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Inasmuch as s and f&' are less than or equal to unity,
approximations (2) and (3) are less restrictive than (1).
The results for the population distribution agree with
those obtained from the rate equations in first order
when approximation (1) is also made.

The new features of this paper include explicit
calculations of the internal energy, heat capacity,
entropy, saturation parameter, and minimum entropy
production of a three-level maser. The spontaneous
emission and cross relaxation mechanisms introduced
tend to reduce the value of the saturation parameter
from its value given in terms of m,, and 813 alone.
Since +2123 is appreciable when v21—v32 is small, this
cross relaxation mechanism has an interesting effect

on the maser's internal energy and heat capacity as can
be seen by an inspection of Eqs. (32)—(35) inclusive.
As s goes from 0 to 1, the internal energy of a three
level maser is increased by (21K'/9kT) (vs''+ v2t vss

+ v&2s) whereas the associated heat capacity is decreased
from its equilibrium value of (2Ah'/9kT')(v2P+v2tvss
+vs22) to zero.
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At low energies ionic collisions with atoms are largely elastic. Simple theoretical approximations to scattering
cross sections, ranges and straggling are derived for. power potentials, showing that the scattering is peaked
in the forward direction rather than isotropic. Using an approximate universal potential of Thomas-I'ermi
type a natural measure of range, p, and of energy, ~, is obtained for all ions in all substances. The corre-
sponding range-energy curve is computed.

At higher ion energies the electronic excitation becomes increasingly important. An approximate formula
is given for the electronic stopping contribution, increasing proportional to ion velocity at low and moderate
velocities. These results are applied in the interpretation of a few isotope eRects, observed in range
measurements.

~ OR ions with velocity e comparable to or less than
no=e'/A, an interesting competition appears be-

tween loss of energy to electrons and loss of energy to
atomic recoils, corresponding to stopping cross sections
per atom S, and S„. Quantities of importance to this
competition are S, and S„combined with some averages
over the differential cross section do-„ for scattering of
the ion by a recoiling atom. The present discussion of the
velocity region ~&no is intended as a step toward a
quantitative treatment of the processes involved.

At 6rst we shaH disregard energy loss to electrons
and discuss atomic recoils only. Bohr' introduced the
assumption that S„is nearly a constant in a considerable
velocity interval at low velocities, and used arguments
of the Thomas-Fermi type in order to give a comprehen-
sive description. In fact, the Thomas-Fermi treatment
gives an important simplification and a fair accuracy,
at energies large compared to the Rydberg unit.

*Deceased.' N. Bohr, Kgl. Danske Videnskab. Selskab, Mat.—fys. Medd.
18, No. 8 (1948}.

The scattering problem in nearly elastic collisions
between atoms and ions at low velocities can be treated
by classical mechanics. It follows from dimensional
arguments that the potential must behave as r-' if S„
is independent of velocity. The scattering in this po-
tential is very closely given by the useful formula

do„=(S„/2T ') (dT/T:),

where T = 2M''M2v'/(Mt+Ms)' is the maximum value
of the energy transfer T. The scattering cross section
(1) has a large probability for small angular deflections,
and is similar to the Rutherford scattering rather than
to the isotropic scattering of hard-sphere collisions.
Assume that the potential is V= $„Z,Z2e'a/2r', with the
parameter u given by

a= (A'/me') X0.8853(Zg1+Z2*') ',

and therefore of similar type to the Thomas-Fermi
unit of length. We then obtain the formula
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where @=Ms/Mt. As regards the straggling it may be
noted that (AR„s), = (dR'), .

The domain of validity of the above formulas can
be described by the parameter e= a/b, where
b= 2ZrZse'/Mon' is the collision diameter. The formulas
can be expected to hold when ~&1, since all collisions
must then take place at separations with screened field.
The formulas (1) to (5) are only first-order approxima-
tions to the atomic scattering. Still, for many purposes
they remain preferable to more accurate formulas be-
cause of their simplicity and comparative accuracy.

