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A dispersion-theoretic calculation of the lifetime of the 29is carried out along lines suggested by previous
treatments of the nucleon electromagnetic form factors. In terms of the coupling constants of the =, A,and ¥
baryons to the pion (ga, gz, and g), the =0 lifetime is predicted to be 7= (gsga/g2)2X1.1 X107 sec, irre-
spective of the relative (A,Z) parity, the validity of this expression depending on the dominance of the two-
pion resonating state contribution to the 20— A+ transition magnetic moment.

INTRODUCTION

MODERATE amount of success has been en-

countered in the study of the three-point (vertex)
function where at least one of the particles entering the
vertex is strongly interacting. By applying dispersion-
theoretic techniques, a sequence of investigations—
those of Chew ef al.,! of Federbush et al.,? and of Frazer
and Fulco>—have shed some light on the origin of the
electromagnetic structure of nucleons. In particular,
the nucleon isovector magnetic moment form factor
stands as the candidate for being the relatively best
understood.

The task we set ourselves here is the calculation of
the 20-A%y vertex function for low momentum trans-
ferred into the vertex. At zero momentum transfer, the
value of this vertex determines the 2° lifetime. Although
the procedure and approximations involved are very
similar to schemes employed in the study of the nucleon
magnetic moment isovector form factor, differences
enter because the masses of the three particles forming
the vertex all differ, a circumstance which leads to
appreciable numerical deviations from the equal baryon
mass approximation.

On the experimental side, the very brief time of
existence of the 20 is not known quantitatively and only
a very crude bracketing of the lifetime is available
(1071 sec> 7> 10722 sec). However, proposals for deter-
mining the 2° radiative transition rate have been put
forward* and, hopefully, experimental data on this rate
will eventually be gathered.

If a conserved vector current of baryons in the form
proposed by Feynman and Gell-Mann® is coupled to the
weak interaction lepton “current” and if the minimal
weak coupling scheme! is realized, then the vertex
function, which concerns us here, is also proper to the
study of the =+ and 2~ disintegrations into A° and the
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lepton pair (ev). In fact, if we neglect the 2+, 2~ beta
decay induced by the primitive axial vector coupling
which we estimate as negligibly small,® the whole
scheme of 2 multiplet decay into A° is completely
predictable.

In Sec. I, the Z-A-y vertex is dispersed and the dis-
persion relations for the form factors are recorded. The
two-pion contribution to the absorptive part of the
vertex is then analyzed. Sections IT and IIT treat, in
particular, the dispersion relations satisfied by the
J=1, T=1 partial wave amplitude for A+Z — 7+
on the basis of the Mandelstam representation. The
singularities of this amplitude are exhibited for com-
plex as well as real values of the energy variable associ-
ated with the channel. It is then shown (Sec. IV) to be
reasonable to construct a Frazer-Fulco approximation
(dominance of a pion-pion resonance) for the absorptive
part of the form factor. Explicit expressions for the
form factors are then obtained and numerical predic-
tions given.

Units with Z=c=1 will be used in the following. The
relative (A,Z) parity will be assumed to be even
throughout this paper. The results for odd relative
(A,Z) parity are summarized in the last section.

1. DISPERSION RELATIONS FOR THE
= — A—~ VERTEX
With the requirement of Lorentz and gauge invari-
ance, the most general structure of the vertex of
interest (A]7,(0)|2%) is, assuming the relative (A,Z)
parity to be even,

(Es/mp)M(Ex/ms)XA]5.(0)|Z)
=F1(— &)itaowéts+Fo(— ) Uniyuts

+Fy(— 8 Eutauz; = (pz—pr)u
Here we are treating the vertex function in lowest order
in e; with this proviso, 2° may be treated as if it were
stable. Only the isovector part of 7, has a nonvanishing
matrix element since 2 is an isovector and A an isoscalar.
The Fi(—g) and Fy(—&) of Eq. (I.1) are related
[because of the gauge condition (A]£,7.(0)|Z%=0] by

Fi(—8)=(A/8)F:(—8), (1.2)

A=mz—m\.

