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some is'Zs'2 ps Configurations*t

LEsTER M. SACHS'
Argonne lAtional Laboratory, Argonne, Illinois and Illinois Institute of Technology, Chicago, Illinois

(Received April 19, 1961& revised manuscript received July 3, 1961)

Analytical Hartree-Fock self-consistent-field solutions have been obtained by matrix methods for the
ten-electron systems F, Ne, and Na+. In addition, solutions have been obtained for the F and Na+ ions
in the presence of a superposed potential sphere. Tables of the two goodness functions, f(r)= FR «R an—d

g(r) =FR/sR, and expectation values of r; and r;s are given. The diamagnetic susceptibility has been cs,l-
culated for all the systems reported.

I. INTRODUCTION
' 'N this paper we present self-consistent solutions of
~ ~ the Hartree-Fock (HF) equations for the ten-
electron configuration 1s'2s'2p'. Solutions have been
obtained for the isoelectronic sequence F, Ne, and
Na+. In addition to the free-ion solutions, self-consistent
field (SCF) solutions have been obtained for the ions
F and Na+ in the presence of a superposed potential
due to a charged spherical shell. A number of previous
HF-SCF calculations on the ten-electron systems, of
varying degrees of accuracy, have been reported in the
literature. ' ' It was the aim of this series of calculations
to obtain approximate solutions of as great an accuracy
as feasible.

In the second section we state our Hamiltonians, the
assumed HF-SCF wave functions and the resulting HF
equations. In the third section we discuss the method of
solution employed and present some detail regarding
the computational procedure in the following section.
The fifth section contains a discussion of the results of
the calculations and in the sixth section we examine the
quality of the SCF solutions. The final section concludes
with a short resume of the work.

IL HARTREE-FOCK EQUATIONS

The free-atom (or ion) Hamiltonian which we are
concerned with may be written

3C=Z'(sp"+«' ')+2')~ rr ', (1)

where p; is the momentum of the ith electron, Z is the
nuclear charge, r; is the distance of electron i from the
nucleus, and r;; is the distance between electrons i and j.
We have chosen atomic units with the unit of energy

2R bc =27.21 ev, the unit of length the first Bohr radius,
and the mass and charge of the electron as unity. The
superposed potential which we have utilized for the ion
calculations is a charged spherical shell with the
potential

V=q/a for r&~a,

=q/r for r&~a,
(2)

where q is the charge on the sphere and a is the radius
of the sphere.

In the Hartree-Fock approximation the wave function
is assumed to be an antisymmetrized product of one-
electron orbitals. These orbitals are obtained as
solutions of the set of simultaneous integro-differential
equations obtained from applying the variational
principle to the expectation value of the Hamiltonian.
For a closed-shell configuration, such as 1s'2s'2ps, there
exists no ambiguity in the form of the wave function
as it may be represented as a single determinant which
is invariant under the transformations of the symmetry
group of the Hamiltonian (1).The wave function which
we have computed may be written

4= 8{1s'2s'2p'}, (3)

(4)L&~+2 (2J &)34'= e'4', —
where

H, = ——,'A; —Zr, '+V;,

where 8, is the well-known antisymmetrizing operator
and %' is a determinant of order ten. When the varia-
tional principle is applied to the expectation value of
the Hamiltonian, subject to an orthonormal constraint
on the set of orbitals {P;},we obtain (after a suitable
unitary transformation of the @,) the system of HF
equations,

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

f' The material of this paper forms a portion of a thesis presented
in partial fulfilment of the requirements for the Ph. D. degree from
the Illinois Institute of Technology.

f. Present address: Department of Physics, Wayne State Uni-
versity, Detroit 2, Michigan.' F. W. Brown, Phys. Rev. 44, 214 (1933).' D. R. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935).' C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957).

4 B. H. Worsley, Can. J. Phys. 36, 289 (1958).
5 A. M. Karo and L. C. Allen, J. Chem. Phys. 31, 968 (1959
6 L. C. Allen, J. Chem. Phys. , 34, 1156 (1961).' V. Fock and M. J. Petrashen, Physik. Z. Sowjetunion 6, 36

(1934).

f
J;P,(1)= ) ~P;(2) ~'ris 'dVs $'(1), (6)

E,y, (1)= ' P;*(2)P;(2)ris 'dVs Iflj(1).

