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APPENDIX H

In this appendix, a covariant version of the kine-
matics of Sec. VI is presented and compared with the
kinematics introduced in Appendix A.

It is rather obvious that the new set of variables is
represented by the following five quantities.

8'= —(k'+ k) (p'+ k")

rt'= (p' —k") (k+k')/(p'+k") . (k+k'),
xi' ———p' (k —k'),

xs' ———k". (k—k'),

where 8' is the dispersion variable, and g', x1', x2', and
z' are the Gxed variables.

These quantities are related to the former ones by
E'= ,'(3+v—t)8+x+xi,

', (3—+—rt)E+(3xi—x)+28
——,

' (3+rt)E+ (3x—x,)—2n

xi' ———,
' (1—tf) A+-', (xi—x),

X2 =$2~@2 )
2

tt =s( ps pi tjo+2xs+&),

where x=n+xi+xs. It is seen that the two sets of
variables are inequivalent.
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In the (2~,2y) problem, the Mandelstam representation is written for the two independent gauge-
invariant amplitudes. On the basis of unitarity limitations on the asymptotic behavior of these amplitudes,
only a j=1 subtraction in the p+~ —+ p+vr channel and a j=0 subtraction in the p+y —+ x+w channel
are allowed. No over-all subtraction constants are required and the Thomson limit is automatically
maintained. Only the effect of 2'- intermediate states is considered. The odd- j 2I2I- contribution involves the
amplitude for the process y+m ~ 2m analyzed by Wong and shown to be proportional to a pseudo-
elementary constant A. Even with a 2f-~ E resonance, the correction is negligible (&1%) if we use the value
of A estimated by Wong on the basis of 2f- decay and con6rmed by Ball in connection with photopion pro-
duction on nucleons. A moderately important contribution comes from the S-wave interaction if we use a
recent estimate of ~m- S-wave phase shifts obtained from crossing relations. For the pion-pion coupling
constant li of order —0.20, this effect is ~10% in y+n —+ y+v scattering. For y+v —+ ~+x, the correction
for the 1=0 state at threshold is positive and ~100% of the Born approximation. However, as the energy
is increased, the correction quickly changes sign.

I. INTRODUCTION

' 'N the (2w, 2y) problem, both strong and electro-
' - magnetic interactions are involved. In principle,
one can calculate electromagnetic interactions on the
basis of perturbation theory. Our purpose here is to
understand the effects of strong pion interactions on the
(2w, 2y) vertex. '

Attempts have been made in recent years to under-
stand strong pion interactions at low energies by using
the Mandelstam representation. ' ' In particular, a
P-wave pion-pion resonance has been conjectured in

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

~ A preliminary account of this work was given at the 1960
Winter meeting of the American Physical Society, December
29—31, 1960 t'Bipin R. Desai, Bull. Am. Phys. Soc. S, 509 (1960)].
We employ units A= c=p, = 1, where p is the pion mass. For the
charge e we use the units e 1/137. The metric is defined so that
we have g =1 and g"= —1, wherei =1, 2, 3.

2 S. Mandelstam, Phys. Rev. 112, 1344 (1959); 115, 1741 and
1752 (1959).

& Q. F. Chew and S. Mandelstam, Phys. Rev. 119,467 (1960).

connection with the nucleon electromagnetic structure. 4

If such a resonance exists, one might expect its effects
to be appreciable in Compton scattering on pions (e.g. ,
p+ w —+ &+sr). One may recall in this connection
Compton scattering on protons (e.g. , y+p —&y+p),
where the 3-3 resonance causes a large increase in the
cross section above the value given by the Klein-
Nishina-type formula. ' Pion-pion forces may also be
manifested in the final-state interactions of pion pairs
produced by photons (e.g. , p+p —& sr+sr). Such final-
state interactions, if they are substantial, may be
observed experimentally by producing a pion pair from
a high-energy photon in the Coulomb Geld of a nucleus.

Further, an understanding of the (2w, 2y) vertex is a
prerequisite for a theory of nucleon-photon scattering
and, in fact, for most problems where a vertex con-

4W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365
(1959);Phys. Rev. 117, 1603 ('1960).