(L.1)

It proves convenient? to consider instead of (I.1) the
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related quantity:

(Ez/ms)*(Es/m=)¥0] 7| AZ°)
= —F1(t)ontouémss— Fo(8)0niy s
_F3(t)EM5AuE)
E=pstps; I1=—(pxtpr)=—8,
where the identity of the F; in Egs. (I.1) and (1.3)
follow from the substitution rule.®
By contracting out the A in Eq. (I.3), we are led

heuristically to dispersion relations for the form factors
Fi(?) and F2(2):

(1.3)

1p®  ImFy()
Fi(¢) =~f at'— , (1.4a)
wJemyr U —t
i po ImF,(¢)
F2 (t) =F2 (0)+”“ dlf’_’—’—. (I.4b)
7 emn: (=)

In order that F3(&) of Eq. (1.2) be finite for £=0,
F2(#) must vanish as £€-— 0. This condition deter-
mines the subtraction constant F2(0) of Eq. (I.4b) to
be zero. F1(#) is assumed to obey an unsubtracted dis-
persion relation.

The absorptive part of the form factors ImF; and
ImF, is found from the absorptive amplitudes ob-
tained by dispersing (0| j,|AZ%) (Fig. 1):

Ay=—8m*3.,(0] juln)(n| f1(0)[2°)

X8 (pa—ps—p5) (Es/ns)t, (L5)
Fa(x)= (v 0*+mp)a(x) =source of A° field,
which must be of the form
A = ImF1(t)5A1:0‘"p£p%E
——II’Ile(t)?jA(’L"Y”— E#A/t)uz. (16)

The lower limits of integration in Eq. (1.4) are a
consequence of the two-pion state being the lowest
mass state generating a nonvanishing contribution to
the 4, of Eq. (I.5). No anomalous threshold is associ-
ated with the two-pion contribution unlike the case of
the electromagnetic structure of the 2+ Since the gen-
eralized charge conjugation operator® G prevents three-
pion states from contributing to 4,, (Gj."G'=3."),
the next higher mass states are the four-pion state, the
six-pion state, and then the K-meson pair with which
an anomalous threshold is associated. Using the pre-
scription of Karplus, Summerfield and Wichmann,® we
find that the threshold is lowered from the expected
value of Znormai= (2mx)?=150.1 7,2 t0 fanomatons=49 7.2
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F1c. 1. Dispersion of the Z-A-y vertex.

Just as in the treatment of the isovector part of the
nucleon form factors, the seemingly reasonable assump-
tion is made that the lowest mass state, viz., the two-
pion state, dominates the contribution to the F;(f)
since such states are weighed most heavily in the dis-
persion integrals of Eq. (1.4).

The matrix element (0] 7,(0) | 27) has been calculated?:

©[7ulgi; ¢',j(out))
= (4q0q0")Hieesii(g— )b *(®), (L.7)

where ¢, ¢’ and 4, j are the pion four-momenta and
isobaric spin indices, respectively. M*(f) is the pion
form factor which we assume has a sharp and strong
peak at {=1,, the Frazer-Fulco resonance energy for the
two-pion system.

The other matrix element which must be computed,
(2| fa|Z0), is related to the process Z4+AX — w+7 to
which we now turn.

II. THE PROCESS: A+4X0 > w+mx

The second essential ingredient in the absorptive
amplitude is the matrix element (wx(out)| 4| =) which
is related to the .S matrix for the process A+2 — w47 :

{rm(out)|S|AZ (out))
=—i(ms/Es)*(2m)*8(q+q' — pi—pz)
X{gi; ¢,j(out) | f2(0)| Z)
= (2m)*8(g+q¢' — pa—pz) (wm | s|AZ).

(I1.1)

Since the absorptive amplitude 4,(f) of Eq. (I.5) is
Lorentz covariant, it may be evaluated in any con-
venient Lorentz frame, in particular in the barycentric
frame of the baryon pair AZ. Only the J=1 even parity
states of the A2 contribute to the absorptive amplitude
of Eq. (I.5). Although the 357 and 3D; amplitudes could
be discussed,? it proves more useful to use the helicity
amplitudes!® employed by Frazer and Fulco.?

Keeping only the T=1,J=1 projection of the S-
matrix element in Eq. (IL.1), we find for the two

10 M. Jacob and G. Wick, Ann. Phys. 7, 404 (1959).
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helicity states!':

iQ2x|sT=7=1| K (+)2(+))

(EK+EE) . "
=dr———— —ies; TP+,
(4E3Exq0g0)*
- (I1.2)
i 7= K ()2 (=)
(Ei+Es) , NN
=—dr———— [ —ie; BT (P X Pe**;
(4E3E32q0g0')*

where p= (pz—pr)/2, ¢=(q—q')/2 in the c.m. frame,
and ¢ is the azimuthal angle of q. Here A(4) signifies
a positive-helicity state for the A.