V, is any superposed one-electron potential (if present)
and Z is the nuclear charge. To obtain the wave function
(3), the set of equations (4) must be solved for the
orbitals {P;}.
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III. METHOD OF SOLUTION

It is customary to assume that a central electrostatic
field exists about the nucleus so that each orbital may
be expressed in the form

4-i-(r, |),~)=R-i(r)I'i-(t), v)=r '~-~(r)I'i-(|), 9), (g)

where V (g, y) is a complex spherical harmonic. We
further assume that all the radial functions R„~(r) of a
given shell are equal so that the orbitals are either equal
in pairs or mutually orthogonal. Equations (4) then
become a system of one-dimensional equations for the
radial functions.

There are two forms in which approximate SCF
solutions may be obtained. If direct numerical inte-
gration is employed, the orbitals are obtained as
numerical tables. ' An analytic form for the orbitals
may be obtained directly by assuming an expansion in
terms of a set of analytical functions. The expansion
coeKcients may be obtained either by iteration of the
density matrix of the wave function or iteration of the
matrix representation of the HF equations. " "We have
chosen the latter method to obtain our solutions of the
HF equations.

The radial functions were expanded in terms of
Slater-type functions, that is,

R„~(r)=Q„c ~,.„x~„(r),
where

xi ()=( iE )"'""(( i.) 3
'* "'" ' "'"" ( o)

The matrix representation of the HF equations, (4),

IV. DETAILS OF COMPUTATION

A computer program was constructed for the
IBM-704 to solve the HF equations (11).This program
allows complete freedom (within the floating-point
range of the computer) on the values of the exponents

fq~ and the (integral) powers e~~, thus affording con-
siderable flexibility in the choice of basis functions. The
computer output consists of the basis function param-
eters, the expansion coefficients, the total energy, and
the reduced logarithmic derivatives of the orbitals at
the origin. The latter quantities should satisfy the
relation

where

R=—(1+1)LRr'/Rr], =s= —Z,

R] f R

(12)

(13)

The relation (12) thus constitutes a test of the quality
of the solution in the region near the origin.

Considerable experimentation was carried out with
various combinations of the (Slater-type) basis func-
tions before the author settled on the combination
reported herein. LSee Tables I—III.) It was found least
dificult to minimize the total energy using basis sets

then assumed the form

Fc„,= e, ,Sc„i,
where F is the matrix HF Hamiltonian, S is the overlap
matrix of the basic functions (x~~}, c ~ is the vector of
coefficients of the expansion (9), and e ~ is the eigenvalue
corresponding to c„~. Complete details on solution of
(11) may be found in references 9, 10, and 11.

TABLE I. Parameters for the F SCF orbitals.

Charge on sphere (a.u.) ~ ~ ~

Radius of sphere (a,u.) ~ ~ ~

n Cls C2e Cls

1.00
2.40

C2s Cls

1.00
2,57

C2s Cls

1.00
2.70

Cls

1.00
3.789

C2s

12.20
8.20

10.80
4.10
2.66
1.68

1 0.089611 —0.199570
1 0.938018 0.610790

2 —0.022939 —0.138830
2 —0.007729 —0.193139
2 —0.005912 —0.565973
2 0.001681 —0.300736

0.089916 —0.239794
0.937421 0.683005

—0.022742 —0.167362—0.007380 —0.2 15606—0.005722 —0.604434
0,001627 —0,292119

0.089840 —0.227944
0.937570 0.661599

—0.022792 —0.158977—0.007465 —0.209390—0.005 762 —0.590389
0,001639 —0.296774

0.089872 —0.22 1050
0.937518 0.649161

—0.022764 —0.154093—0.007473 —0.205678—0.005762 —0.582818
0.001640 —0.299086

0.089711 —0.201754
0.937830 0.614562

—0.022869 —0.140392—0.007649 —0.194646—0.005860 —0.565947
0,001668 —0.302 182

450 3

6.05 2
3.06 2
1.44 2
069 2

3.75 3
800 3

0'le (a.ll.)—sos (a.u.)—~a„(a.u.)
—Rls
—R2s
—R2—B(a.u.)