~ G. F. Chew, 1058' Annua/ International Conference on High-
Energy Physics at CER1V (CERN Scientific Information Service,
Geneva, 1958).
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necting strongly interacting particles with two photons
is involved. For example, in the calculation of the
electromagnetic mass of charged pions, one needs the
pion Compton scattering amplitude for virtual photons.
The information obtained here may, therefore, be
helpful in understanding the mass difference between
charged and neutral pions.

We shall investigate the (2a, 2y) problem within the
framework of double-dispersion relations proposed by
Mandelstam. ' We do not think it pertinent to go into
the principles and conjectures underlying the
Mandelstam representation, since we have nothing
new to contribute to these general questions, which
have been the subject of so many papers. Following the
eRective-range approximation given by Chew and
Mandelstam we assume the behavior of the amplitudes
to be dominated by nearby singularities. ' Moreover,
the contribution of intermediate states containing one
or more photons will be neglected since, even though
they correspond to near singularities, powers higher
than e' are involved.

In the next section, we shall go into the kinematics
of the problem and show that because of I.orentz and
gauge invariance only two invariant amplitudes are
involved. The Mandelstam representation for these
amplitudes is then written in Sec. III, and the question
of subtractions discussed. In Sec. IV, the helicity ampli-
tudes of Jacob and Wick are introduced. s In Sec. V, we
consider Compton scattering, y+a. ~ y+x, and discuss
the eRect of the xw interactions. In Sec. VI, pion-pair
production, y+y ~ ir+x, is considered and the effect
of Anal-state xw S-wave interactions discussed.

One of our main results is negative and very sur-
prising, in view of the large enhancement of nucleon
Compton scattering by the 33 resonance. ' We 6nd that
the effect of the 2m P' resonance on pion Compton
scattering is negligibly small. The important matrix
element here is that for y+ir —+w+ir and has been
estimated by Wong on the basis of the x' lifetime,
where this amplitude also plays a role. 7 Wong's esti-
mate, confirmed in order of magnitude by Ball in
connection with photoproduction of pions from
nucleons, s is smaller by about a factor of 10 than one
might naively guess. Since this matrix element appears
squared in the Compton amplitude, the 2m resonance
turns out to make a contribution only of the order of
1'Po. In Sec. V, we shall discuss the probable reason
for the smallness of Wong's amplitude. We do not here
consider a 3x bound state or resonance, which may
play a large role in pion Compton scattering.

In the y+p —+ir+ir channel only even angular-
momentum states are involved because of charge-
conjugation invariance. By a reasonable choice of mm

' M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).
r How-sen Wong, Phys. Rev. Letters 5, 70 (1960) and Phys.

Rev. 121, 289 (1961).
James S. Ball, University of California Radiation Laboratory

Report UCRL-9172, 1.960 (unpublished); Phys. Rev. Letters 5,
7S (~960).

Fio. 1. The (27r, 2y) vertex.

&, e,

S-phase shifts, we And in Sec. IV that the contribution
of the Anal-state interaction is large. For the I=0 state,
where the interaction is strongest, the contribution at
low energies is found to be positive corresponding to
attraction and is of the order of 100/o of the Born
amplitude at threshold. As the energy is increased,
however, it quickly changes sign. Such a circumstance
corresponds to the fact that the pions are produced
with a large relative separation ( one pion Compton
wavelength) and have, therefore, a fairly small proba-
bility of interacting with each other.

s= (ki+ pi)'= (ks+ ps)',

s= (ki+ps)'= (ks+ pi)',

&= (ki+ks)'= (pi+ps)'.

From energy-momentum conservation, we have

s+s+t= 2

(2.1a)

(2.1b)

(2.1c)

Notice that s, 8, and t are the squares of the energies of
the following three reactions in the barycentric system:

ki+Pi~ —k2 Psy (y+~~ y+m) (2.2a)

ki+Ps ~ —ks —Pi, (y+ir ~ y+ir) (2.2b)

ki+ks ~ —pi —ps, (y+y —+ ir+ir). (2.2c)

The S matrix is dered as

fg fj s(2x)'$1 6'�(ki)a&(pi) ( s) (ps)]
X&(ki+pi+ ks+ ps) Tr, ,

where f and i indicate final and initial states, respec-
tively, and the co's indicate the energies of the different
particles. For the given charge indices n and P we have

