution to p ~ from diagram 7(a)
is zero. We can conclude, therefore, that the random-
phase approximation, and any corrections which can be
described in the most general way by the diagram of
Fig. 7(e), do not contribute to the process of the ab-
sorption of light. As we shall remark again later, these
contributions also vanish because they cannot lead to
any energy-momentum conserving final states.

We now calculate the contribution to the cross section
from the approximate G» as it is represented by dia-
grams 7(b)—(d). By performing a routine calculation we
obtain the contributions:

2e'- 1 0
~g(c)=-

roc (2s.)' (2pr)' &

dp'(e p')'

J
X (e [p'+s]) dr exp( —i~r)

X dqpdqp dsp G(p, qp )G(p +s& qo +so)

XG(p +k, qp)G(p +k+ s, qp+sp)

X U(s, so) exp[ir(qp —qp')]. (25)

We now calculate o~(d) in detail. The calculation of
og(b) and o.~(c) can be done similarly. Integrating first
over r we obtain

2e' 1 0
~g(d) =- "dp'ds(e p')

ppc (2pr)P (2pr)' ~

X[e (P'+s) j dqpdqp dsp U(s, so)

0

dr exp( —upr) j dqpdqp dsdsp G(p'+k, qo)
~ —x

XG(p', qo')G(p'+s, qo+so)

XG(p', qo') U(s, so) exp[ir(qo —qo')3, (24)

2e' 1 0
~g(d) =- dp ds(e' p )

roc (2pr)o (2pr)' "

2co 1 0
o.,) (b) =- „dp'(e p')'

ppc (27r)' (2rr)' ~

0

X ~ dr exp( —ippr) dqodqo'dsdso G(p'+k, qo)

XG(p'+k+ s, qo+sp)G(p'+k, qp)

G(p', qo')G(p'+k, qo)
qo

—
qo

—co—zp

XG(P'+s, qo'+so)G(P'+k+s, qp+sp). (26)

Here the one-particle Green's function is given by

XG(p, qo )U(s, so) exp[ir (qp
—

qp )], (23)
G(p, po) =

pp+ p' i rl p—p+p'+i —rj—
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P+S
qo'So

p'+k+s
0 0

(p'+ k

SSo
pg

pp~ p+k
go

~ ql

(b) (c)

qo

We integrate over qo and qo' and thus obtain

2e' 1 0
o-~i ) (d)— „dy'ds(e y')t e (y'+s)1

00c (2«r)' (2«r)' ~

XH. (y') H, (y'+k)H~(y'+k+ s)

pgo
)(Hp(y'+ s) (2«rz)'z dspU(s, sp)

pg '+k
0

(e)

k p'k
q,

6 y'+ A;+s f y'+8 CO Z'g

(30)

Sp —Ep~+~+E&I —Zg Sp E ~p++ &0+» 00—Z'g

P4 S
go+So

p'+k4s
qo4 So

Ip, »

P go

p'+k '

p'+k
qo

FIG. 8. Time-ordered contributions to the Feynman diagram
of Fig. 7(d).

It is convenient to have also the separate definitions

G'(y, po) =
H p(y)

G (ypo)=—pp+ p' —ig

()
. (28)—pp+ p'+ig

2e' 1 0
o~( i (d)— dy'ds(e y')Le (y'+s) j

zoc (2«r)0 (2«r)z"

X (—«)H» (y')Hz (y'+k)H p (y'+k+ s)

XHp(y +s)) dspdqpdqp U(s, sp)

X
qp

—
qp 00 Zg qp +Cp~— —

By studying the poles in the variables qo and qo' we
d,rrive at the result that o z(d) may be written as a sum
of the nine time-dependent diagrams of Fig. 8. For these
diagrams we must represent any line going in the direc-
tion of increasing time by G+ and any line going in the
opposite direction by G . The calculation of the contri-
bution from any one of the nine diagrams is sufficient
to illustrate method. We therefore choose to calculate in
detail the contribution of Fig. 8(a). We obtain

o '" (d) = 2 Reo ~~" (d) ~ 2 Re idfV(s,if)

X
zf+ p„~—p„~+,+» zf+ p„~+» p„~+,——00

where iV(s, if)=U(s, if). It has, furthermore, been
proved' that V(s,if) is a real number, and also that
V(s,if) = V(s, if) Si—nce t.he real part of the integrand
in the equation for o ~" (d) is an odd function of f, we
immediately arrive at the conclusion that the contribu-
tion from the integration over the if axis gives identi-
cally zero. The only nonzero contribution results
therefore from the pole in the first quadrant. o.&'&(d) is
therefore given by

2e' 1 0
o (ii (d) = 2(2«r)P dy'ds(e y')Le (y'+s)j

zpc (2«r)' (2«r)'