0.014018 —0.053758

C2~
0.064814
0.551546
0.500480
0.086499

—0.058375—0.006756

25.82956
1.074662
0.1810072
8.9947
9.0409

10.1932
99.45921

0.013687 —0.005869

C2p
0.050244
0.635847
0.557051
0,019084

—0.144059—0.011877

26.18396
1.450631
0.5591383
8.9947
9.0672

10.2401
103.5879

0.013763 —0.020377

C2y
0.050460
0.634463
0.550004
0.029166

—0.141918—0.011830

26.16936
1.431042
0.5395839
8.9947
9.0597

10.2368
103.3235

0,013758 —0.028662

C2p
0.051184
0.630219
0.544725
0.036150

—0.137323-0.011581

26.15867
1.417240
0.5257729
8.9947
9.0553

10.2332
103.1422

0.013928 —0.051227

Cap
0.059712
0.580765
0.514525
0.701605

—0.087558—0.008525

26.08340
1,331305
0.4386323
8.9947
9.0425

10.2058
102.0955

'D. R. Hartree, The Calculation of Atomic Structures (John Wiley Bz Sons, Inc. , New York, 1957).' R. McWeeny, Proc. Roy. Soc. (London) A235, 496 (1956);A237, 355 (1956);A241, 239 (1957);Revs. Mode'rn Phys. 32, 335 (1960).
' G. G. Hall, Proc. Roy. Soc. (London) A205, 541 (1951)."C.C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).
"C.C. J. Roothaan, Revs. Modern Phys. 32, 179 (1960).
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TABLE II. Parameters for the Na+ SCF orbitals.

Charge on sphere (a.u.)
Radius of sphere (a.u.)I C1, C2. C1,

—1.00
1.79

C1.

—1.00
1.7953

C2s C1,

—1.00
1.90

15.00 1 0.118514
10.30 1 0.854775

0.050484
0.171023

0.118547
0.854737

0.039100
0.190950

0.118585
0.854666

0.041607
0.186576

0.118583
0.854665

0.043908
0.182553

11..00
5.40
3.10
2.00

6.00

6.60
3.40
2.30
1.80

4.00
9.60

—e1,(a.u. )—e2, (a.u. )—~2„(a.u.)—R1,
R28—R2y—E(a.u.)

0.031730 0.084504
0.008566 —0.115679—0.001522 —0.775681
0.000665 —0.050108

0.000535 —0.144197

0.135376
0.715241
0.362710
0.062804

0.202196—0,014961

40.75973
3.073676
1.797188

11.0025
11.0537
13.1688

161.6769

0.031796 0.067772
0.008415 —0.096180—0.001564 —0.749297
0.000686 —0.064375

0.000640 —0.173150

C2„
0.143044
0.707453
0.203736
0.168879

—0.139094—0.013097

40.20039
2.501944
1.226943

11.0025
11.0300
13.0616

155.8185

0.031835 0.071497
0.008407 —0.100483—0.001567 —0.756084
0.000685 —0.060506

0.000658 —0.166421

C2p

0.142694
0.704154
0.228789
0.150446

—0.143792—0.013064

40.22343
2.528619
1.253062

11.0025
11.0350
13.0767

156.1229

0.031828 0.074895
0.008433 —0.104426—0.001559 —0.761746
0.000681 —0.057363

0.000641 —0.160464

C2„
0.141979
0.702768
0.253752
0.132852

—0.150723—0.013162

40.24794
2.555828
1.279855

11.0025
11.0396
13.0923

156.4242

of this composition. The parameters and basis size
were varied until a trough of minimization was reached,
i.e., the same energy value was obtained using different
sets of exponents for the expansion functions. Attempts
to use larger basis sets for the F and Ne expansions
yielded energies 10 ' a.u. below those reported in
Tables I and III, but the SCF runs failed to converge.
The criterion for self-consistency of the orbitals was
set at

i.e., we compared the eigenvectors of the Sth and
(X+1)th iteration. Within this criterion of convergence,
the larger basis sets (those which failed to converge)
appeared to be linearly dependent.