II. KINEMATICS AND INVARIANCE
CONSIDERATIONS

Figure 1 describes the (2x,2y) vertex under con-
sideration, where the wavy lines indicate photons and
solid lines indicate pions. For the sake of symmetry,
we shall take all the lines as incoming. Let pi, ps be the
four-momenta of the pions and n, P the corresponding
charge indices, while k~, k2 are the four-momenta of
the photons and e~, e2 the corresponding polarization
vectors. We then define the three I.orentz invariants
s, 8, and t as follows:
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III. MANDELSTAM REPRESENTATION

The Mandelstam representation for A and 8 can be
written for charged pions as

A (s,8,t) = (4rre'/1 —s)+ (4rre'/1 —8)

1 t" t." nr(s', t') t' 1 1

~4 t t (s —s s ——8)

po0 goo

+—
I ds d8

J4

n, (s', s')

for the T matrix

T e= (8-e 8—38e3)T'+8-343T"

where T' and T" denote the T matrices corresponding
to charged and neutral pions, respectively. Henceforth
we shall suppress the charged and neutral indices. We
shall concentrate our attention mainly on the charged
case and only comment on any alterations needed in
the neutral case.

We may further write

T= e2II, T&"eyt,

where TI"" is a tensor of second rank which can be
expressed in the most general form as

T""=A kii'k 2 "+ BD "k2"+Ck2 "k2"+Dki4k i "+E64ki"

+Pk ~k "+Gk ~A"+HARA"+1k ~h"+Jg~"

where A=pi —p2, and g&" is the conventional metric
tensor. ' The amplitudes A J are functions of the
invariants s, 8, and t. Gauge invariance requires that
(a) k2„T""=0 and (b) T""ki„—0. With—the above con-
ditions and the requirement of zero photon mass,
k~'=0= k2' we obtain

T(s,s,t)=(e2'klei'k2 k2'kle2'ei)A(s 8t)
+ (—ei e2k2 &+ (k2 k,/k2 &)e2.&et &

+e2 Ae, k2 e2 kiei tt—,)B(s,8,t) (2.3).
Crossing symmetry requires

A (s,8,t) =A (8 s, t), and B(s,8,t) = B(8 s,t). (—2.4)

The foregoing results have been obtained independently

by Gourdin and Martin. '

Here ar, n2, pi, and p~ are the double spectral functions.
Notice that the crossing condition (2.4) is explicitly
contained in Eqs. (3.1) and (3.2) for rr2(s, 8)=rr&(8,s)
and P2(s, 8)= —P2(8,s). The poles at s=1 and 8=1
correspond to single-pion intermediate states in re-
actions (2.2a) and (2.2b), respectively. The lower
limits on the above integrals correspond to the fact
that the least massive intermediate states in the three
channels given in reactions (2.2a)—(2.2c) are the two-

pion states. For neutral pions, the only difference is
that the poles are absent. Subtractions are perhaps
necessary in the above dispersions relations and we

shall discuss them later on.
The region in which the double spectral functions

nr, n2, Pi, and P2 are nonzero are given as follows: For
both n&(s, t) and pi(s, t) the region is defined by the
curves

t= 4(2s+1)'/s(s —4)

t=4(s—1)/s —9.

For n2(s, 8) and Pr(s, 8), the curves are

(s—4) (8—16)—81=0
and

(s—16)(8—4)—81=0.

(3.3a)

(3.3b)

(3.4a)

(3.4b)

Notice that there are no anomalous thresholds involved.

By a proper choice of amplitudes, the pole terms
correspond in the y+rr ~ y+m channel to the Thomson
amplitude, which A and 8 should approach in the
zero-energy limit. Hence on the basis of zero-energy-
limit theorems, subtractions are unnecessary. We thus
differ from the observations of Gourdin and Martin, '
who use a different set of amplitudes and are uncertain,
therefore, about the number of possible subtractions.
We may go farther and discuss possible subtractions
on the basis of unitarity limitations on the asymptotic
behavior of the A and 8 amplitudes. Such an analysis
was erst carried out by Froissart in the case of scalar
particles" and was applied by Singh and Udgaonkar to
the pion-nucleon problem. "We give below the results
for the A and 8 amplitudes which are derived in Secs.
V.B and VI.B.

