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Elementary and Composite Particles*t
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It is shown for two simple fixed-source theories with one stable excited state of the source that (1) a
knowledge of the physical S-matrix elements of the theory is sufhcient to decide if the state is associated with
an elementary particle or a composite particle, and (2) the theory in which the particle is composite corre-
sponds to the elementary-particle theory in the limit of vanishing wave function renormalization constant
of the elementary particle. The distinction between elementary and composite particle is related to a
generalization of Levinson s theorem, and it is made plausible that this generalization is valid in local field
theory. In an Appendix, the result (2) is generalized, and an application to the dispersion-theoretic
treatment of rearrangement collisions is suggested.

I. INTRODUCTIQN

''N the Lagrangian formulation of quantum field
~ ~ theory, there exists a natural distinction between
elementary and composite particle —an elementary
particle is associated with each type of field operator
appearing in the Lagrangian, and a composite particle
is associated with each single-particle state for which
there is no corresponding field operator. In the S-matrix
formulation of the theory, on the other hand, elementary
and composite particle alike appear as poles in certain
matrix elements, which are supposed to be analytic
functions of an appropriate set of complex variables;
the residue at the pole is related to a renormalized
coupling constant if the particle in question is regarded
as elementary, or to the asymptotic normalization of
a bound-state wave function, if the particle in question
is regarded as composite. ' It is perhaps reasonable to
ask whether, within the framework of such a theory,
the distinction between elementary and composite
particle is more than purely semantic, i.e., whether it
is possible to distinguish in principle between an ele-
mentary particle and a composite particle from a
knowledge of S-matrix elements alone. '

It is shown in the present work that such a distinction
is indeed possible in principle, at least within the
framework of the two fixed-source theories which are
examined in detail here. The elementary-particle
versions of these theories are (1) the Lee model, ' which
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decaying state, and the poles in the S-matrix elements will appear
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describes the interaction of a scalar boson 0 with a fixed
fermion source (possessing two internal degrees of
freedom, Ã and V) through the virtual processes
V~iV+8, and (2) an extension of the Lee model in
which the 0 particle has a distinct antiparticle 0; the
interaction with the source takes place through the
virtual processes V ~ %+0 and X+-+ V+0 (this latter
model possesses crossing symmetry which is absent in
the Lee model). The corresponding composite-particle
versions are (I) a separable potential model, which
describes the interaction of a scalar boson 0 with a
fixed source Ã through a separable potential, and (2) a
generalization of the meson pair theory of Wentzel, 4 in
which the (complex) boson field 0 interacts with the
source E through a quadratic interaction; in these
versions, the single V-particle state appears as a
dynamical consequence of the basic X—0 interaction.
It is shown that each composite-particle theory can be
obtained as a strong-coupling limit of the corresponding
elementary-particle theory, in which limit the wave
function renormalization constant of the V particle
vanishes. '

The observable distinction between the elementary
and composite particle theories is found in the high-

energy behavior of the E—0 scattering phase shifts,
which is similar to that suggested by Levinson's
theorem in potential scattering, ' and its generalizations
to certain fixed-source theories which have been dis-
cussed by other authors. ' "These are re-examined here
in the light of the I'redholm theory of the scattering
equation, " "and it is made plausible that a generalized

' G. Wentzel, Helv. Phys. Acta 15, 111 (1942).' As was noted independently for the case of the Lee model by
J. Houard and B. Jouvet, Nuovo cimento 18, 466 (1960).We are
indebted to E. C. G. Sudarshan for calling this work to our
attention.' N. I evinson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 25, No. 9 (1949).' J. Polkinghorne, Proc. Cambridge Phil. Soc. 54, 560 (1958).

s M. Ida, Progr. Theoret. Phys. (Kyoto) 21, 625 (1959).
' G. Konisi and T. Ogimoto, Progr. Theoret. Phys. (Kyoto)

22, 807 (1959).' E. Kazes (to be published)."R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).
' A. Salam and P. T. Matthews, Phys. Rev. 90, 690 (1953)."J.Schwinger, Phys. Rev. 93, 615 (1954); 94, 1362 (1954).
r4 M. Baker, Ann. Phys. 4, 271 (1958).
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I.evinson's theorem is valid in a fully relativistic field
theory; however, a rigorous proof cannot be given.

In an Appendix, it is shown that any model in which
a field interacts with a Axed source through a potential,
and in which there is a bound state of the field and
source, can be obtained as the limiting case of a theory
in which the bound state is replaced by an elementary
particle. An application of this result to the dispersion-
theoretic treatment of rearrangement collisions" is
suggested, but detailed discussion is reserved for a sub-
sequent publication.

II. LEE MODEL AND SEPARABLE
POTENTIAL MODEL

The I.ee modeP describes the interaction of a neutral
scalar boson 0 of mass p with a Axed extended fermion
source

I having two internal degrees of freedom, denoted
by iV and V, with (bare) masses m and mv(", respec-
tively] through the virtual processes V &-+%+9; the
Hamiltonian of the model is

and the T-matrixelement(Xk'( —) I j(k) IN) is givenby"

(&k'(—) I j(k) I &)
=P I

jt(k')Ll/(E' —H+in)] j(k) I&) (7)

Equation (7) implies that the function h(o&) defined by

4~ u(k)u(k')
(Xk'(—) I j(k) I X)= h((d, )

(2vr)' (4~),~), )
*

is the boundary value of an analytic function h(s) of
the complex variable s, regular in the s plane cut along
the real axis from p, to ~, except for simple poles along
the real axis associated with the discrete eigenstates
of H for which (Xl jt(k) ln)AO.

For the I ee model, with Hamiltonian (1), the function
h(s) is given by

~" v lu(v) I'
h(s) =I'((&) s—Ev((&)+ do&, , (9)

7l 4 p COq

where I'(') = (g('))'/4~ and Ev('& = mv('& —m. The exist-
H =err tPrr+mv(e)Pv trav+ o&iat (k)u(k) d'k+H;„„, (1) ence of a stable V particle with (physical) mass

mv m+Ev —r—equires the existence of a solution of
with

u(k)
(27r)l " (2o&i)-:

r
Ey =EP (0~ — ' — d(uq &P,.