V. DISCUSSION OF RESULTS

(a) Field-Free Systems

The parameters applicable to the field-free SCF
orbitals are given in Tables I and II. From these values
we have calculated (r;) and (r 2) for each of the three
orbitals of the series and these are listed in Table IV.

(b) Systems in the Presence of a
Superposed Potential

For the interpretation of many solid-state phenomena
it would be very advantageous to have true solid-state
SCF wave functions. These are not yet available and
may be many years in coming, so that it seems plausible
in the interim to obtain atomic wave functions that in
some manner reAect the environment of the crystal
lattice. Electron density studies of some alkali-halide
crystals have shown that the charge distribution about
lattice sites remains essentially spherical and about the

TABLE III. Parameters for the Ne SCF orbitals.

The qualitative features of the field-free orbitals have
been known for some time so that further discussion is
unnecessary. Lack of space prevents the publication of
the extensive tables of the orbital properties. The free-
ion F solution is very similar to that of Froese. ' The
minor discrepancies in the values of the orbitals may
be attributed to the limited storage capacity of the
computer with which she worked. This storage limitation
applies also to the Ne calculation done by Worsley. 4

The Na+ solution due to Hartree and Hartree agrees
with the present one to three figures, the number of
significant figures carried in their work.

n

14.00 1
9.20 1

12.00 2
4.50 2
2.80 2
1.80 2
5.00 3

—~(a.u. )—R—Z(a.u. )

0.006277
0.008780—0.001525
0.000650—0.000799

32.77205
10.0011

—0.270688—0.289318—0.706866—0.127561
0.004109

1.930050
9.9808

Cia

0.104781 —0.339010
0.891761 0.891909

128.5470

6.60 2
3.40 2
2.20 2
1.60 2

C2y

0.071588
0.616462
0.261474
0.296791

0.8501921
11.4695

4.00 3 —0.152330
9.00 3 —0.010184
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TABLE IV. Expectation values of r; and r;2 for the HF orbitals of ten-electron systems.

System
Superposed sphere

Charge Radius
2$

F
Ne
Na+
F
F
F
F
Na+
Na+
Na+

~ ~ ~

1.0
1.0
1.0
1.0—1.0—1.0—1.0

~ ~ ~

2.40
2.57
2.70
3.789
1.70
1.7953
1.90

0.17576
0.15763
0.14286
0.17578
0.17577
0.17577
0.17576
0.14286
0.14286
0.14286

0.04162
0.03347
0.02748
0.04163
0.04163
0.04163
0.04162
0.02748
0.02748
0.02748

1.03553
0.89220
0.77911
1.03822
1.03816
1.03802
1.03643
0.77999
0.77968
0.77946

1.31873
0.96764
0.73148
1.32414
1.32472
1.32472
1.32122
0.73430
0.73338
0.73270

1.25551
0.96496
0.79625
1.21517
1.22166
1.22597
1.24692
0.80237
0.80083
0.79956

2.21064
1.22655
0.81592
1.99162
2.02329
2.04516
2.15983
0.83514
0.83050
0.82662

negative ions it remains spherical for a considerable
distance. KristoGel" has carried out a calculation on
the Cl ion of KC1 in which he assumes, in each of
three regions, a diGerent form for the orbitals of the
outer shell. These regions were chosen so as to reQect
the relative importance of the ion central field and the
crystal field. The orbital parameters were determined
from continuity and normalization conditions. The
resulting orbitals tailed off faster than in the free ion.
Kristoffel found that the positive ion showed an
opposite effect, but the magnitude of the change was
not as great. Hurst" has shown that in the presence of
a point-charge crystal field, the optimum eGective
nuclear charge for the H wave function increases,
indicating a charge distribution of lesser extent than
the free ion. This situation should also prevail for the
F ion in a crystal environment.