When the S-matrix elements of Eq. (IL.2) are sub-
stituted into Eq. (I.5), we find

ddqd®q’
. [ 13(0)[¢,i; 4"

A=—81r42 2n)

™

. . - EKEZ :
X<9,1;9',]|S|AE):|( ) ,
MAT S

(0]3] 2m)= (4q0*)Hiees;;2qM™* (1), (IL.3)
e M*(t)
3= A=—- T+ )
A=p- 2 (mams)? !
e M*(t) T“
2 (mAmz) \/—

To relate T+ and T- to the form factors, we simply
evaluate the alternative expression for $-A and 4; by
using Eq. (1.6). The result is

1 (ms+Ex)}(ms+Esx)? A )——[ET"L-I—M——]
V2

ImF1= —
1 QM +8)
+Ex)}(ms+ Ex)}
Ty = D (mat Ez) eM* (1) (T1.4)
(2M 1)
q -
X_“[_MT++E~]7
P V2
with
=1(t—4m,)t, p=3(—4M)}(1—A%/1)},
%(Wb—'—mz\), A= Ms—1MA,
and
E=3(Ex+Es).

We shall show below that it is useful to define new

11 The consequences of the indistinguishability of the two pions
have not been included here. However, in Eq. (I1.3), it will be
noted that the integration is carried out over half the phase space
available. It is here that indistinguishability of the two pions is
taken into account.
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energy dependent amplitudes f; and f_ instead of
T+and T—:

(EA+mA) (Ez+’mz) 1
f+@)= T,
(2n+1%) qﬁql A%/t
(E ) . (1IL.5)
x-Fma)t(Es+ms)b 1
fymp T B4 1
2M A+t q pg 1—A/t
in terms of which Eq. (IL.4) takes the form:
M* ¢
ImF;=— () ¢T:(2),
() (I—A%( +M ) (11.6)
()= ——— —f- ), :
' 2p? T+ \fzj

I‘z(t)———(l——-)(——f f+)

In order to explore the analytic properties of the
partial wave amplitudes, the Mandelstam representa-
tion of the singularities of the invariant amplitude for
A+Z — 7+ is needed. The expressions for which we
postulate the Mandelstam representation are the 4
and B defined by

(%;) %(q,i ;4,71 fa(0)|Z)

( e )%E A+}iv-(g—¢)B]
={———) L—4+3zv-(¢—¢)B Jus,
4409’ ExEx ’

_ (IL.7)
A=4 (tysyg) 5 B=B(t,.§‘,§),
t=—(g+q')*=4(g2+m,*) =4E2,
§=—(gx—q)*= (Ex—q0)’— p*—¢*+2pq coso,
s=—(pr—q' )= (Ex—q0')*— p*—¢*—2pq cosf,

¢, s, and § are expressed in the barycentric system.
s and § can in turn be expressed in terms of ¢ and cos#:

¢ A?
s=——+M>+—+m,’
2 4

sroel (o) (-2 ()} o

Because only the T'=1 amplitudes occur, the final two-
pion state is spatially antisymmetric, thus:

4 (t757§)= —4 (t3§7s)7

B(t,s5,5)=B(1,3,s). (11.9)
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By again expressing Eq. (II.7) in partial-wave
helicity amplitudes and then comparing with Eq. (IL.4),
T+ and T~ can be expressed in terms of A; and By,
defined by

+1
A= f Py(x)A (t,x)dx,
-1

(11.10)
+1
B,;= f Ps(x)B(tx)dx.
—1
The explicit expressions for 7+ and 7~ are
1 ¢ @MH+H(A—24%1)
8xtt p (ms+ Es)t(ma+ Ex)?
pZ
2 1
X[l——AZ/tA 1+pgM (3Bq+ 330)],
(11.11)
1 @ (QCMA-)}1—A%0)
e ( (1—4/ Ao As],
87 V2 (mz+ Es)}(ma+En)?
?* _ (E—MZ),
1—A2/t \4
and for f; and f_:
+—81rpq 1— A7 1T pqM (3521 3b50) |,
(I1.12)
1v2
fo=———[Bi—B:].
8r 3

All the notation used in the above expressions has been
chosen so as to yield the results of Frazer and Fulco
in the limit A— O except for insignificant changes in
sign convention. The following two identities were
found useful in reducing the above formulas to the
form given:

(ma+Ey) (ms+Es)— p?

=5 (ms+mp) (Ex+ma+Es+mz) (1—A%/1),
(ma+Ey) (ms+Es)+p?