7j ~ p Mq Ey
(10)

flu(v) I'
Here tt)vt, err (Pvt, Pv) are the creation and annihilation h(s) =
operators for the X state (U state) of the source; these
satisfy the usual anticommutation rules. at(k), a(k)
are the creation and annihilation operators for a 0
particle of momentum k and energy o&s

——(k'+u')1;
g"& is the (bare) coupling constant of the theory, and
u(k) is a cutoff function

I
normalized to u(0) =1].

The 1V—0 scattering states
I
cVk(&)) associated with

an incident 8 particle of momentum k satisfy the
Schrodinger equation

1+- dMq

Ev m- "„—(o&,—s)((0,—Ev)

r flu(v) I'
1+(s—Ev)—

s—Ey vr "„(a,—s) (o&,—Ev)'
(9(r)

where F—=Zl'"', with

I'") (" flu(v)l'
Z = 1+ —— do&s.

(o&,—Ev)'

&L4'v 4')v(r(k)+4')v 4'«(k)] (2) If a solution of Eq. (10) exists, h(z) can be written as

(E,—H) Irk(~)) =0, (3) The state vector of the physical V particle is given by
with Ei——m+o&), . Write IcVk(w))=at(k)IX)+x +'(k);

I V) Z, tl )then

where
X(+'(k) = L1/(Es —H&i&7)]j(k) I N),

(2')-**&

u(k) 1
' d'k at(k)

I E), (12)
(2~s) ' ~s—Ev

j(k) —=LH, at(k)] —o)&at(k)

=Ig"'/(2 )']I: (k)/(2 )']4 4 (5)

is the "current operator" for a 0 particle of momentum
k.

where the renormalized coupling constant g—=Z'g&'&

has been introduced; Eq. (11) implies that Z, the
probability that the physical V particle is in its bare
state, satisfies 0&Z&1 (recall I'(s))0); also

The S matrix for T—8 scattering has elements

(Vk'( —) I 1Vk(+))=5(k' —k)
27rib(Ei. —E&,,)(Ãk'(—) I j(k) I

X—), (6)

I' (." vlu4)l'
0&-

l dMq= 1 Z( 1)
(o&,—Ev)'

(13)

"R, Amado and R, Blankenbecler iunpublished).
' The methods used here are standard. See, for example, G. F.

Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
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so that the magnitude of the renormalized coupling
constant g= (4nl')& cannot exceed a certain critical
value, as was noted by Pauli and Kallen, " and there
are no spurious (ghost) poles of h(s).

The separable potential model to be discussed here
describes the interaction of a neutral scalar boson 0
of mass p, with a fixed source (denoted by 1V) through a
separable potential; the Hamiltonian of the model is

H = a)pat(k) u(k)d'k+H;~t, (14)

t u(k)u(k')
H;,= at(k')a(k)d'k d'k', (15)

(2')' ~ (4(uj.(og, ) l

u(k)u(k')
(1V

I
I:o(k'),j(k)] I

1V)=
(27I') (4MpMyi) *

and the function h(s) defined by Eq. (8) is given by

& ~" flu(v)l'
h(s) =t 1+— d(u,

7i 4
p, GO) S

(17)

where (=X/4x. Now if

where X is the coupling constant of the theory, and u(k)
is a cutoff function

I
normalized to u(0) = 1]; the

equivalence of the model described by the Hamiltonian
(14) to the Lee model is anticipated by using the same
cutoff function.

The analysis of X—0 scattering proceeds as in Eqs.
(3)—(7) above, except that the T-matrix element
(1Vk'( —) I j(k) I

1V} is now given by

(1Vk'(—) I j(k) I1V)=(1VILa(k'), j(k)]I1V)
+(1VI j(k')LE& —H+ip] 'j(k) I1V}. (7')

The first term on the right-hand side, which is equal
to zero in the Lee model, is now given by

r, r.
1+(s—Ev)—

flu(v) I'
X d(u, , (17")

(~.—s) (~.—Ev)'

I

"
vl (v)l'

(~, Ev)—
(20)

Thus the 1V—0 scattering amplitude [Eq. (17")] in
the separable potential model with a bound state
(V particle) with energy Ev has the same structure as
in the Lee model with a stable V particle (with physical
mass m„=m+Ev); the residue of h(s) at the U-particle
pole is, however, an a priori arbitrary (except for the
restriction 0(I'(I',) parameter in the Lee model,
while in the separable potential model it is determined
by Eq. (20).

Also, the bound state wave function
I V~} in the

separable potential model is

(4~r,)*
I

k

I
V~)= — d'k

(2~) ~

()
o'(k) I 1V) (21)

(2~1)*Ev—
&A

(normalized to (V& I Vz) = 1) which is the limit of Eq.
(12) as Z —+0, g

—+ g,= (4~1',)'*. This reflects the fact
that in the separable potential model, the "U-particle"
state is a superposition of Ã—|t plane wave states, and
no independent bare U-particle state is required. "

It may also be noted that Eq. (17) can be obtained
as the limit of Eq. (9) as I'«' —& m and Ev«&~ m

in such a way that f= —I' «&/Ev «& remains fixed (and
negative). This limiting procedure also includes the
case in which the physical V particle is unstable, in
which case the wave function renormalization constant
is no longer a well-defined quantity.

It is interesting to examine the high-energy behavior
of the Ã—0 amplitude in the two theories. Write

& t
"flu(v) I' h ((o) =I'/((o Ev)D ((u), — —(22)

the denominator of h(s) will vanish for s=Ev(p given
by

& t "flu(v) I'
1+ dGoq =0)

7j' ~ p Go@ Ey
(19)

corresponding to a bound state of the E—0 system at
energy E&.