For the 7+m -+ 7+rr channel as s approaches
ininity, we have

]A ) &s, )B[&constant

B(s,8,t) = (4rre'/1 —s) —(4n-e'/1 —8)

Pi(s', t') ( 1 1

~4 t t (s s s 8)

for fixed t (i.e., for cos0=1),

/A /
&s, /B) &s

for fixed 8 (i.e., for cos8= —1), and

(3.5b)

1 p" t." P2(s', 8')
+— ds' d8' . (3.2)

(s' —s) (8'—8)

4 M. Gourdin and A. Martin, Nuovo cimento 17, 224 (1960).
The Cini-Fubini approximate version of the Mandelstam repre-
sentation has been used by these authors, but no numerical
estimates have been attempted.

(3.5c)

for any other value of cos0, where 8 is the scattering
angle in this channel. For the y+y ~ m+rr channel as

0 Marcel Froissart, Phys. Rev. 123, 1053 (1961).
» P. Singh and B.M. Udgaonkar, Phys. Rev. 123, 1487 (1961).
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t approaches infinity, we have

for Axed s or 8 (i.e., for cosP= &1) and

(3.6a)

(3.6b)

V. COMPTON SCATTERING CHANNEL

In the barycentric system, we can write

k) ——(k)k)), p~= L(k'+1) l, —kg])

k, = (—k, k,); p, =L—(k'+1)i, —k2];
for any other value of cosP, where g is this scattering
angle in the channel. Since y+y —+ m+n. is an inelastic
channel, we may assume that the A and 8 amplitudes
do not attain their maximum values given by expression
(3.6a) in the forward or backward direction. For
cosg= &1 we then have

s= Lk+ (k'+1)']'

t = —2k'(1 —cos8),

(5.1a)

(5.1b)

and k, k2 ———k'cos8, where 8 is the scattering angle
and we define

IBI «~-, (3.6c)
8=

I

—k+ (k'+1)'*]'—2k'(1+cos8). (5.1c)

where e is any small positive number.
From the above asymptotic conditions, we observe

that no arbitrary over-all subtraction constants are
allowed in the A and 8 amplitudes since their presence
violates conditions (3.5c) and (3.6b). Thus we do not
anticipate that any new parameters will appear in our
problem. One subtraction in t, corresponding to j=1
in the y+~ —+ y+n. channel, is allowed for both A and
8 amplitudes. However, further subtractions bring in
powers of t larger than or equal to unity and are in-
compatible with the asymptotic behavior of expression
(3.6c). One subtraction in s (and 8) is allowed for the

amplitude, corresponding to j=0 for the
p+p ~ ~+n. channel, but subtractions for j)0, where

j is even, are incompatible with expression (3.5a) since
they bring in powers of s (or s) larger than or equal to
two. For the 8 amplitude, the first subtraction involves
(s—s) and is incompatible with relation (3.5a).

IV. HELICITY AMPLITUDES

In the present problem, we shall use the helicity
amplitudes given by Jacob and Wick. ' Thus we have a
simpler connection between unitarity and analyticity
than when the conventional electric- and magnetic-
multipole amplitudes are employed.

In a two-body collision, we denote the helicities of
the initial particles by X, and X& and of the final particles
by X, and ) &, respectively. The corresponding scattering
amplitude is given by

g(8 &.»~».»~)= (1/p) 2' U+2)
&&qE,Xg I

T'(E)
I
X,Xg)dye'(8), (4.1)

while the differential cross section is

do/dQ= I g(8; X.»~»»~) I'. (4.2)

Here we have X=A. —X& and p, =),—P&, j is the total
angular momentum; p, E, and 8 are the barycentric
momentum, energy, and scattering angle, respectively;
(XgXg I T'(E) IX,X&) is the corresponding T matrix; and
dz„'(8) is the function given by Jacob and Wick. '

In the (2~,2y) problem, the pions have zero spin, and
therefore zero helicity while the photons have helicity
+1 or —1 depending on whether they are right or left
circularly polarized.

da 1 T

dQ 8m Qs
(5 2)

where T is the T matrix deftned in Eq. (2.3).

A. Helicity Amplitudes

Here we have X,=0=A~ and therefore X =X, X,=p,
with the X and p, values being &1. If we denote the
helicity amplitude by f„z(8), we have

1
f:(8)=-2 (j+-:)T ()d..'(8),

k j=~

d~/df~=
I f.~(8) I' (5 4)

If we denote X and p indices by &, we have

and
T++'(s) = T--'(s)

T+-'(s) = T-+'(s).