XH~(y')H, (y'+1)H, (y'+k+ s)

yHp(y'+s) ImV(s, o)—0„+»+0„.+,)

0 p'+»+ep' 00 0p'+»+8+0 p'+~
(31)

Since

zo —0,.+,+,,+p, .~, =~&1—~/2«zzc' —(p'+s)/zzzc]

cannot vanish, we can omit the ig in the denominator of
the last term in the right-hand side of Eq. (65). We now
carry out the integration over so. The integrand has two
poles in the sp plane and a cut arising from U(s, sp).
These are shown in Fig. 9. We rotate the path of
integration of so by 90', thereby performing the inte-
gration along the imaginary axis if. This will give, as one
contribution to the cross section (the possible contribu-
tion from the intervening pole will be considered below),

where op= p'.

qpE+p'+» A7 qp sp+ E pi+8+» z'g

provided p~ —pp+»1 ep ~, &~0.
1 We next remark that some parts of Fig. 8 do not

29) contribute to the cross section. We indicated at the—
qp

—Sp E p~+q Zzt

N. Tzoar and A. Klein I'unpublished).



ABSORPTION OF ELECTROMAGNETIC RADIATION 1303

S 4ypl 4 )if( p+
qo

p'+ k+s
qo+~o

Fro. 9. Singularities of the integrand of Eq. (30).

(b)

qo

(c)
beginning of this section that the contribution to the
absorption cross section from a noninteracting electron
gas vanishes. As was pointed out there, we have dia-
grams which represent nonphysical Anal states, i.e., final
states which cannot simultaneously conserve energy and
momentum. Those diagrams do not contribute to the
cross section. A typical example is given in Fig. 8(c). In
order to find the final state of the original absorption
matrix element, we must cut the diagram by a horizontal
line any place between the two crosses. If we then find an
intermediate state which conserves energy and mo-
mentum, then this state can be real and corresponds to
the final state in absorption. No such state can be found
for this diagram. Following these instructions it is
easily observed that diagrams 8(c) and 8(e) as well as
diagram 10(c), etc. , do not contribute to the absorption
cross section inasmuch as they do not have an appro-
priate final state.

We record below the nonzero contributions to o(d),
o (b)' and o (c), as they. are obtained from the diagrams
of Figs. 8, 10, and 11, respectively. Let us first define the
operators D and D1,

2e' 1 0j9=— 2(2~)"
"c (27r)' (2~)'

dp'ds(e p')(e (p'+ s)), (32)

2e2 1 0
D1——— 2(2')'~ dp'ds(e p')(e p').

(oc (2')' (2m)'
(33)

Similarly, we de6ne the functions F' and Fs (one must
have always in mind that the energy argument of U
must be greater than zero):

Fro. 10. Time-ordered contributions corresponding to Fig. 7(b).

We can thus write for the cross section

o&'&(d) =D{8p(p')ep(y'+k)
XOp(p'+k+ s) Hp(y'+ s)F&}, (38)

o'(d) =D{~p(y')~ p(y'+k)
Xep(y'+k+ s)bp(y'+ s)F,}, (39)

o&" (d) =D{8 p(p'+k)8 p(y'+k+ s)
XOp'(p'+ s)b:(y')F,}, (40)

'"(&)=D«'(y'+s)0 (p'+k+s)
Xop(y')~p(y'+k)Fs}, (41)

o&'l (d) =D{8p(y'+k)8p(p'+k+ s)
«(y'+ )0 (p') LF +F )}, (42)

'&s~ (d) =D{~'(p'+k)4(p'+k+ s)
X4(p'+ s)e p(y')Fr}, (43)

a'" (d) =D(ez(p'+k+ s) eF(p + s)
X~.(y'+k)0. (y')F.}, (44)

ol (b) = D,{ep(p'+—k+ s)
xep(p')4 (p'+k)F '}, (45)

a"'(b) = —Dr{&p(p'+k)
Xep(y'+k+ s)ep(p')Fs'}, (46)

(,) = —D,{e„(p'yk)b, (p') i, (p'+ s)F,'}, (47)

&" (c)= —D {0.(p')&. (p'+k) g.(p'+ s)F '}.
We simplify this result by observing that in the dipole

approximation where k((p p we have

~1
e p'+1«+e p' " e p'+k+«+e p'+e

XImU(s, (o—e;+s+e p.+,),

I 1— ImV(s, u —e p.+s+ep'+, ),
( —., +, )

(34)

(35)

)
co 'e+p+sp«eM M e + p«+s+e«p'+s

This implies F1——F1' and F2——If'~'. We also can in the
dipole approximation put y'+k-+ y', and p'+k+s-+
p +s, which is equivalent to setting k=0 in the equa-
tion for 0-. We next sum over those terms which contain
F1, and separately over those which contain F2. In the

ep'+&+e p' ~ ep'+a+«+e p+«

XImU(s, a)—ep'+s+, +ep.), (36)

p'+ p'+k

p'qo

I«'i
X

pqo p

'+k
o

ImV(s, a) —e p.+g+,+e p ).
(& ep+z+ep)