Then h(s) can be written as

flu(v) I'
h(s) = —(s—Ev)

m & „((u,—s) ((o,—Ev)

7W. Pauli and G. Kallen, Kgl. Danske Videnskab. Selskab.
Mat. -fys. Medd. 30, Xo. 7 (1955).

which serves to define D(~). It follows from Eqs. (9")
and (13) that D(or) —+ Z as ar ~ ~; thus h(or) ~ I'~ ~/u

for large co in the Lee model, while in the separable
potential model, h(co) ~ $ for large &o. This behavior is
rejected in the high-energy behavior of the Ã—0 scat-
tering phase shift 8(co) which is related to h(cu) by

e"~"& sin5(&u) = kl u(k) I'h(co). (23)

"This has been noted independently by Houard and Jouvet
(reference 5).

The difference 8(u) —8(~) is given in the Lee model
by

B(p)—8(~)=0 (stable V particle),

B(u) —8(~)= —
m (unstable V particle),
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)( Re D+)

E pa QJ

(26)lim J(ce)= ~,
r~r&

where D(co) has been defined in Eq. (22), and J(&v) is
the boundary value of an analytic function of the
complex variable co, regular in the co plane cut along
the real axis from co=2@—Ey to co= ~; its precise
form will not be given here, " but it has the following

property:

whence hp(o~), defined by Eq. (25), satisfies

lim hp(co) =h(co),r r, (27)

FIG. 1. (a) The real part of D(ca) defined by Eq. (22), for the
cases ZWO ( ) and Z=O (-——). (b) The 37—8 scattering
phase shift S(o&) shown for the case ZWO ( ) and Z=O
(——-)

and in the separable potential model by

8(u) B(~)=—vr (bound state),

8(ii)—8(~)=0 (no bound state).

The relation between the two models in the stable
V-particle case is illustrated in Fig. 1. These results,
which can also be derived from the generalized versions
of Levinson's theorem to be discussed in Sec. IV, show
that a knowledge of the E—0 scattering phase shift
8(or) and the presence or absence of a single-particle
bound state suKces to distinguish between the two
models.

It can also be verified that the equivalence of the Lee
model and the separable potential model in the limit
F ~ F. is valid in the other sectors as well. For example,
the V—8 scattering amplitude hp(o~) defined by

4ir u(k)u(k')
(Vk'( —) li(k) I V) = hp(~s ) (24)

(2' ) (4GOtMkI ) *

is given in the separable potential model by h„(&o)=h(oi),
with h(o~) given by Eq. (17), since in this model, the
scattering of a 0 particle by the fixed S particle is not
affected by the presence of an additional 0 particle in
a bound state; the process V+8 ~ 1V+8+8 is forbidden
in the absence of a direct 8—0 interaction. "

In the Lee model, on the other hand, hp(co) has the
form"

D(rs)
hp((o) = —h(co) (25)

1—D(o~)+I 1—J(o~)]/L1+J((u)]

"We are indebted to B. W. Lee for an illuminating discussion
of this point.

» R. Amado, Phys. Rev, 122, 696 (1961).

so that the Lee model approaches the separable poten-
tial model in the limit F~ I', .

There is an apparent paradox in this result, since the
V—8 scattering amplitude hp(or) has a pole at co=Ep,
the residue of which is I' according to Eq. (24) and —I'
according to Eq. (25) I J(Ep)=0]. The resolution of
the paradox is that the function hp(cu) of Eq. (25)
develops a second pole for co &p, as F increases from zero
(this pole corresponds to a dynamical bound state of
the V—8 system) and, as I' —& I',, the position of the
pole approaches Ey, and the residue at the pole
approaches 21'; thus Eq. (2'7) is consistent.

III. EXTENDED LEE MODEL AND
MESON PAIR THEORY

Consider now an extended Lee model in which the
8 particle has a (distinct) antiparticle 8; the interaction
between the 0 6eld and the source takes place through
the virtual processes V ~ 1V+8, 1V &-+ V+ 8. The
Hamiltonian of the model is

H=m&"P~tP~+mp'siPphPp

+ cesfat(k)

a(k)+At�(k)

b(k)]d'k+H;„, (28)

with

g&'&
[ t

sfsk

H;„= u(k)(gptgrra(k)+Prrtgpat(k)]
(2s-)' " (2ces) l

d'k
+ u(k)L4 "4 b(k)+4 V b'(k)] (2~)

(2tes) &

Here m "&& mp&'& are the (bare) masses of the 1V particle
and the U particle, respectively; at (k) and a(k)
I bt(k) and b(k)] are the creation and annihilation
operators for a 8 particle LH particle] of momentum k
and energy co&——(k'+p')l; g&"& is the (bare) coupling
constant of the theory, and u(k) is the cutoff function
Lnormalized to u(0) = 1].

The state vectors I1V) and
I V) associated with the

physical lV particle and physical V particle, respec-

2' The form of J(cu) has been given by Amado (reference 20}
for the case of ngv =re. Its forro for mv &re is easily derived,
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tively, satisfy
(m —a) IN)=0,

(mp —H) I
V&=0,

(30)

(3l)

where ns and nzz are the physical masses of S particle
and V particle, respectively (it is tacitly assumed in
the following that m(m~(m+ p); formal expressions
(not solutions) for the state vectors can be written
down, but since they are not required in the following
discussions, they will be omitted here.