Using Eq. (5.2) with appropriate values for the polari-
zation vectors e~, and e2 and comparing it with Eq.
(5.4), we obtain

B(s,B,t) 8~k s
(, ,t) = = f-(8),

s—s s8—1s—1
(5.5a)

1 4—t
b(s, s,t) =—A (s,S,t)+ B(s,s,t)

4 s—8

where

(8), (5 5b)—
t s—1

and

(5.6a)

Qo

f+ (8) = Z(j+~)T+ —'(s)A,-i'(8) (5-.6b).
k i=&

Here s is the square of the barycentric energy, and t the
square of the corresponding momentum transfer. The
differential cross section is
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Thus we have

B(s,s, t)
a(s, s,t) =

and

4ms di, i'(0)=—2 (2j+1)T++'(s), (5 7a)
$—1 i $8—1

The d'(0) functions are given by Jacob and Wick as

P,'(cos0) —P, i'(cos0)+ j'P, (cos0)
di, i'(0) = (5.8a)

j(j+1)

1 4—3

b(s, s, t) =—A (s,s,t)+ B(s,s, t)
4 s—8

4ms di, i'(0)
~ (2j+1)T+-'(s)

'

~ (" )
s—1

and

1 1 1
~

b~ &—P (j+-,')j' + j—.'=— (hR)'—~ s, (5.13b)
$ $

where R is the interaction radius in the sense of
Froissart's analysis" and is essentially a constant.
Similarly, if we keep 8 Axed and let s approach in6nity,
then, since cose approaches —1, we have

and
) a ~

&constant, (5.14a)

For the a and b amplitudes given in Eqs. (5.7a) and
(5.7b), if we keep t fixed and let s approach infinity,
then, since cos9 approaches 1, we have from Eqs. (5.9),
(5.10), and (5.11)

1 1 1 1
I
&—,2 U+-') —j-*'=—(h~)' — (5 13 )

$2 s' s' $

A, i'(0)=
~b~ &constant.P,'(cos0)+P, i'(cos0) j'P;(c—os0) (5.14b)

(5.8b)
j(j+1) For cos0/&1 and s —+ ~, we have from Eqs. (5.12a)-

(5.12c)

di i&'(0) P; i"(cos0) —P,"(cos0)+jP (cos0)
(5.9a)

j(j+1)1+cos9

where the primes indicate derivatives with respect to
cos0. In Eqs. (5.7a) and (5.7b) we have s3—1 and t in
the denominators, and therefore we can use

1 j+-',

$

1 j+—'
Ibl &-2

s j'

(5.15a)

(5.15b)

1—cos8 j(j+1)
B. Asymptotic Behavior

and

di, i'(0) P; i"(cos0)+P;"(cos8)+jP (cos0)
(5.9b)

~A ) &s, )B) &constant

for t 6xed, i.e., cose= 1;

(5.16a)

From these asymptotic conditions for the a and
amplitudes, we have for the 3 and 8 amplitudes as s
approaches infinity

Unitarity demands that

I
T++'(s) I

& 1, (5 10a) for 8 fixed, i.e., cos0= —1; and

(5.16b)

(5.16c)

C. Fixed Momentum Transfer Dispersion
Relations

+ '()~- ( ' ) for cos0ea1
Further, the Legendre functions and their derivatives
satisfy the following relations:

P, (1)=1, P (1)=j(j+1)/2, (5.11a)

P;(cos9)=j ~hp(0)

P (cos9)= jihi(0),

P,"(cos0)= j~h, (0),

(5.12a)

(5.12b)

(5.12c)

where hp(8), hi(0), and h&(0) are functions of 0 only.

P "(1)= (j 1)j(j+1)(j+2)/8. —(5.11b)

For cos0= —1, we use the relation

P;(—cos0) = (—1)iP, (cos0).

For cos04 &1, we have for large values of j

In Eqs. (5.7a) and (5.7b) we notice that since B is
an odd function of s—s, no new singularities are intro-
duced in the u and b amplitudes. Moreover, we have
di, i'(~) =0 and di, i'(0) =0, corresponding to the
vanishing of the forward helicity-Rip and backward
nonhelicity-Rip amplitudes. However, these zeros are
absent in the a and b amplitudes because of the presence
of the factors ss 1and t in the —denominators in (5.7a)
and (5.7b). The a and b amplitudes have the further
property that each is expressed in terms of a given type
of helicity amplitude.