(37)
FIG. 11. Time-ordered contributions corresponding to Fig. 7(c).
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terms containing F~ we perform a change of variables,
p'-+ p' —s, s —+ —s. As a consequence we obtain the
final result of this section:

2e' 1 Q
0' = 0'totai = 2(2s.)' dp'ds8~(y')8&(p'+ s)

(ue (2s-)' (2')'

1
X—L(e p')Le (p'+s)]+(e y')Le (p'+s)]

GP

—(e y')' —[e (p'+s)]'] ImU(s, cu —e„+.+e, )

bound state of the system. This approximation is neces-
sary if we wish to avoid machine calculations which are
hardly justified at the present stage of development of
our theory. This approximation should preserve the
main characteristic of the real solution where the
plasmon has a sharp peak at the plasmon frequency.
The function o.(ro) which we shall obtain in our calcula-
tion will exhibit a peak with a width smaller than the
real one since we do not take into account the finite
lifetime of the plasmon state.

We first write
%re'

U(s, (u —e~,+e„)= (50)
s E(s, co ep+g+ey)

2e' 1 0 1 r

2(2~) —
~

dp'ds 8, (p')
cue 2x 6 2m' 3()()

where E is the effective dielectric constant. ' The cross
X8r (p'+s)(e s)'ImU(s, ~—e, +.+e~), (49) section is thus given by

where
Gl —ep +@+ep~ +~ 0.

p dyds
o.= —Os ' 81:(p)8p(p+s)

We conclude this section by summarizing our results.
The random-phase approximation which allows us to
excite only a plasmon does not contribute to the ab-
sorption cross section. This can be understood inasmuch
as the plasmon is a longitudinal mode of vibration and
as such the transverse photon does not couple directly
to it. The next approximation for the dense electron gas
is given by the diagrams in Figs. 7(b)—(d). This de-
scribes the virtual creation of a pair by absorption of a
photon, thereafter decaying to the final state of pair
plus plasmon or two pairs. We consider in detail only the
former possibility. Now for any given plasmon there are
many pairs in the electron gas, which together vrith the
plasmon will conserve energy and momentum in the
absorption of a photon. Therefore we find that there are
many possible final states resulting from the photon
absorption. We thus conclude that in the case of the
electron gas we will not get a sharp resonance line even
with the approximation that we keep only the plasmon
part of the eGective interaction. The width of the
absorption cross section, as we shall calculate in the
following section, does not result from a 6nite lifetime
of a particular final state. Its actual origin will be
described in the discussion at the end of the following
section. There we will compute the cross section for the
case where we assume the plasmon to be a bound state
of the system. A more accurate calculation must take
into account the finite lifetime of the plasmon itself.

III. EVALUATION OF THE ABSORPTION
CROSS SECTION

In the preceding section we obtained the absorption
cross section for the absorption of electromagnetic
radiation by a dense electron gas. We saw that the elec-
tric field of the photon represented by the polarization
vector e is coupled to the plasmon momentum. In order
to evaluate this cross section simply we shall confine
ourselves to the approximation that the plasmon is a

X(e s)'Im —, (51)
E(s, a&

—e„p,+e„)
where

op= (2e /e) (2s-) '(2Q) (4n.e')co 'pp' (52)

o = —Ax'— dqd( (e s)'81:(q)

where

X8,(q+()Im, (S3)
E(s) M er&+g+ey)

A = (q/32ss)(e'/ePss)+

n= (~/p~'), *=(Q./p~')

q=(y/p ) (=(s/p ).

Since the momentum and energy in E(k,ks) are nor-
malized to pF and ps', respectively, we now approxi-
mate Im(1/E') by the delta function,

n'5 ([co Q~ (s) e~,—+e„]/P&—s). —

Finally we substitute for the plasmon frequency Q„(s)
its value at s=0, thus giving Q„(s)=Q~, since we know
that Q~(s) is a slowly varying function of s. With all
previous approximations we arrive at the equation

1
o=sAx' —,dqd((e (/P)'8 (q)8s(q+()

3

X5(p—f' —2( q), (»)
' R. A. Ferrell, Phys. Rev. 107, 450 (1957);D. F. DuBois, Ann

Phys. 7, 174 (1959);8, 24 (1959).

If we use the well-known relations connecting the Fermi
momentum, the classical plasmon frequency, and the
density,

Q= (lV/p), 87re'p=Qp', p= (pp'/3~'),

we then obtain for the cross section
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where p=rf —z. Since p+2( q&~0, we have a contribu-
tion to 0- only if p &~ 0 or g &~ x which implies co&~ 0~.