The 1V—8 scattering states INk'(~) & associated with
an incident 8 particle of momentum k satisfy the
Schrodinger equation (3), as do the N —0 scattering
states INk(+) & associated with an incident 0 particle
of momentum k; formally"

are given as boundary values of t(s) according to

T((o)= lim t(cu+ig),
g-+0+

(43)

from p to ~, except for simple poles on the real axis
associated with the discrete eigenstates of H for which

&NIP 9 I
)~0 (NIP '~

I
&~0

Equations (36) and (37) imply that the functions
T(cv) T(&u) de6ned by

4' u(k)u(k')
&Nk'( —) I j(k)IN)=, , T(»), (4l)

(2m)' (4»» ) l

4m N(k)u(k')
(Nk'( —) Ij(k) IN&=, , T(») (42)

(2~)2 (4»»)l

INk(~)&=~'(k) IN&+(E2—~~in) 'j(k) IN&, (32)

INk(~)&=&'(k) IN&+(E~—~~in) 'i(k) IN), (33)

where j(k) is given by Eq. (5), and

i(k) = I:~,&'(k)l-~»'(k) = j'(k).
The S matrix for N —0 (N —0) scattering has elements

&Nk'( —) I1Vk(+))=5(k—k') —2niS(E2 —E2)
x&Nk'( —) I j(k)IN), (34)

&Nk'( —) INk(~)&=&(k —k') —2~i~(E..—E,)
x&Nk'( —) li(k) IN), (35)

(44)T(cu) = lim t(—co —ig).
g —+0+

The contribution to the summation in Eq. (40) from
the physical V'-particle state is

I &NIP&tf&I V) I' =—Z.
Define the renormalized coupling constant g=—Z:g&');
including the contribution to the summation from the
S—0 and E—8 scattering states yields

F 4'
"I ()I'

s Ev (2m)—'~

I
T((o,) I'

I T(co,) I' d'q
X +, (43)

CV s M2+s 2M2
and the T-matrix elements

with F=g'j4~, Ev=mv m. The contrib—utions from
the remaining states have been dropped (one-meson
approximation).

The standard solution for t(s) is"

&Nk'( —) I j(k) IN&, &Nk'( —) Ii(k) IN&

are given by

&Nk (—) I j(k) IN&
= &Nl jt( )(~„,+m —a+i~)-&j(k) IN&

—(Ni j(k)((u& —m+H) ~jt(k') IN&2 (36)

&Nk'( —) li(k) IN&
t(s) =

(s—E~) D(s)
+&1VI j(k') ((o&+m—H+ig) —'jt(k) IN& F 1—&1Vljt(k)(a)2 —m+H) j(k)I1V), (37) D(s) l+(s E ) qlg(q)l

Q)2 s G32 Ev
where use has been made of the relations

a(k') IN) = —(cog m+H)—'gt(k') I—N&, (38)

b(k') IN)= —(s)p —m+H)-'j(k') IN). (39)

Consider now the analytic function of the complex
variable s defined by

d(u, (47)
(~2+s) (~2+E')'

P ~00 1=c+— qln(q) I'
(~.—s) (~.—E~)

&NIP~'4~I~&&~II~'4~IN&
t(s) =r&o& Q—

m —E+s
&NI~~'4~I~&&~IP~V~IN&

m+E s—(40)
where

da„(47')
(~2+s)(~2+E~)

da&, . (48)
F f 1c=l—— ~ ql"(q

where I'"&=(g&'&)'/4~; the summation extends over a
COmplete Set Of eigenStateS Of H. t(S) iS regular in the 22+ C&sf/~]~&o R Daht~ &~Q F D'so~ phys R&v ]0( 433
s plane cut along the real axis from —~ to —p and (1956). D(s) is assumed to have no poles.
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It is necessary that C)0 in order that t(s) shall have
no ghost poles for complex s; thus, in the one-meson
approximation at least, there is a finite upper limit on
the magnitude of the renormalized coupling constant,
except for the special case Ey=O, which is excluded
here.

More generally, t(s) is given by Eq. (46), with

D(.)=1+(-E.)- '

ql (q)l"—
(~,—s) (~q —Ev)'

r(~.)+- dkq, (49)
(~.+s) (~q+Ev)'

«(~q)r"=c'+- ql (q)l'
I (,—s) (kq, —Ev)

where
(~q+s) (~.+Ev)

dkq„(49')

Here r(kq) I r(kd)] is the ratio of the total 1V—8 (1lt 8]—
cross section to the corresponding elastic cross section
at energy or. Again it is required that C &0, but it is
no longer clear that this implies a finite upper limit
for I', since the integral in Eq. (50) may vanish or be
negative. This possibility seems remote, however, and
it will be seen presently that for F —+F, dered by
C=O, C' —& 0 also. Note that ZQC' in general, but is
related to it by

r „" «(,)C'=1——
I qlu(q) I'—

(~q —Ev)'

r(~q)
Ckqq. (50)

(~,+Ev)'

tonian of the model is

II= kqI, I a~(k)a(k)+bt(k)b(k)]d'k+K~k,

t. u(k)u(k')
L~t(k) &(1 ') ybt(k) b(k')

(2~)' " (4kqj, kqI, )i

+kt&(k)b&(k')+a(k)b(k')]d'kd'k', (55)

t(s)=t 1+— I qlu(q)l'
J„

where (=X/4qr.
Now if

1 1
1+- ' qlu(q)l' +—

kqq tk kqq+tk

dkq, , (56)

dkq, (0, (57)

the denominator of t(s) will vanish for s=Ev(tk given
by

1+- qlu(q) I' + Ckqq= 0, (58)
kqq

—Ev kdq+ Ev

where X is the coupling constant of the theory.
Since the Hamiltonian is quadratic in the field

operators, the asymptotic creation and annihilation
operators can be constructed" as linear combinations
of the at(k), a(k), bt(k), b(k); consequently, only
elastic scattering processes are allowed. Thus when the
analysis of E—0 and E—8 scattering is carried out as
in Eqs. (32)—(45) [Eqs. (36) and (37) must be modified
by adding to the right-hand side commutator terms
(Ã

I
La(k'), j(k)] I Ã) and (N I

Lb(k'), j(k)] I
N, respec-

tively], the one-meson approximation to the function
t(s) defined by Eq. (40) will be exact.