If we consider a single ion in a crystal lattice, we find
that in addition to the atomic potential there exists the
Madelung potential due to Coulomb interaction between
the ions. There is also a repulsive potential of unknown
origin. These external potentials, collectively acting as
a potential well, modify the charge distribution about
the nucleus. A complete calculation of the effect of
these potentials is a major task which remains to be
done. For immediate use, it is desirable to investigate
the eGect on the orbitals of various types of superposed
potential fields which fall within the scope of the
central-field SCF scheme. "

Ke have chosen as our superposed field a hollow
sphere of radius a carrying a charge q. Such a potential
has the value q/a for 0&&r &~a and q/r for r ~&a. A posi-
tively charged sphere should contrast the charge cloud
of a negative ion and a negatively charged sphere
should swell the charge cloud of a positive ion. The
charge q has been taken with magnitude one, corre-
sponding to the net charge exclusive of the ion. The

"N. N. Kristoffel, Akad. Nauk Estonian SSR (Tartu) 7, 112
(1958)."R.P. Hurst, Phys. Rev. 114, 746 (1959).

'5 For a different approach see the work on 0 2 by R. E. Watson,
Phys. Rev. 111, 1108 (1958); see also R. E. Watson, Phys. Rev.
120, 1254 (1960).

parameter which remained to be chosen was the sphere
iadlus Q.

The proper value for the radius of the charged sphere
is a debatable point. On intuitive grounds, one can
choose the ionic radius; another choice is the lattice
constant. Neither of these values can be fully justified.
A third approach can be made by setting the value of
the potential inside the sphere to the value of the
cohesive energy per ion. This prescription is as ques-
tionable as the first two proposed. Only experimentation
can shed any light on the best choice for the radius.

A number of spheres of varying radii were superposed
on the F and Na solutions reported in this paper. The
same exponents utilized for the Geld-free calculations
were used for this series after experimentation with the
basis sets had indicated that the size of the basis sets
used in the field-free cases was sufficient to yield good
results for the superposed-field calculations. This is
demonstrated in the goodness tests, which we discuss
in a later section. The radii of the spheres were chosen
less than, equal to, and greater than the ionic radii as
given by Pauling. " For F an additional value was
chosen equal to the LiF lattice constant. These spheres
had the desired e6ect of changing the size of the ions.
The Na+ orbitals were only slightly affected by the
spheres, but a good deal of change was produced in the
2s and 2p orbitals of F .

The parameters applicable to the orbitals in the
superposed field environment are given in Tables I
and II"

(c) Diamagnetic Susceptibility

The diamagnetic susceptibility may be calculated
from the Langevin-Pauli formula, "

X= —(cVe'/6ntc') p;(r cs) (14)

The susceptibilities for the field-free systems and the
ions in a superposed potential are listed in Table V.

M L. Pauling, 1Vature of the Chemical Bond (Cornell University
Press, Ithaca, New York, 1960), 3rd ed, , p. 514.' More details of these calculations are contained in Argonne
National Laboratory Technical Report ANL-6310 (unpublished)."W. Pauli, Z. Physik 2, 201 (1920).
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The precise experimental values of the susceptibility
for these systems is difFicult to obtain. Landolt-
Bornstein" list a value for 1Ve of —7.2 &&10 ' emu/mole,
so that the value listed in Table V is within the experi-
mental error. The susceptibilities for the ionic systems
are obtained from measurements on crystals or aqueous
solutions. The values for the ionic systems F. and Na+
are known only approximately, and Landolt-Bornstein
list the values obtained by the various methods. This
range of data is discussed by Myers" who concludes
that a more accurate experimental technique is needed
and that none of the values is a standard. The values
given in Table V fall within the accepted range as given
by Landolt-Bornstein and Myers.

The experimentally determined susceptibility values
for LiF and NaF are given as 10.1 and 15.5 (in units
of —10 ' emu/mole). " Using the free-ion values of
Table V, we obtain for x the values XL;p=13.74 and
yN, p=17.75. These values are too large. Use of the
x for the ions with the superposed spheres of ionic radii
yields the values xL;p ——12.5 and pN. F——16.84, where
the susceptibility for Li+ has been assumed constant
at 0.7. These values are in better agreement with experi-
ment, though still high, as the potential field has not
caused very large changes in the charge distributions.
The radii of the spheres might be chosen such that the
susceptibility calculated would agree with the experi-
mental value, although this procedure does not lead to
a unique choice for each ion.