=1(Es4Ep) (Eax+ma+Es+ms) (1—A%/1).

(IL.13)

III. PROPERTIES OF THE A+X — n+=x
PARTIAL-WAVE AMPLITUDE

Accepting the prescription of Mandelstam' for locat-
ing the singularities of scattering amplitudes, we can
write down a representation for the 4 and B ampli-

12S. Mandelstam, Phys. Rev. 112, 1344 (1958); 115, 1741
(1959); 115, 1752 (1959).
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tudes introduced in Eq. (IL.7):
4 A2 1 1
(B)=( 1 )gAgz[mzz-:}:sz?—s]
a12(s",8")
1 0 (bm(s’,é’))
+— f ds’ f as -

I matmer mptmnr  (5'—5)(F—s)
as(s',t)
(bla(s',t’))
(=) (¢=1)

as3(8,0)
N l o . fw dt,(b%(s’,t’)) ,
w2 matmn: JdeEmnr (8 —s) (' —1)
an(®y)\ [ —au(?)
(612(x,y) ) - (—{—bm(y,x))’
a1s(x,y) 3 —ag(x,y)
(bls(x,y) ) - (+b23(x,y)).
Starting from the representation, the singularities of

the partial-wave amplitudes can now be found by
forming Ay and By:

(AJ(t))
BJ(t) 1 © , a(Sl,t) 1
(b9’ _;f ds (b(s,’t))@y
+1 1 .
+ d
where

/,If A/2
(“(s )) =( f )WgAgza(S'--mz?)“l"@[S,*(mA+m")2]

1 0 0
+— ds’ at’

w2 (mp +ma)? @my)?

(I11.1)

b(s',t)
(alg(s’,t’)
x[f AL
(2mq)? If’_t
(dlz(sl,gl)
612(5/,3,)

+ f ds ] (11L.2)
matmp)e 1§45 —2mE—msP—my?

If we neglect rescattering effects, the terms in Eq.
(I11.2) involving ai; and b1 are dropped. Physically
such a neglect is tantamount to assuming that the only
important force in the process A4+Z — w+= for the ¢
range of interest arises from the singularities associated
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ty to

Fic. 2. Singularities of the partial-wave amplitude associated
with the pole term. £,=3.57m.2, i-=0.30m,2, t,=091m.? t»
=0.63m2; ty=4m2.

with the pole term of the Born approximation. To make
such an approximation plausible, we must show that
for the ¢ values for which A4 ;(¢) are required, i.e., for
(2mw)2<t< oo, the absorptive parts of the Born ap-
proximation are located in such a way as to give a large
and hopefully dominant contribution to the dispersion
relations which A4 ;(¢) and B (¢) satisfy.

It may be verified that both f4(¢) and f_(¢) and I'1(2)
and T2(f) as defined have the same singularities as
(pg)~7 A ;(¢) and (pg)~'B,(t). Indeed, these functions
have been defined so as to have just such a property.
We may therefore limit our explorations of singularities
to those of (pg)~7As(¢) whose singularities are located
just where those of (pg)~7B,(¢) are.

The singularities of 41(f)/pq arise from two sources.
First, the singularities of a(s',¢) of Eq. (II1.2) produce a
branch cut running from ¢= (2mm)? to t= . Secondly,
the integral

1 +1 1 1
I,= f [— —_ ]PJ(x)dx, J odd,
(pg)7Y 1 Ls'—s(tx) s'—5(tx)

produces singularities for those values of ¢ for which
s’=s(tx) provided |x| <1. Since only even powers of
pq are present in I, no kinematical singularities associ-
ated with p, ¢ appear. We are thus instructed to find
solutions of the equation:

1
14 (t—co) = (t— 1) (t—c2)} (t—c3)},
x

co=mlHms+2m2—2s’,

a=4M?, (IIIS)

62=4m12,
63=A2.

By studying the position of the singularities as a func-
tion of & and s’, we find that the singularities trace out
the curve in the complex ¢ space illustrated in Iig. 2
for the Born term singularity s'=ms?; co=2m.*—2MA.
For s'= (ma+m.)?, further singularities are introduced
but none of these approach so close to the right-hand
branch cut as do those of the singularities associated
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with the pole. If we take the rescattering corrections as
going dominantly through the Y* quasi particle then in
fact all of the associated left-hand singularities lie to
the left of {=0. Now let us write down the dispersion
relation for I';(¢) which follows from a knowledge of the
(¢ plane) right-hand and left-hand singularities:

10> Imu()
T(O)=TL(0)+- dt’ ,

v @mn)? 1 —t

(I1L.5)

where I';%(¢) is the contribution from the left-hand
singularities: the analytic structure of T';%(f) will be
discussed in some detail in the Appendix. Again follow-
ing Frazer and Fulco, we observe that I';(¢)/M (£) must
be analytic and real for 4m,%<t<16m,?