Thus the exact solution for t(s) is given by

Z=C'&Xl L4~V v,4"4~]I&)

Finally, note that t(s) can be written as

corresponding to a bound state of the X—8 system at
51

energy Ev (tj,.
Then t (s) has the form of Eq. (46), with D(s) given by

t(s) =A
A

s nv+
~

qlu(—q)I' D(s) =—
ql u(q) I"

I (~.—s) (~.—Ev)

«(kd, ) r (kq,)
IX —+ i

Ckqq, (52)
kqq S kqq+S J

dkq, (59)
(~,+s) (kqq+Ev)

where A is given by F=C'A, and (s—Ev)—' qlu(q) I

r(kq, ) r(kq, )+ dkq, . (53)
G)q

—EvMq+Ev'
A

qtv Ev+ q I u(q) I'—— — 1 1
X +- dkqq, (59')

I(-,—)(-,-E.) (-,+ )(-,+E.)
The relativistic meson pair theory to be considered

here describes the interaction of a (complex) scalar
boson 0 of mass tk with a 6xed source (denoted by Ã)
through a generalized separable potential; the Hamil-

23 B. W. McCormick and A. Klein, Phys. Rev. 98, 1428 (1955),
have constructed the solution for the neutral pair theory of
Wentzel (reference 4); extension to the charged pair theory is
trivial.
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where

1
q t u(q) i' — drp, = 1. (60)

(cp,—Er )' (pp, +Er )s

Thus the extended Lee model becomes a pair theory
in the limit C —+ 0 in Eq. (48), or Z —+ 0 in Eq. (51);
this is the strong-coupling limit. It is also clear that
the V-particle wave function renormalization constant
ZI vanishes in this limit, since the state vector for the
V-particle bound state can be constructed from the
E—0 plane wave states; as before, the distinction
between the two models can be made from a knowledge
of the Ã—8 scattering phase shift, as a function of
energy.

It may also be noted that if Eq. (58) is satisfied, the
denominator of t(s) will vanish for s= Er,' th—is cor-
responds to a bound state of the X—8 system at energy
E~. This bound state is present also in the extended
Lee model: as F is increased from zero, there will appear
a zero in D(s) LEq. (47)] which moves from —li to
—Ey as F is increased to F,.

(0)

A V r

IV. LEVINSON'S THEOREM

Levinson's theorem for potential scattering' is most
simply demonstrated by writing the partial wave
plitude

Tr, (E)= [e'PztE' sinai, (E)]/q

for scattering in the state of angular momentum I.
and energy E=q'/2m in the form"

T.(E)=&~(E)/D~(E), (62)

Consider now the integral

1 t Dr.'(E) 1 t" d
dE=— —(1nDr, (E+iri)

2z-i ~ o Dr, (E) 2mt' & p d. E
—lnDz (E i r)) )dE, —where D&(E) is the boundary value (as E approaches

the real axis from the upper half-plane) of an analytic
function of the complex variable E, regular in the E
plane, cut along the real axis from 0 to ~, and satis-
fying Dr, (E) —+ 1 as E &oo. Also, —

(66)

where the contour C is illustrated in Fig. 2(a). The
value of this integral is equal to the number of zeroes
of D(E) enclosed by the contour C (D(E) has no poles
within the contour]; this is just equal to the number rir,

of bound states of angular momentum I.; using Eq.
(65) to evaluate the right-hand side of Eq. (66) then
yields the relation

A'r, (E)= lim )Dr, (E+irf) Dr, (E i')] (63—)—
2iq ~

Fio. 2. (a) The contour C of Eq. (66). The circles denote zeros
of D(E). (h) The contour C' of Eq. (73). The circles denote zeros

(61) of D(E); the crosses denote the poles of D(E).

is real for 0 &~E(~ . Consequently, DI, (E) has the
phase —6z, (E) for 0 & E& oo, and the S-matrix element
Sz, (E)—= 1+2iqTI, (E) is given by

D.*(E) . D.(E—s~)
Sz(E)= e"'zf~& = =lim, (64)

Dr, (E) p-o DI.(E+t',rf)

and the phase shift hl, (E) is given by

1
5r, (E)=—lnSr, (E)

2i

1=—lim LlnDz(E —sri) —1nDr, (E+irl)]. (65)
2i n~o+

'4 See, for example, R. Blankenbecler, M. Goldberger, N. Khuri,
and S. Treiman, Ann. Phys. 10, 62 (1960).

br, (0)—br, ( ) =e,~, (67)

which is Levinson's theorem. '
For the purpose of the subsequent discussion, it is

useful to note that for the case of potential scattering,
the Fredholm determinant, defined formally by

D(E)=—det
E—H

E—Hp
(68)

can be expanded according to

D(E)=II (2L+1)D (E) (69)

While the infinite product (69) diverges, the Dr, (E)
are well-defined'4 (for a central potential), and in fact
can be identified with the Dz, (E) defined in Eq. (62),
as has been noted previously by many authors. "
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In the Lee model, or its generalization in which there
are several distinct bare V particles, the X—8 scattering
amplitude T(E), which is related to the phase shift
S(E) by Eq. (61), with E=m+ (q'+p'):, can be written
in the form

T(E)=N(E)/D(E), (70)

where D(E) can be chosen as the boundary value of an
analytic function of the complex variable E, regular in
the E plane cut along the positive real axis from m+p
to oo (except for simple poles at the points s=mi(P),
- -, m„('), where m~(", , m„&" are the masses of
the bare V particles), and satisfying D(E) —+ 1 as
E—+ ~. Also,

N(E) = lim [D(E+irl) D(E —irl)]-
2iq ~

(71)

is real for m+ p ~&E& ~, and regular (except for
simple poles at s= mi "& m„"&) in a neighborhood
of the interval m+ p ~& E& ~ .

An explicit representation of D(E) is

" ( 1' "' » r" elm(v)l'
D(E)=1-~

Is=i (ms(P) E) pr ~ +„E—,—E

where N(q) is the cutoff function of the model [u(0) = 1],
and Fs(') = (gs(")'/4z. where gs(') is the (bare) Vs—N8
coupling constant. D(E), as defined in this manner,
can be identified with the Fredholm determinant [Eq.
(68)] for the N 8sector of —the model.