VL QUALITY OF THE APPROXIMATE
WAVE FUNCTIONS

(a) Reduced Logarithmic Derivatives

It is worth knowing to what accuracy an approximate
wave function represents an SCF solution of the HF
equations. Any comparison of the HF method with
other methods assumes that the HF equations are
solved. exactly. While energy minimization is the strict
criterion for the worth of the orbitals, one cannot say
for certain that a particular solution is the best attain-
able without some investigation into the quality of the
solution.

For each of the orbitals reported, the value of —R
was evaluated by the computer program using (12)
and these values are listed along with the other param-
eters in Tables I—III. The values of R for is and 2s
orbitals are in satisfactory agreement with (12), but
the R values for the 2p orbitals are not. It has been
found that there is a close correlation between good s
approximate orbitals, that is those which minimize the
energy, and the ability of the R value to satisfy (12).
This has not been the situation with the 2p orbitals.
As the energy minimum is approached, the reduced

' Landolt-Bornstein, Tgbelln (Springer-Verlag, Berlin, 1950),
6th ed.

"W. R. Myers, Revs. Modern Phys. 24, 15 (1952).

TABLE V. Diamagnetic susceptibility for ten-electron systems.

System

F-
Ne
Na+
F
F
F
F
Na+
Na+
Na+

Superposed sphere
Charge Radius

~ ~ ~

1.0
1.0
1.0
1.0—1.0—1.0—1.0

~ ~ ~

2.40
2,57
2.70
3.789
1.70
1.7953
1.90

106xa

—12.665—7.4175—5.0816—11.633—11.784—11.888—12.428—5.1775—5.1539—5.1344

a Units are emu/mole.

logarithmic derivative varies widely without a pre-
dictable pattern. Due to this behavior we have not
been able to use (12) as a computational guide for the
2p orbitals.

and

where we have rewritten (4) as

'= e'4 '

To obtain f@(r) and ge(r) we must evaluate the func-
tional Fp at each point of space (r,8, &p) Since we .are
working within the central field approximation, which
allowed the introduction of (8), it is not necessary to
retain an angular dependence in our goodness functions.
We may multiply (15) by I'&„*(8,y) and integrate
over dQ~. This integration coupled with the integration
over d02 reduces the equation to a one-dimensional
equation in r. The evaluation of the terms proceeds in
a straightforward manner. i~

The radial goodness functions,

and
f(r) =F(r)R eR—
g(r) =F(r)R/eF'. ,

have been tabulated in abbreviated form in Tables
VI—VIII for the held-free HF-SCF solutions reported.
These indicate that the orbitals are accurate to about
four figures. [Recall that (11) determines R(r).] In the
region close to the origin the goodness appears poor for
many orbitals. This is due to the limitation on the
accuracy of the eigenvectors. The possibility exists for
obtaining better agreement at the origin by choosing
the basis set so that (12) is satisfied exactly. Such a
procedure makes the energy minimization procedure
very tedious. In addition, the quality of the orbitals

(b) The Goodness Test

A stringent test for self-consistency which can be
applied to analytic orbitals is the goodness test which
requires computation of the functions
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TABLE VI. Goodness functions for F

0
0.01
Q.02
0.03
0.04
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0,80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.40
2.80
3.20
3.60
4.00
5.00
6.00
7.00
8.00
9.00

10.00
12.00
14.00
18.00

~ ~ ~

—39.76698—16.90096—6.99129—1.87902
0.71474
1.29619—0.45142
0.06205
0.11179
0.00700—0.03848—0.03141—0,01053
0.00487
0.01129
0.00814
0.00090—0.00292—0.00351—0.00258—0.00022
0.00087
0.00101
0.00079
0.00053
0.00014
0.00003
0.00000
0.00000—0.00000—0.00000

~ ~ ~

1.03258
1.01515
1.00685
1.00201
0.99916
0.99764
1.00195
0.99937
0.99739
0.99963
1.00464
1.00843
1.00616
0.99397
0.97163
0.92742
0.97655
1.19844
1.56691
1.81148
1.10992
0.53706
0.33778
0.26417
0.23646
0.24462
0.32670
0.52074
0.94624
1.88109
3.96362

f2s (r)