We shall now proceed to write dispersion relations
for the a and b amplitudes rather than the 2 and 8
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amplitudes because of their simple properties given
above. We shall not, however, use the Mandelstam
representation in its full generality, but only the part
of it obtained by keeping t (the square of the momentum
transfer) fixed. In order to derive maximum benefit
from the Mandelstam representation, i.e., in order to
use information about the singularities of the scattering
amplitude in all variables, we write down partial-wave
dispersion relations. If we do so in the Compton
scattering channel, the total amplitude for y+y ~ ir+ir
is explicitly involved, corresponding to the cut t&4.
For the fixed momentum transfer dispersion relations,
however, because of crossing symmetry, only the
absorptive part of the y+ir —+ y+ir amplitude is
involved except for the j=0 amplitude for the
y+y ~ ir+ir channel. By making proper subtractions
(see Secs. V.B and VI.B), we then have, for fixed t,

4me'
a(s,t) =

(1—s) (1—s)

Using the unitarity of the S matrix we can express
Ima and Imb in terms of a sum of the absolute squares
of the amplitudes for y+ir —+ n, where ii stands for the
possible intermediate states. In this preliminary calcu-
lation, motivated by the success of the analogous
approach for yp scattering, ' we neglect the contribution
of all but the 2x intermediate states. If a 3z resonance
or bound state exists, its contribution may be non-
negligible. However, because of insufficient information
about such a state, we do not consider it in the present
discussion. In the above approximation, then, a knowl-
edge of the p+ir —+ 2ir amplitude is sufhcient to give
Ima and Imb. This amplitude has recently been studied
by Wong on the basis of the Mandelstam represen-
tation. Only a single invariant amplitude is involved,
and only odd angular momenta need be considered.
We denote the helicity amplitudes {ym

~
T'(E) ~i') for

a given angular momentum j and energy E' in the
p+ir —+ 2ir reaction by R~'(s), where & indicate the
photon spin parallel or antiparallel to the photon's
direction of motion. From unitarity, we then obtain

and

1 w" f 1 1
ds' u, (s',~) I + I, (5.17a)

& s' —s s' —s)
'

where

4xe'

Im T~&'(s) = W P R'(s)
~

',

R~'(s) = —R '(s) =R'(s). (5.19)

b(s, t) = +4~C+'(t)
(1—s) (1—s)

f 1
+— ds' bi(s', 3) +

7I &4 s' —s s' —8 2p q

(s'+p '+0 '+2p |t
X»] [, (5.17b)

&s'+p '+q '—2p q i

where C+'(/) is the correction term coming from the
j=0, y+y —+ ir+ir amplitude continued to negative t
values (see Sec. VI.C) and is allowed in b but not in a
by the asymptotic conditions (5.13a) and (5.13b). The
correction terms C+"(t) and C+'"(t) for the charged
and neutral case, respectively, are connected through
the relation (6.10) to the correction terms C~' (t)
given in Eq. (6.16). In Eqs. (5.17a) and (5.17b) we
delne ai(s, t), bi{s,t), p, and q by

a, (s,t) = Ima(s, t)

4+s di, i'(~)
Q (2j+1)ImT++'(s)-, (5.18a)

$—1 i=& $8—1

Qi(s&t) = (s 4)8- ~s

(32+ir)' s

7 (i+1),&,:(0)
iM, (s)i', (5.21a)

0«2j+1 1+'cos8

bi(s, t) = Ls(s —4)']'*
(32+ir)'

~0+1) d. ,—.'(~)
X P — ~M;(s) ~' . (5.21b)

2j+1 1—cosg

The R'{s) amplitudes are connected as follows to the
amplitudes M;(s) given by Wong:

1 (s—1)'(s—4)
~R (s) ~'=

(64ir)'

j (j+1)
X i M;(s) i'. (5.20)

(2j+1)'
Thus from Eqs. (5.18a) and (5.18b) we obtain

bi(s, t) = Imb(s, t)

4xs ~

s—1 ~'=~

and

di, -i'(~)
(2j+1) ImT~ &'(s) . (5.18b)

p =i(4—t)'/2

g =i(—t)l/2.