The integration of 0. is a straightforward calculation
which can be given in explicit form only if one specifies
a value for x. Ke therefore proceed to a numerical calcu-
lation for a particular choice, x=2, since theoretical
calculations as well as experimental results, in different
metals of interest, " indicate this as an average value
for x.

We thus obtain (for x=2, i.e. , p=ri —2)

t

7—

n 1I4

o = ap—Lg
—

s (7'+p') j(V'—p')

(~-2)' v
ln—+ (g—2) (n' —y') (56)

Fxo. 12. Total absorption cross section for photons vs photon
energy. Here q=co/Ps' is the ratio of photon energy to Fermi
energy. The curve drawn is for the special case (0„/pz')=2, where0„is the classical plasmon frequency.

for 3~&q~&2, and

1
-

(g—2)' rr
o = a.p

—
t g

——', (n' —p')] (rr' —p') —— ln—
2 P.,

(57)

for g&~3, where

(58)

(allowed phase space). (59)

The allowed phase space is given by

which immediately implies a threshold for the photon
energy at p=p —x=0. %e thus can say that in our ap-
proximation an absorption of y rays is possible only
for co&&Q„. At the value co=0~, i.e., p=0, we obtain
a (&o=Q~) =0.This can be easily observed from Eq. (55).
Then by carrying out a detailed but straightforward
calculation, we arrive at the conclusion that (d/dri)
XJ'(allowed phase space) is greater than zero at q=x,
and for the limit rf —+ oo, J'(allowed phase space) ~rf.
Since, as we will see below, the ~matrix element~' is
proportional to g ', we obtain for 0- a curve which in-

For information about the plasma frequency for different
metals, see D. Pines, in Solid-State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc. , Neer York, 1955).

The cross section as a function of g is plotted in Fig. 12
and its general features discussed below.

To understand the nature of the curve of Fig. 12 that
we have obtained for the total cross section, we write
symbolically

o (ra) ~
~

matrix element
~

'

creases steeply when co exceeds Q~ and then drops to
zero as g-' for g -+ ~.

Ke now show the origin of the energy dependence of
the

~
matrix element

~

' by analyzing as a typical example
the contribution from the diagram given in Fig. 8g). The
energy dependence, as in the case of time-dependent
perturbation theory, appears for any intermediate state
as a denominator equal to the photon energy minus the
excitation energy. In the case of an intermediate state
not containing a plasmon, the intermediate energy is
zero in the dipole approximation, i.e. , when k=0.
Therefore, we obtain a factor of co ' for any intermediate
state without a plasmon. The intermediate state con-
taining the plasmon will contribute to the delta function
which dictates the energy conservation in the Anal state.
Since any interaction with a photon contributes to the
matrix element a factor of m &, we 6nally obtain
~matrix element~'cero ' as was indicated before. We
would thus conclude that the peak in the absorption
cross section is due to the rapid increase of the phase
space immediately above the threshold energy (os= Q~),
and the fast decrease of the cross section by the factor
of g

' in the high-energy region.
In conclusion, we wish to emphasize that an experi-

mental check of our theory, or of a suitable modification
thereof to apply to real metals, would test an aspect of
the concept of the plasmons in the high-density limit
which goes beyond the usual random-phase approxi-
mation.

IV. CONCLUSIONS

In the previous pages we calculated the absorption
cross section for a photon by an electron gas in the high-
density limit. In particular we were interested in finding
the mechanism by which the electromagnetic Geld can
be coupled to a plasmon and in computing the cross
section arising from this process. This process is initi-
ated by a virtual pair, excited by the photon, thereafter
decaying to a Anal pair plus a plasmon. Since for a given
plasmon we have many pairs which together with the



YxsLz I. Fermi energies and plasma frequencies of
typicil metals.

Metal

Cu
Ag
Au
Sl

ep (ev)

7.04
5.51
5.54

11.7

Q„(ev)
11.00
9.00
9.00

17.00

plasmon conserve energy and momentum we do not
obtain a sharp absorption line. Rather, we obtain a
threshold in the cross section at photon energy equal to
the plasmon energy Q~. Then the cross section increases
to a peak at a photon energy equal roughly to Q~+eF,
where ep is the Fermi energy. At photon energies ~
higher than 0„+op the cross section behaves as a& '.

%e now argue that if the electromagnetic Geld can

excite a plasmon through the mechanism proposed here,
one should be able to detect it experimentally, since the
cross section per electron, which emerges from our
formula when one inserts realistic densities, is of the
order of magnitude of 10 "—10 "cm'. The experiment
should be carried out with a thin foil in order to elimi-
nate reflection losses (a thickness of the order of 10' A
will still preserve the many-body characteristics of the
electron gas). Moreover, interband transitions and other
losses cause a cross section per electron of about
10 '~—10 '0 cm'. Detection and separation of the eGect
discussed here is therefore not out of the question.
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