These simple considerations may be extended. %e
consider 6rst the consequences of a power potential,
proportional to ZtZsa" '/r". Then, S„behaves as

a'—'~"(Z,Zs)sl"[M, /(Mt+M, ))LMsE/(Mt+Ms) J' ""
and the differential cross section is

dog= (1—1/B)(Sp/T~' '~")dT/T'+v"

to a good approximation. It is interesting to observe that
this do-, leads to a square of relative straggling in range
given by (4), with n=4(e —1)/e(2m —1). Thus, the
straggling is rather insensitive to the power n, for n 2,
and has a maximum, n, =0.69. This result leads us to
expect that (4) may be quite accurate also in cases
where (1) and (3) do not apply, and that measurements
of relative straggling in range normally give little in-
formation about the potential and the effective value
of the important quantity e. This expectation is con-
firmed by more accurate computations of straggling.

' R. B.Leachman and H. Atterling, Arkiv Fysik 13, 101 (1957).

This expression is similar to that used by Bohr. ' A
reasonable value of the coefficient in the r ' potential
is' $ = 2/(2. 7183X0.8853).

The average range is proportional to the energy, and
from (1) the square of the straggling in range is found
to be'

((AR)'), /R'=n[MtMs/(Mt+Ms)'j, o.=-s', (4)

which is half the value obtained by Bohr' assuming
isotropic scattering.

The average range measured along the track, 8, is
usually not the quantity observed experimentally. In
fact, frequently the observed quantities are related to
the average projected range, 8„,which may be defined
as follows. A particle starts inside a homogeneous
medium from the origin in the direction of the x axis;
the value of x for the end point is the projected range,
and its average is the average projected range R„.From
(1) we obtain

2,0

1.0

1.0

FIG. 1. The full-drawn curve is computed range as a function
of energy in a p-e plot, with neglect of energy loss to electrons.
The increasing reduction in range due to energy loss to electrons
will be of order of 20'%%uo for s =1.

The second extension is int, roduction of a potential
energy of the type V=Z&Zse'p(r/a)/r, where p is a
universal function, and a is given by (2). This assump-
tion of similarity of the potential energy between any
two atoms implies a natural measure of ion energy,
e= a/b, and of particle range, p=RXMsX4ga'M, /
(M&+Ms)'. It is thus informative to plot range-energy
measurements in a p-e plot, where a curve common to
all ions and all substances should obtain to a 6rst
approximation. Of course, 5, must be small, or properly
corrected for. Due corrections should also be made for
the type of range measured. For this purpose formulas
like (1) and (5) may be adequate.

It turns out that a fair approximation to an adiabatic
potential energy is achieved by putting y (r/a) = too(&/&),
i.e. the Fermi function belonging to one neutral atom.
)The Fermi function is superior to an exponential
screening like exp( —r/a). ]We have computed the cor-
responding range curve, as shown in Fig. 1.For compari-
son is shown also the straight line p= 3.06& which would
follow from (3) with the standard value of g„. Range
measurements' ' are not plotted on the figure, but they
seem in fair agreement with the computed curve.

Loss of energy to electrons may now be included.
Several arguments show that S, is nearly proportional
to v at low velocities, i.e., for e small compared to e',
where v' Z&:vo. A simple way of showing the propor-
tionality to e is to note that at low velocities the energy
loss becomes proportional to n for an atom moving
through an electron gas of constant density. ' The varia-
tion of 5, with Z~ and Z2 may be discussed using a

' B. G. Harvey, Ann. Rev. Nuclear Sci. 10, 235 (1960); this
review article contains reference to previous experimental work.

4 L. Bryde, N. O. Lassen and N. O. Roy Poulsen, Kgl. Danske
Videnskab. Selskab, Mat.—fys. Medd {tobe published).' E. W. Valyocsik, University of California Radiation Labora-
tory Report UCRL-8855, 1959 (unpublished).' J. A. Davies, J. D. McIntyre, and G. A. Sims, Can. J. Chem.
39, 611 (1961).

7 V. A. J. van Lint, R. A. Schmitt, and C. S. Su&'redini, Phys.
Rev. 121, 1457 (1961).

J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.—fys.
Medd. 28. No. 8 (1954),J.Lindhard and M. Scharff, ibid. 27, No.
15 (1953).