In Eqs. (5.21a) and (5.21b) we retain only the j=1
term and substitute the corresponding a& and b~ in the
dispersion integrals (5.17a) and (5.17b). This seems
to be a good approximation, since energies under
consideration are low. Furthermore, because of the
assumed I'-wave mx resonance, the amplitude for j=1
is expected to be larger than the higher waves. A similar
approximation has been made in proton Compton
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scattering, p+p —+y+p. ' Here only the srp inter-
mediate state is retained, and by neglecting all but the
contribution of the resonance in the j=23 and T=-,'
state (T being the isotopic spin), the results obtained
are in good agreement with experiments. ' Reintro-
ducing the charged and neutral superscripts c and m,

we have then the following relations:

5
10
15
20

P.(s)IB~(s)3'

2X10 '
5X10 5

4X10 5

10 ~

LIs(s)/Bg(s) g'

6X10 s

5X10 3

9X10 3

4X10 '

TAuLz I. Values of P, (s)/Bf(s) js aud )Ib(s)/By(s)7'
for sg=10 and F=0.4.

4xe' 1
a'(s, t) =

(1—s) (1—8) 3(32+sr)' sr single pole at a, Wong gave the M~($) amplitude

Mi(s) =A(1+a)Di(1)/(s+a)D~(s), (5.26)(s'-4)' l

X ds' iM (s')i'
4 s

1 1
xi +

&s' —s s' —s)
'

1 1
b'(s, t) = +4srC~' '(t)+

(1—s) (1—s) 3 (32+7r)s sr

47re'

ds Ls ($4) ] JM1($ )]
J4

X
$ —$ $ —8 2p q

t's'+p '+q '+2p q i
Xln]

E s'+ p '+q ' 2p q )—
I,(s) = Ima'(s, t) = Ima" (s,t)

where A is a pseudoelementary constant proportional
to the residue of the left-cut pole, and D~(s) is the
denominator function of the I' wave sr-sr system which
is necessary to give M&(s) the required phase. The
position a is given by the behavior of the P wave, and
is larger for higher values of the P-wave resonance
energy. The constant A. is estimated by Wong on the
basis of the x' lifetime, where it plays a role. ' For a
m' lifetime of 4&(10 "sec, he estimates h. to be e.
With the Irazer-Fulco value for the P-wave mz reso-
nance position s~ 10 and width I'=0.4, Wong found
a 5.7. When these estimates of A and a are inserted
into the dispersion integrals in Eqs. (5.22a) and (5.22b)
for charged pions, we And by an exact calculation that
their contribution is &1%. Near s sg, we of course
expect the imaginary parts of a and b to be important.

(5 22b) For any s value, we have from Eq. (5.26)

a" (s,t) =— 1 1 t" -(s' —4)' '*

ds
3 (32+7r)' 7r " s'

X iM, ( ') i'( + ), (5.23a)( 1 1

(s'—s s' —B~
'

(1/a) 2-($—4)s-k Dy(1) s

(5.27a)
3(32+sr)' 4 s+a~ s D~($)

Iq(s) = Imb'(s, t) = Imb" (s,t)

1
b" (s,t) = 4~C,' "(t)+

3 (32+sr)' sr

f
ds'Ls'(s' —4)']liM, (s') i'X

d4

X
.$'—$ $' —s 2p q

($'+p '+q '+2p q )X»i, i . (5.23b)
&s'+p '+q ' 2p q

&—
The M&(s) amplitude has been obtained by Wong

using partial-wave dispersion relations. ' Keeping only
the contribution of the 2x, J=1 intermediate state,
we observe that the phase of Mz($) is given by the
phase of the zm P wave. By replacing the left cut
involved in the partial-wave dispersion relations by a

h.'
t 1+a~ ' Dg(1) '

~

—
I
Cs($-4)']-: (5.27b)

3(32+sr)2 ~ $+al Dg(s)

The ratios LI,(s)/BI(s)]' and )It, ($)/BI(s)]' are given
in Table I, where BI(s) is the minimum value of the
Born term in Eqs. (5.22a) and (5.22b) attained in the
forward direction. We observe that the above ratios
are not greater than 1% near the resonance energy
sg 10. We have, so far, discussed the resonance con-
tribution only for s&~10, but for a higher sz value ~20
the situation will not qualitatively change.