~ ~ ~

21.30934
3.32377—0.25827—0.97554—0.92455—0.01013
0.02746—0.00795—0.00843—0.00288
0.00284
0.00454
0.00281
0.00018—0.00163—0.00183—0.00021
0.00079
0.00090
0.00055—0.00018—0.00038—0.00025—0.00005
0.00009
0.00017
0.00010
0.00005
0.00002
0.00001
0.00000

~ ~ ~

—0.86010
0.68181
1.02716
1.11285
1.11789
1.00219
0.97018
0.98981
0.99432
0.99830
1.00171
1.00297
1.00208
1.00015
0.99837
0.99746
0.99958
1.00221
1.00353
1.00304
0.99811
0.99220
0.99027
0.99615
1.01229
1.10616
1.29839
1.66354
2.39392
3.93777
7.32495

~ ~ ~

—4.54128—3.99146—3.42238—2.86463—2.34324—0.53984
0,21806
0.03394—0.05371—0.03972—0.00625
0.01418
0.01914
0.01489
0.00745—0.00442—0.00763—0.00541—0.00182
0.00097
0.00269
0.00158
0.00022—0.00052—0.00070—0.00027
0.00005
0.00011
0.00009
0.00005
0.00003
0.00001
0.00000
0.00000

0 ~ ~

141.52194
65.47140
39.45916
26.18603
18.18659
3.42766
0.28074
0.89354
1.17607
1.14234
1.02508
0.93542
0.90036
0.91107
0.94888
1.04000
1.09037
1.08293
1.03574
0.97576
0.89477
Q.90557
0.98036
1.06980
1.13718
1.12902
0.94611
0.75958
0.65158
0.61761
0.62840
0.69929
0.77618
0.89262

TABLE UII. Goodness functions for Ne.

0
0.01
0.02
0.03
0.04
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.40
2.80
3.20
3.60
4.00
5.00
6.00
7.00
8.00
9.00

10.00

~ 0 ~

—26.50537—14.15198—5.97820—1.31020
1.04999
0.93934—0.34851
0.12368
0,05926—0.02697—0.03289—0.01184
0.00408
0,00965
0.00871
0.00204—0.00185—0.00251—0.00178—0.00082
0.00037
0.00064
0.00054
0.00036
0.00022
0.00005
0.00001

e ~ ~

1.01471
1.00868
1.00405
1.00098
0.99913
0.99874
1.00123
0.99888
0.99864
1.00154
1.00462
1.00399
0.99682
0.98329
0.95835
0.97306
1.07022
1.22936
1.33038
1.25580
0,79755
0.47401
0.31814
0.23997
0.19659
0.14654
0.12637

~ ~ ~

—19.19259—5.11143—0.91657
0.61293
1.07706
0.13582—0.08322
0.07988—0.00649—0.03169—0.00759
0.01154
0.01360
0.00668—0.00080—0.00628—0.00312
0.00077
0.00258
0.00260
0.00069—0.00075—0.00114—0.00098—0.00069—0.00019—0.00004—0.00001—0.00000—0.00000—0.00000

~ ~ ~

1.77116
1.22755
1.04530
0.96629
0.93389
0.98473
1.09702
1.03271
0.99818
0.99146
0.99778
1.00385
1.00534
1.00315
0.99955
0.99467
0.99601
1.00148
1.00754
1.01143
1.00684
0.98358
0.94580
0.90116
0.85720
0.77754
0.74548
0.74122
0.74842
0.75928
0.77083

~ ~ ~

—3.40765—3.11992—2.70681—2.24716—1.79252—0.23544
0.16108—0.02552—0.04176—0.00813
0.01049
0.01214
0.00701
0.00157—0.001.91—0.00348—0.00188—0.00015
0.00084
0.00112
0.00067
0.00004—0.00030—0.00040—0.00036—0.00017—0.00005—0.00002—0.00000—0.00000—0.00000

0 ~ ~

16.19761
8.30352
5.43231
3.89417
2.93592
1.15977
0.91625
1.01312
1.02329
1.00514
0.99233
0.98959
0.99292
0.99812
1.00271
1.00688
1.00516
1.00056
0.99567
0.99207
0.99128
0.99897
1.01281
1.03014
1.04891
1.09497
1.13570
1.17118
1.20231
1.22959
1.25341
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TABLE VIII. Goodness functions for Na+.