Im[T:(5)/M () ]=0, 4m.2<t<16m,> (IIL6)

because the phase of TI';(f) must simply be that of
M(t). In fact both of them are given by the phase
shift of pion-pion scattering in the T=J=1 state ac-
cording to the theorem of Fubini, Nambu, and Wata-
ghin.’® This guarantees that the imaginary parts of the
form factors F;(f) are real.

Applying Cauchy’s theorem to I';(¢)/M (¢) and ap-
proximating I';%(f) by that arising from the pole term
TB(¢), we obtain

M(t)fdt,Abs[I‘iB @)/ M{)]
c (i"—t)

IO ,  (IIL7)

™

where the contribution from the right-hand cut for
' > 16m,* has been neglected and where C'is the appro-
priate contour for the singularities arising from the
pole term, and “Abs” means ‘“‘the absorptive part of.”

IV. LIFETIME OF THE Xo¢

Collecting together the relevant quantities Eq. (I1.6)
and Eq. (IT1.7), the form factors are given by

eM*
Isz(t) =— (7q3)1‘1(t),

Abs[T':(¢)/M ()]

1
()= M (1) f i (Iv.1)

The M () in the integrand of Eq. (IV.1) will be
replaced by 1 since for the singularities closest to the ¢
values of interest M (¢) =~ 1. Our final result amounts to
the following: ImF;(¢) is given by the Born approxima-

tion [ImF;(#)]o multiplied by |M (¢)|2, the square of
the absolute value of the pion form factor:

ImF(f) = | M () |[ImF () Jo. (1V.2)

In the absence of a realistic calculation of the rescatter-
ing corrections, we believe that the above approxima-

18 S, Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,
329 (1958).
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tion is, at present, the best that can be made in view of
other uncertainties.

A straightforward calculation yields the following ex-
pression for the [ImF;(£)Jo:

Myg:® 1

(24N
[ImF;(2) Jo= —
4 272 qu

(-0

1_§ wr) |,

A ga

M qx
[Z4¥$) 1 q1r2

[ImFy(t) Jo= :
4w 2t2 qu

2L
()2
X[tan—lf—;(l—; tan—lf)] },

gr= (%t— m”2)%’
av=—ip=(—H+M)}1— Y1)},
f=24q+/ Gt—m+MA).

We recover the well-known results for the isovector
nucleon form factors [F2V (£) Jo and [F1" ({)]o by setting
A=0, M=mpy and gagz=g> with g equal to the pion-
nucleon coupling constant.

The lifetime of the 2° is found from F,(¢). To calcu-
late this quantity we assume that the pion-pion reso-
nance is very sharp so that the | M (¢)|? effectively acts
as a delta function multiplied by some constant. By
comparing Eq. (I.4) with the analogous relation for the
nucleon isovector form factor F," (),

1o ImFY (@)
Fo' ()= f -2
@mz)?

T i —t

(IV.3)

(IV.4)

the transition magnetic moment F1(0) for = — A+t~
can be directly expressed in terms of the nucleon iso-
vector anomalous magnetic moment :

ImF ()] gagz
LimB (), Fy7 (D0.64F,7 () —,
g

BH= [ImFyY (1) Jo

for ¢ small. (IV.5)

Also, we note that the transition magnetic moment
radius is the same as the magnetic moment radius in
the present approximation.
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If the calculation had been carried through with A=0
and M= (ma+mz)/2 then the result would have been
about 309, smaller. Not only is the result sensitive to
the mass difference A but also to the value of M. The
global symmetry model which neglects the mass differ-
ence M —my predicts F1(0)=F,"(0).