Consider now the integral

1
t

D'(E) t D'(E)
dE+g dE

2z.i "c D(E) ~ ~ o,. D(E)

more complex systems is elucidated by examining a
generalization of the I.ee modeP' in which the distinct
0 fieMs 8~, . , 0„ interact with a fixed source, whose
internal states are E; V~, , Vnp, through the virtual
processes V;~ N+8 . The S matrix for the process
N+8 ~ N+8)& is related to a certain analytic function
iIs (E) defined in the same way as the function Is(o))
of Eq. (8); the tp (E) are related to the functions

Dp (E) defined by

fg'-"'g'p"' '( (
D(-(E)=4-+El

& &E—m, «))~

el ~p(~.p) I'
(75)X

& m+~p Eqp —E

[where m, ('& is the (bare) mass of V;, g; ('& is the (bare)
V;N8 coupling constant, N)s(o),~) is the cutoff function
associated with the 8)s field, E,)r ——m+o), )s] according to"

~p-(E) = L1/D(E)] Ev &pm(E)dv-(E), (76)

. (p) . (p)

4&r 3 (m, ")—E~
(77)

D(E) as defined here can again be identified with the
Fredholm determinant [Eq. (68)] for the N —8 sector
of the model.

The S matrix S(E) can be written as

where D(E) —=detllD)& (E)ll is regular in the complex
E plane cut along the positive real axis from m+y to

(lan=min(p, ,)) except for simple poles at s=m;(p)

(j =1, , rip), d~ (E) is the cofactor of D ~(E) in

D(E), and

S(E)= D*(E)D—'(E) (78)

8(m+p) —8(~)= (rs—sip)7r. (74)

This result has been known previously, ' ' and is valid
rigorously for any single-channel theory in which the
relationship between the Fredholm determinant [Eq.
(68)] and the S-matrix element S(E) is given by Eq.
(64).

The possibility of generalizing I evinson's theorem to

(lnD(E+i&l) —lnD(E —ir&))dE, (73)
2~i &,„dE

where the contour C' is illustrated in Fig. 2(b), and
the C; are contours enclosing the poles of D(E) on the
real axis for m+p &~E& oo. The left-hand side of Eq.
(73) is given by rs —rsp, where rs is the number of zeroes
of D(E) (which all lie within the contour C') and sip

is the number of poles of D(E) (which lie within either
C' or one of the C,); by virtue of Eq. (68), ss is the
number of discrete eigenstates of H (stable V particles),
and np is the number of discrete eigenstates of Hp (bare
V particles); using Eqs. (64) and (65) to evaluate the
right-hand side of Eq. (73) then leads to the relation

Then also

D(E—ii))
detS(E) = lim.-o' D(E+iq)

(79)

P o~(E)= lim [lnD(E+i—r&)
—lnD(E —i')], (80)

v 2i n~o+

where the contours C' and C; have been defined pre-

2' F. J. Dyson, Phys. Rev. 106, 157 (1957).
ss The reader will recognize this as the generalized X/D solution

of J. Bjorken, Phys. Rev. I etters 4, 473 (1960).

where the S~(E) are the eigenphase shifts. Evaluation
of the integral

D'(r) D'(~)
dk+Z d$

2iri ~ o D(() ~ ~ c,. D(g)

1 f d
(lnD(E+i&l) lnD(E irl))dE—, (81)—

2~i & „+„dE
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viously, then leads to the relation"

where e is the number of stable V-particle states and
eo is the number of bare V particles.

Furthermore, D(E) can be written as

(83)

where the d~(E) are the eigenvalues of D(E). It seems
plausible that the d~(E) can be ordered so that d~(E)
is regular in the 8 plane cut along the real axis from

m+p~ to 0o, except perhaps for simple poles at s= m, &s'

(j=1, , e' '). However, the pole at s=re, "& will

occur in one and only one of the d~(E) (and generally
in the one whose threshold lies lowest). The eigenphase
shift 3~(E) is given by

1
3,(E)=—lim Lind, (E+ir)) —lnd, (E—st))]. (84)

2i n~o+

Carrying out the usual contour integral yields

3,(m+„,)—3,( ) = (e,—no,), (85)

where n~ is the number of stable V particles associated
with the V channel and so~ is the number of bare V
particles associated with the y channel; in this model,
it is possible to have e~&so~.

In a fully relativistic 6eld theory, the Fredholm
determinant Eq. (68) does not exist, nor do the partial
wave determinants defined by Eq. (69) exist. It may
nonetheless be possible to factor the Dr, (E) according to

D (E)=II .d .(E), (86)

in such a, way that dr, ,(E) are well-defined, and possess
the expected analyticity properties: regularity in the
E plane with a cut from E,(" to ~, except for simple
poles associated with the bare particles coupled to the

y channel. Then the eigenphase shifts Szv(E) should
be related to the dr, ~(E) by Eq. (84), and the relation
Eq. (85) provides a distinction (in principle) between
elementary and composite particle.

V. DISCUSSION AND CONCLUSIONS

The purpose of this work has been to make it plausible
(1) that a meaningful distinction between elementary
and composite particles exists, even within the frame-
work of an S-matrix theory, and (2) that a theory with
a composite particle can be obtained as the limiting
case of a theory with an elementary particle in which
the wave-function renormalization constant of the
particle tends to zero. While many of the results of
this work have been discovered or conjectured pre-

27 A similar relation has been conjectured by Kazes (reference
10);his proof by operator methods, however, requires the assump-
tion of uniform convergence of certain integrals whose uniform
convergences is precisely the point in question. See also reference 8.

viously, the present work serves to generalize these
results, and emphasize their relevance to (1) and (2).