J. LINDHARD AND M. SCHARFF

Thomas-Fermi treatment. To a 6rst approximation
we find

S,= &,Xs~esao(Z&Z. /Z) (v/ep), (6)

with Z= (Z|&+Z2 ) and where $, is of order of 1—2,
but may vary with Z& approximately as $,=Z&'. The
dependence of S, on Z~ and Zs in (6) is an expedient to
get simple estimates. Empirically, the formula (6) is not
far in error. Of course, for n)v' the formula (6) no
longer holds, and the stopping cross section will reach a
maximum and decrease at higher velocities.

We observe that (6) and (3) become equal at some

energy E,. If we put Z~=Zs we And E,=Zs~As($„/(, )'
&750 ev=Z~A2X500 ev, i.e., e,=6A~Z2 ', but already
somewhat below this energy S„has fallen below (3) and
dc „approached the Rutherford scattering cross section.
In many measurements, then, one observes a nearly con-
stant S at energies about E,. However, it is composed
of a decreasing S„and an increasing 5,. This eGect
will show up, e.g. , as a reduction of relative straggling
in range, since the straggling from collisions with
electrons is negligible.

An instructive application of the above scattering
formulas for power potentials is the hydrogen-deuterium
isotope effect. In fact, when a heavy ion moves through
a, light substance (3I~))cV,), S„varies with Ms as

M~' '~". To 5, should be added S, which is independent
of M2, accordingly, -for m=. 2 the stopping is independent
of M~. For e—2 positive, the heavier isotope will give
the larger stopping, and vice versa. This result leads
to an interpretation of range differences observed in

hydrogen and deuterium. For large e the value of e
is between 1 and 2, and therefore ED)XII.4 9 For sraall

~ we expect e to increase beyond 2, so that RD&E~~.'
Another interesting isotope effect is observed when

3f1 is varied for fixed Z1. Davies' has measured the shift
in projected range between Na" and Na' of energy 24
kev in Al. Here, we expect a small energy loss to elec-
trons, so that Eqs. (1), (3), and (5) are approxirrately
valid. The results of navies are in fair accord with

Eq. (5).
i%ore extensive publications are forthcoming on these

and related subjects. Several of the above results were

obtained. 6ve years ago, following discussions with Dr.
R. B. I,eachman on his observations of range distribu-
tions. ' We are much indebted to Dr. I.eachman for
these discussions. We are grateful to Dr. J. 15I, .Alex-

ander, Dr. B.G. Harvey, and Dr. N. O. I,assen for com-
munication of experimental observations prior to
publication.

' J. K. Bgggild, 0, H. Arrive, and T. Sigurgeirsson, Phys. Rev.
71, 281 (1947).
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The properties of the scattering length obtained by Kohn's method, which is one of Hulthen's variational

methods, are studied by assuming a linear trial function with n adjustable parameters. The. scattering length

A (") decreases monotonically as the number of adjustable parameters n increases, if there is no bound state

in the system. This conclusion essentially comes from the upper bound theorem of Spruch and Rosenberg.

When the system has m bound states, the scattering length increases in value only m times, and otherwise

decreases monotonically. Therefore, after one veri6es the presence of rn increases, the calculated value is

certain to give an upper bound on the scattering length. The connection between the result above and the

condition of Rosenberg, Spruch, and O' Malley is considered. In the Appendix comparison is made of the

scattering length A( ) obtained by Hulthen's original method and Kohn's method when m bound states

exist in general.

I. INTRQDUcTIoN AND sUM+ARY

PRUCH and Rosenberg' have recently proved that

~ ~

the Kohn method, which is one of the Hulthen
variational methods, gives an upper bound on the
scattering length if there is no bound state in the system.
Rosenberg, Spruch, and O' Malley' have extended the

* Now at Department of Physics, University of Tokyo, Tokyo,
Japan.' L. Spruch end L. Rosenberg, Phys. Rev. 116, 1034 (19&9}.

2L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev.
118, 184 (1960); 119, 164 |,'1960).

theorem to the case where m bound states exist and
showed that the calculated scattering length also gives
an upper bound. if the trial function is chosen so flexible

that m approximate orthogonal-wave functions for the
bound states with negative-energy expectation values
can be formed by a linear combination of the terms
involved in the trial function. The upper-bound theorem
is useful because we can judge which is the better
calculation and. how the result is improved.

The purpose of the present note is to study the nature
of convergence in the variational calculation with a


