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On the Proof of Parametric Dispersion Relations*

H. M. FRIED) AND D. I. PURSEY)
Un& ersity of California, Jos Angeles, California

(Received June 21, 1961)

Parametric dispersion relations for the connected time-ordered Green's functions, conjectured by
Nishijima on the basis of perturbation theory, are shown to exist for the special case of decay processes.
Extension of the proof to the more interesting situations of scattering and production depends upon the
possibility of continuing one or more of the energy variables to negative values.

1. INTRODUCTION

~
' ISHIJIMA' has shown on the basis of perturbation

theory that there exist parametric dispersion
relations (PDR) for the connected time-ordered
Green's functions, and he has conjectured that such
relations are valid in an exact field theory. We would
like to point out that this conjecture is true for at
least the special case of decay processes. An extension
of the proof to include scattering and production
amplitudes requires a statement concerning analytic
continuation of the energy variables appearing in these
functions to negative values.

The method employed consists of first finding a
representation for the connected part of a time-ordered
Green's function in terms of the corresponding retarded
Green's function; this can be accomplished with a
special choice of timelike momenta as the argument of
both functions. This is a useful procedure because it is
not dificult to derive a PDR for the special retarded
function, and in this way obtain a PDR for the special
time-ordered function. There then remains only the
problem of generalizing, or continuing, the result to
an arbitrary connected time-ordered function.

2. THE SPECIAL FUNCTIONS
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It will be convenient later on to write the essential part
of Eq. (1) in the form

XexpL 1(pl'141+ ' '+p 1 S 1)7We begin by briefly stating the notation used. ' The
operators V' and R, are the spin zero, scalar field time-
ordered, and retarded functionals, respectively, where
V',=—lV'/5 j(x) and R, may be defined as i V'lV', The- .
vacuum expectation value of the result of calculating
e—1 functional derivatives of T, and R, yields the
general rs-Point time-ordered function (V'*wl. . w„ 1)o,
and the corresPonding retarded function (Rn, wl w„ 1)o,
the subscript zero indicates that the source functions
j(s) have been set equal to zero after the differentiation
is performed. The time-ordered function is symmetric
in all e indices; the retarded function is symmetric in
the m —1 y, indices, each of which refers to a time earlier

X r(~1, ss -1), (3)

Where r(111, SSe„w) iS a real SymmetriC funCtiOn Of the
timelike vectors I,, each of which lies inside its forward
light cone (each u,o)0).

By inverting the defining equation for R, we can
write

(4)V",=iVR„

which serves to provide a useful connection between
the retarded and time-ordered n-point functions; that
is, by functional differentiation of both sides, the
repeated application of Eq. (4), and the condition
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functions; the general structure is of the form

(~xwl ' 'Wn —1)0

=2(R*,wl w —1)0+2' pw ((Rwl, ws .
W 1.R*—)o

+(Rwl W2' ' 'Wn —2Rx Wn —l)0+ ' '+(RwlR& w2' ' 'Wn —1)0)

+ +2"(Rw„, Rw, Rx)p, (5)

where p„stands for the sum of all permutations of the
m —1 y; indices.

We now compare the Fourier transform of both sides
of Eq. (5) for the special case of timelike mornenta,
where each p;p)0 and gp(0; this restriction removes
all disconnected ~ functions, since the latter must have
at least two momenta with negative energies. We
denote by r~'(pl, p„1) the connected time-ordered
e-point function with all e—1 momenta positive time-
like; the corresponding retarded function will be called
r~(pl, p„1). In perturbation theory, r+' has a con-
tinuation to negative energy values (generalized
crossing), but whether or not such continuations exist
in general for an exact theory is as yet unknown;
similar statements can be made for r+. The point of
interest here is that for this special choice of positive
energies it is not difficult to see, by inserting inter-
mediate states in the terms on the right-hand side of
Eq. (5), that

r+ (Pl, P„1)=r~(P1, . P„1). (6)

The contribution of all terms other than (Rz, wl' ' 'w 1)p

to the integrand of Eq. (2) vanishes; this is an implicit
statement of conservation of energy and appears as a
consequence of the positive energy spectrum of all
(on-the-mass-shell) intermediate states.

/=X, then the function r+($~p) is analytic in the entire
cut $ plane. We take the branch cut defining the func-
tion $' to lie along the positive real axis and write a
Cauchy integral

where we have disregarded the possible need for sub-
tractions. Noting that Imr~(sl pl 'p) —=0, we may take
the real part of Eq. (7) and obtain the PDR'

which, with Eq. (6), implies

P 1" d$'
R«+'(gp2) =— Im„'(g'P2).

or "0
(9)

The expression )p2 represents all the bilinear momentum
combinations which are the arguments of r(p), scaled
by the positive real factor $.

where the contour C encompasses the entire upper half
$' plane, enclosing the complex point $. As $ approaches
the positive real axis from above, $ —+ I)I+20, we
obtain

3. SCALING ANALYTICITY 4. DISCUSSION

To obtain a PDR for r+ we return to Eq. (3) and
consider the scaling transformation obtained by re-
placing each p, by' Xp, . Because the vectors I; are
positive timelike, the special choice of all p,p) 0 means
that the invariants' p,"u, are all negative; hence the
retarded function r~(Apl, )tpn 1)—=r~(Xp) exists for
all complex X with Imh&0. If we consider the mapping

For the special case of timelike momenta, Eq. (9)
is equivalent to the PDR introduced by Nishijima.
The integral over negative values of the scaling pa-
rameter, which appears in Nishijima s PDR, cannot
contribute when none of the momentum variables are
spacelike. As has been emphasized, this relation has
been established in general only for decay-type
processes. For the 2-point function, however, there is
no difficulty in removing the subscript on v-+", here,
r+'(p)=r(p2), and by a change of variable Eq. (9)
reduces to the familiar dispersion relation in the
variable —p'.

' This is equivalent, for real X, to the replacement of

(Rx,wr" W. 1)O
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'The choice of all p.;o(0 defines a function r (f&p) analytic
in the entire second sheet of the cut $ plane. Integration of this
function in the lower half plane on the second sheet yields a PDR
for the complex conjugate of Eq. (8).

by

(R)i. &~ 'jt. &y& ~ ~ )i, &f/ &)p

=exp{—(in')Lx 8,+yr 8&+ y„—1'l9 —1])
X(&*,eI "On 1)P.

Analogous formal representations of the scaling transformation
may be derived from a time-ordered operator V'", obtained from
the original 9" by replacing every source function j(s) by j(Xs);7'" may be expressed in terms of V' by the formal relation
9""=exp(—Q in)1)V', where Q= J'dsj (s)(sos/Bs„))B/8j (s)j This.
suggests that al/ the Green's functions will have regions of
analyticity in the scaling parameter, since all functionals formally
satisfy Cauchy-Riemann equations in the complex variable X.' We use the relativistic notation: a b=a b —apbp.