In terms of F1(0)/F;V(0), the lifetime of the 2° is*

7=|FyY(0)/F1(0)|2X4.5X10 20 sec.  (IV.6)

With gags=g,

7=1.1X10"" sec, av.mn

which may be measurable by one of the suggested ex-
perimental methods.*

CONCLUSION

With procedures and approximations analogous to
those used in the study of the nucleon electromagnetic
form factors, we have obtained an expression for the
decay rate of the 2°. Essentially no arbitrary parameters
occur in the final expression Eq. (IV.5) since ga, gz and
g?are measurable by independent experimental methods.
The result depends heavily on the existence of a two-
pion resonant state so that if the experimentally ob-
served lifetime is indeed that predicted above, then
strong evidence will accrue for both a resonating two-
pion state and the validity of the two-pion theory of the
nucleon isovector magnetic moment form factor. On
the other hand, if the two-pion theory is accepted as
true, then the lifetime provides a measure of the strength
of the coupling constant gags.

Finally, if the relative (A,Z) parity is odd, Eq. (I.1)
must be written as?

(Er/ma)}(Es/ms)¥A|7,.(0)[Z)
=G1(— 8)ita(vs)owé s+ Go(— ) (vs)iy s
+Gs(— ) £u10 (v5)us.

In the approximation of representing I'; above by T'.B,
the Born approximation, G1(f) and G»(¢) have the same
expressions as Fi(f) and F.(f), respectively, with the
pseudoscalar coupling constant ga replaced by the
scalar coupling constant, and the lifetime of the 20 is
given by the same expression as Eq. (IV.7).

APPENDIX

Here we wish to examine the analytic properties of
I.;L(¢), or equivalently, of (pq)~7As* The left-hand
singularities arise from the vanishing of the denomina-
tors in the integral of I;(s,f) defined in the text:

1 pH 1
Is(s')=— f deJ(x)[————
(P97 s'— pP—@—2pgqx
1
.
s' = PP~ +2pgx

1 ” ’ / !
(pq)JAJ(t)—;j; ds’ a(s' 1)1 ;(s"t).

(A2)
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F1c. 3. Singulari-
ties of (pg)~7A4 % ().
The heavy linein the
complex region is the
locus of the branch
points.

More precisely, the left-hand branch points are end-

point singularities and are given by the roots of
s'—p?P—g*£2p9=0, or
B(t—mp2—ms*—2m,2—2s")

= (t—(h)%(t*—()z)%(t—(}g)%. (III3),

There are in general two roots to this equation. For
s'=m3? those two roots correspond to £, of Fig. 2. For
some values of §’, the branch points lie in the complex
plane of &

If we further insist that the contour of integration in
Eq. (A.1) is along the real axis, —1<x <1, then the
branch cuts are given by Eq. (IIL3) of the text and are
illustrated in Fig. 2 for s’=m3?. In general, branch cuts
corresponding to different values of s do not overlap
except in —» <¢<0, and {_ <t<t;, and form a strip
of singularities in the complex ¢ plane (Fig. 3).

We may, of course, deform each branch line in the
complex plane corresponding to different s’ so that each
branch line coincides with the locus of the complex
branch points off the real axis.!® The shape of singu-
larities then would become simpler, but the discon-
tinuity across the complex branch line would be un-
tractably complicated, since deforming the contour in

4 R. Eden, Proc. Roy. Soc. (London) A210, 388 (1952); Phys.
Rev. 119, 1766 (1960).

15 M. Nauenberg, thesis, Cornell University, 1959 (unpub-
lished); the authors have enjoyed an interesting discussion with
Dr. Nauenberg on this point.
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(c)
s'=s,

Fic. 4. Left-hand singularities of fZ(s’,t). The dashed lines are
the contours of integration for the integral representation of
JE(s',t) for fixed s”. sq<sp<Se.

the ¢ plane amounts to deforming the contour of inte-
gration of Eq. (Al) from the original path along the
real axis. We therefore prefer to define the contour of
integration of Eq. (Al) as along the real axis.

Let us consider a(s",0)Is(s’,t)= f(s',t) for fixed s’.

1 0
A M) == f as' f2(s'), (A3)
0

(p9)’ ™
where fZ(s',f) is the contribution to f(s,?) from the left-
hand singularities. The left-hand branch lines of f(s',7)
varies for different values of s, and a few examples are
shown in Fig. 4. Applying Cauchy’s theorem along the
contours exhibited in Fig. 4, we obtain

1 Absf (')
I k)
C(s’)

T t—t

I p2 2
a(s,yt)PJ(s_“_P—q‘)>
2pq

(A4)

AbsfE(s' )=+
VI

where the signature =4 is to be chosen appropriately.
Note that the contour of integration C(s") depends on s’
Combining Eq. (A4) and Eq. (A2) we obtain

1 1 p= AbsfZ(s",t")
——AJL(i)=——f ds'f dt'——— . (A5)
(p9)” w2y C(s’) V—t