0
0.01
0.02
0.03
0.04
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.40
2.80
3.20
3.60
4.00
5.00
6.00
7.00
8.00
9.00

~ ~ ~

—25.12714—13.29794—4.64523
0.00177
2.01714
0.44722—0.19373
0.17457—0.00527—0.05657—0.02251
0.00807
0.01716
0.01350
0.00640—0.00311—0.00466—0.00297—0.00101
0.00031
0.00119
0.00101
0.00065
0.00037
0.00020
0.00004

~ ~ ~

1.00979
1,00578
1.00225
1,00000
0.99878
0.99954
1.00058
0.99854
1,00012
1.00359
1.00379
0.99651
0.98189
0.96728
0.96673
1.06121
1.28322
1.44320
1.26849
0,88987
0.39256
0.21375
0.14293
0.10943
0,09123
0.07065

~ ~ ~

33.30480
2.28331—2,39078—2.48842—1.70399
0,30384—0,04746—0.01821
0.01472
0.00650—0.00223—0.00338—0.00124
0.00045
0.00072—0.00055—0.00080
0,00012
0.00092
0.00106
0.00018—0.00057—0.00072—0.00056—0.00036—0.00008—0.00001—0.00000—0.00000

~ ~ ~

0.29460
0.94582
1.06372
1,07471
1.05782
0.97943
0.79625
0.99680
1.00208
1.00095
0.99963
0.99933
0.99970
1.00014
1.00028
0.99966
0.99920
1.00019
1.00244
1,00462
1.00208
0.98252
0.94345
0.88929
0.82845
0.69788
0.63053
0.60698
0.60239

~ ~ ~

—3.19990—3.02384—2.61381—2.11444—1.61192—0.02626
0.09404—0.05682—0.01583
0.01420
0.01207
0.00217

—0.00351—0.00428—0.00270
0.00052
0.00119
0.00062
0.00002—0.00028—0.00026—0.00004
0.00007
0.00010
0.00008
0.00003
0.00001
0.00000
0.00000
0.00000

~ ~ ~

5.84844
3.41721
2.46892
1.93926
1.60337
1.00632
0.98189
1.01127
1.00353
0.99628
0.99620
0.99917
1.00163
1.00244
1.00188
0.99946
0.99814
0,99856
0.99994
1.00144
1.00283
1.00098
0.99614
0.98903
0,98033
0.95394
0.92422
0.89587
0.87291
0.85690

cannot be improved at the origin without disturbing
the quality of the orbitals over some other region of
space. Again, this is due to the limitation of the accuracy
of the SCF procedure.

The orbitals and goodness functions have also been
tabulated for the solutions in the presence of the super-
posed field. These tables and tables of the orbitals may
be obtained on request. (See footnote 17.)

VII. CONCLUSIONS

We have reported on the results of approximate
Hartree-Fock solutions for the ten-electron field-free
systems of I', Ne, and Na+. These were obtained as
finite expansions of Slater-type functions using a
matrix SCF procedure. The results obtained appear
more accurate than the previous calculations including
those obtained by numerical calculation. This was
ascertained through computation of the goodness
functions, f(r) =F(r)R—eR and g(r) =F(r)R/eR It has.
been shown, therefore, that the matrix procedure is
capable of high accuracy although the relative merits
of the numerical method and the matrix method have
not been discussed. "

"A short discussion of this point will be contained in a future
publication.

Solutions have also been obtained for the ionic systems
F and Xa+ when in the presence of superposed potential
field created by a hollow sphere carrying a unit charge
of polarity opposite to that of the ion. The radius of
the sphere was varied in order to give a qualitative
suggestion of the proper radius to use so as to best
simulate a crystalline environment by this procedure.
It was found that the charge density of the negative
ion was altered much more by the presence of such a
sphere than was the charge distribution of the positive
ion.
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