The distinction between elementary and composite
particle is based on an extension of Levinson's theorem
to field theory which is suggested by the discussion of
Sec. IV. A rigorous proof for the relativistic case cannot
be given on the basis of present knowledge; however,
the validity of the theorem for the eigenphase shifts
seems very plausible, since it depends only on the exist-
ence of suitable analytic functions d~(E) from which the
eigenphase shifts can be obtained by Eq. (84). It seems
reasonable to hope that such functions d~(E) with the
desired analyticity properties exist"; perhaps it may
even be true that the 5 matrix in field theory can be
diagonalized by a simple transformation, and the d~(E)
may be determined from the requirements of analy-
ticity, unitarity, and crossing symmetry. "

The conjectured extension of Levinson's theorem to
the eigenphase shifts may prove a useful guide to
understanding of certain problems in strong interaction
physics. For example, if the 3—3 resonance in pion-
nuclear scattering is a dynamical consequence of a
fundamental interaction between pions and nucleons,
the 3—3 eigenphase shift must approach zero at high
energies. Is the apparent structure of the T= —,

' pion-
nucleon cross section above 1 Sev related to a decrease
of this phase shift through 90'? Are the A, 5, Y*,YO*

elementary particles, or the dynamical consequences of
certain more fundamental interactions, " and what are
the implications of the answers to these questions for
the low-energy behavior of the coupled Az —Zw —XE
system? Is the p-wave resonance in pion-pion scattering"
the dynamical consequence of fundamental interactions
between the presently known elementary particles, "
or the kinematical consequence of the existence of an
elementary unstable vector boson?" These and similar
questions have been asked before; the discussion of the
present paper suggests strongly that there may be
experimentally meaningful answers to them. '4

' As was kindly pointed out to the authors by B. W. Lee, the
analytic properties of the eigenvalues of the S matrix were dis-
cussed for a nonrelativistic problem with two coupled channels
by Ning Hu, Phys. Rev. 74, 131 (1948).A more recent treatment
of the nonrelativistic multichannel S matrix, which unfortunately
omits a discussion of the eigenamplitudes, is found in R. Newton,
J. Math. Phys. 2, 188 (1961).

'9 The spirit of this approach is exempli6ed in a recent review
by G. F. Chew, Lawrence Radiation Laboratory Report UCRI-
9289 (unpublished). The present authors would like to suggest
that a study of the eigenamplitudes S;(E) will be fruitful.

"Such as those suggested by J. Sakurai, Ann. Phys. 11, 1
(1960)."J.Anderson et al , Phys. Rev. Lett.ers 6, 365 (1961); W. D.
Walker et a/. , Bull. Am. Phys. Soc. 6, 311 (1961)."G. F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960);
see also J. Belinfante, Princeton University thesis, 1961; and
Phys. Rev. 123, 306 (1961).

"J.Sakurai, reference 30; B.W. Lee and M. T. Vaughn, Phys.
Rev. Letters 4, 578 (1960).

'4 It has also been suggested by Chew (reference 29); however,
it is not sufhcient merely to look for zeroes of the T matrix since
one of the zeroes associated with the coupling to an elementary
particle may, and in general does, occur at in6nite energy.
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Finally, the equivalence of a theory with a composite
particle to the limiting case of a theory in which the
composite particle is treated as elementary can be used
to remove one of the difficulties encountered in the
attempt to apply dispersion relation methods to rear-
rangement collisions. "

Pote added ie proof Ch. ew LLawrence Radiation
Laboratory Report (UCRL-9701)] has recently sug-
gested that the requirements of analyticity and
unitarity, together with the new postulate of maximal
coupling for the strong interactions, may suKce to
determine the masses and coupling constants of all the
strongly interacting particles, and that, in this sense,
none of these particles should be regarded as elemen-
tary. The discussion of this paper shows that the Lee
model and its generalizations (which are prototypes
of relativistic partial-wave dispersion relations) provide
concrete examples in which the postulate of maximal
coupling consistent with unitarity has an explicit
meaning, and leads to observable consequences, e.g.,
in the Lee model, the V particle is not elementary.

We also note that even if some of the strongly
interacting particles are not elementary, it is per-
missible to regard them as such in treating weak and
electromagnetic interactions by standard field theory,
since the discussion given here indicates that a com-
posite particle is equivalent to an elementary particle
with vanishing wave function renormalization constant.

APPENDIX

Scattering and reaction processes involving bound
states have been studied extensively using the tech-
niques of formal scattering theory. "There are, however,
a number of shortcomings in this approach; for example,
no convergent iteration procedure seems to exist."
Also, there are difhculties connected with the symmetry
between particles in projectile and target, which can
be overcome for computational purposes by devices
such as the distorted wave approximation, "but which
remain as an obstacle to the formal understanding of
the theory.

Similar problems have been met and partially solved
in elementary-particle physics by the use of dispersion
relation methods, but application of these techniques
to nonrelativistic problems' is hindered by certain
unpleasant facts. For example, in the study of deuteron
stripping reactions by these methods, one is led to
consider a matrix element of the form (vac

~
Jq~ ttp(1 )),

where Jd is the current operator associated with the
deuteron field, and ~ttp(+)) is a neutron-proton scat-
tering state. However, if the deuteron is regarded as
the bound state of a neutron and a proton interacting
through a nonrelativistic potential, this matrix element

35 See, for example, a recent review by S. Sunakawa, Progr.
Theoret. Phys. (Kyoto) 24, 980 (1960).

'6 R. Aaron, R. Amado, and B.Lee, Phys. Rev, 121, 319 (1961).
~' $t;e, for example, reference 35,

vanishes identically. ""On the other hand, it does not
vanish if the deuteron is treated as an elementary
particle coupled to the neutron and proton by a Yukawa-
type interaction, even in the limit when the wave
function renormalization constant of the deuteron
vanishes. This suggests that a suitable method for
handling this problem, and in fact a large class of
problems involving bound states (e.g. , rearrangement
collisions), is to treat the bound state as an elementary
particle, perform the calculations of interest, and take
the limit of vanishing wave function renormalization at
the end of the calculation. The method is elucidated
here by an example, but the application of the method
to problems of physical interest is reserved for a sub-
sequent publication.

Consider the models I and II of a scalar boson 0
interacting with a fixed source S; the models are
defined by the Hamiltonians

H(I) =Hs+ V, (Ai)

H(II)=Hn+V, (A2)

where Hq is the Hamiltonian of the separable potential
model )Eq. (14)]and Hn is the Lee-model Hamiltonian
fEq. (1)); V is a direct E—8 interaction of the form

U=
1 t. V(k', k)

at(k')tt(k)d'kd'k',
(2s.)' ~ (4(ustos ) l

(A3)

where V(k', k) = V(k, k') is a scalar function of k, k'.
Now let4'

Hi ——)~tot at(k)a(k)d'k+ V,

and let ~Xk(&))i be the scattering eigenstates of Hi
t

with outgoing (+) or incoming (—) wave boundary
conditions] associated with an incident 0 particle of
momentum k; these states satisfy

~Ãk(w))i ——at(k) ~E)+ ji(k) ~$), (A5)
EI,—Hg&ie

"P.Redmond and J. Uretsky, Ann. Phys. 9, 106 (1960). The
creation operator for the deuteron has the form

4'd(X, t) fqbd(9)P=(X+ 9, t)P„(X— —9, t)d~p, —

where P t, P„~ are neutron and proton creation operators, and
@d(p) is the internal wave function of the deuteron. The deuteron
current operator Jq~(X, t) defined by

Jdt(X, t)=piB/8t+ ,'v»' Edg+g (X,t)-—
consists of a sum of terms, each of which has at its right a ltt„
or a ltd„; since there are no antinucleons in the theory, these
operators annihilate the vacuum, and thus the matrix element
(eP(+) ~

Jqt~vac)=0. It is of course possible that this matrix
element vanishes in a relativistic theory, but the present argument
does not suffice to show it.

s9 Of course the matrix element (rt
~ j„~d), where j„is the proton

current, does not vanish; this matrix element can in fact be used
to define the wave function. See R. Blankenbecler and L. F. Cook,
Jr., Phys. Rev. 119, 1745 (1960).

The procedure followed here is essentially that of S. D, Drell
and F. Zachariasen, Phys. Rev. 105, 1407 (1957).
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where ji(k) —= [H,ut(k)) —&dzat(k). Also, the creation
and annihilation operators b'+&t(k), bz+&(k) defined by

b~+»(k)
I N) =

I Nk(~)), ; bi+&(k)
I
N) =0 (A6)

satisfy the usual commutation rules (it is tacitly
assumed here and below that H~ has no discrete eigen-
states). The configuration space wave function P &+& (k,x)
associated with the scattering state

I
Nk(+)) i is defined

by
(A7)P&+&(k,x)= [g(x),b&+'(k)),

where

y(x) = (2zr)-l [a(k)e'"'+at(k)e "*)
)& (2&hz, ) '*d'k (AS)

is the 0-particle field operator.
H(I) and H(II) can now be written as

H(I) = (o&.b' &t(k)b&—&(k)d'k

+ cuz, bz—»(k)b' —&(k)d'k

with

g
(o)+, [p(k)frV~b' '(k)

(2zr)i &

d'k
+p*(k)PrPzi tb z

—
& t(k)), (A10)

(2~&)'

p(k)=— ~u(q)e " "Pz &(k,x)d'xd'q, (A11)
(2~)-: ~

where N(zt) is the cutoff function associated with the
Hamiltonian (A1) or (A2); if u(q) is spherically sym-
metric, p(k) is also spherically symmetric, and that is
supposed to be the case here.

The scattering states
I Nk(+))x of H(X) (X=I, II)

can be written as"

INk(~))x=b + (k) IN)
+[Ez, H(X) Hie) 'j x'+&—(k) I N), (A12)

where
jx&+&(k) —= [H(X),b'+&(k)) —(uzb&+&(k),

and the 5-matrix elements for X—0 scattering can be
written as

(Nk'( —) I Nk(+))» ——i(Nk'( —) I
Nk(+)),

—2~i'%~ —&~)(Nk'( —) I
jx'+'(k) IN). (A13)

t p*(k')p(k)
b& &t(k')b& '(k)d'k, (A9)

(2zr)' & (4a)z(uz, . ) -:

H(II) =mP~tPv+mr"&Prtfv

Now

(Nk'( —) I
jx'+'(k) IN)

~(Nk'( —) I
jx& '(k")

I
N)Sz(k",k)d'k", (A14)

where kx(a») is the boundary value of an analytic
function hx(s) of the complex variable s with the now
familiar analyticity properties; the functions kz(s) and
hzz(s) are given by Eq. (17) and Eq. (9), respectively,
with N(k) replaced by p(k). The discussion of Sec. II
shows that hzz(s) ~ kz(s) is the limit of vanishing
V-particle wave function renormalization constant;
hence also

(Nk'( —) I Nk(+))zz ~ (Nk'( —) I
N'k(+))z (A16)

in the same limit [the integrand of Eq. (A14) contains
a b function of the energy, so h(s) need not converge
uniformly in s).

Now suppose a scalar boson interacts with a fixed
source through a local potential V(r); let U(k —k') be
the Fourier transform of the potential. Suppose there
exists one s-wave bound state with energy E&, and
momentum space wave function p(k). Let VB(k',k) be
the separable potential which has a bound state with
the same energy and wave function; Eq. (21) shows
that this can be arranged by taking the cutoff function
associated with the separable potential to be

N(k) =N(a)i —Ezz) q (k), (A17)

where Ã is a normalization constant.
The corresponding models I and II have Hamiltonians

H(I) and H(II) given by Eqs. (A1)—(A3), with

V(k', k) = V(k—k') —Vs(k', k). (A18)

The preceding discussion justifies the replacement of
H(I) by H(II) for calculational purposes, provided the
limit of vanishing wave function renormalization is
taken at the end of the calculation. Note that the inter-
mediate Hamiltonian, Eq. (A4), of this model has no
discrete eigenstates, since that would imply the existence
of a pole in the 5 matrix associated with H~', however,
the bound-state pole is known to be contained in the
function k(s).

The results of this Appendix can easily be generalized
to include bound states in other partial waves, theories
with spin, etc.

where Sz(k",k) i—= z(Nk'( —) I Nk(+) )i, applying the
methods of Sec. II shows that

(Nk'( —) I
jx' '(k") IN)

4zr p*(k') p(k")
-kx(co„), (A15)

(2zr) (4Mz;iurzii) '