The biggest correction to the Born amplitude seems
to come from the C+' '(t) term and is roughly of the
order 10% if we take X= —0.20 (see Sec. VI.C). The
ratios of the differential cross section da./dQ to (do/dQ)s
is given in Table II for 0=90 deg and 0=180 deg,
where (do/dQ)s is the differential cross section obtained

by keeping only the Born term. For 8=0 deg, the b

amplitude is absent, and hence the contribution to
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lo' do'
TABLE II. Values of — — at 8=90 and 180 deg.

do dQ ~
Here g is the scattering angle, t is the square of the
barycentric energy, and $ is the square of the momentum
transfer. The differential cross section is

5
10
15
20
25

0=90 deg

1.06
1.10
1.12
1.13
1.14

0=180 deg

0.93
0.89
0.88
0.87
0.86

do p1 T'
dQ q8mgt

A. Helicity Amplitudes

(6 2)

do/dQ comes entirely from the Born term. For the
neutral case, of course, the contribution of C+P "(t) is
the only important one. If the correction term for the
7=2, j=O, p+y~ vr+7r amplitude is neglected (see
Sec. VI.C) we have from Eq. (6.10)

If X„Xb are the helicities of the photons and X„X~
those of the pions, we have X,=0=X~, and X=X,—Xb.

If we denote the helicity amplitudes by Fzo (P), we have

»o(~) = (1/q) 2; (j+-',)M o'Q)d .'(~), (6.3)

~+'"(t)=~+"(t) d~/do, =
l »p(y) l'. (6.4)

The above results are in great contrast to the results
in proton Compton scattering where, as described
earlier, the 3-3 resonance in the intermediate pion-
nucleon system increases substantially the cross section
coming from the Born term. ' The reason for the
negligible contribution of the xw resonance is, of course,
the smallness of the y+m ~27r amplitude as is seen
from the factor 1/L3(32+m)'j in front of the integrals
in (5.22a) and (5.22b). The normalization of the
constant A introduced by Kong is evidently misleading,
since A e suggests a substantial magnitude for the
y+7r~ 2~ amplitude. Numerical factors should be
absorbed in h. so as to make it appear small compared
to e. The reason A should be small is probably associated
with the minimal character of the electromagnetic
interactions which appear in y+~ —+2~. This ampli-
tude is essentially the vertex joining a single photon
to three pions. Now from minimality we know that a
photon line can couple directly only with a charged
pair, and then the coupling constant is e, the elementary
charge. In the case under consideration, therefore, we
need a two-particle intermediate state. A two-pion
intermediate state or, in fact, any state containing an
even number of pions is, however, forbidden because
G conjugation does not allow an even number of pions
to go into an odd number. Thus particles heavier than
pions (e.g., kaons or nucleon-antinucleon pairs) must
be created in intermediate states. The constant A. should
then be of the order e/M (where M is the nucleon or
E-meson mass) and therefore be small. In Compton
scattering, the contribution of the 2x intermediate
state is proportional to A' and thus to 1/M'.

If by M+~'(t) we denote Mzp'(t) with X =1 and Xo
——1

(i.e., X=O) and X,=1 and Xp ———1 (i.e., X=2), re-
spectively, then we have

and
M~„(t)=M '(t),

M+ ~(t)=M +~(t).

dp. p'(@)
~(~,a,t)=47rl

I p (2j+1)M+ ~'(t)

&t—4) $8—1

do, p'(4)
=4~ P (2j+1)h t(t), (6.5a)

j=2 1—cos'p
and

. dp, p'(e)
b(~, s, t) =4m

I I + (2j+1)M+~&(t)'
( t—4);=o

=«2 (2j+1)h+'(t)do, o'(&) (6 5b)

where

h ~(t)=-l
l M+ '(t),

«(t—4)o)
(6.6a)

1(
h+'(t) =-l —

l
M++'(t).

t &t 4&—(6.6b)

In terms of a and b we have

As in Sec. V.A by comparing Eqs. (6.1) and (6.3) for
appropriate polarization vectors, we have

VL PION-PAIR PRODUCTION CHANNEL

In the barycentric system we can write h&= (q, —q),
hp=(q, q), p&

——(—q, y), and p&=(—q,
—y), where and

h ~(t) =— d (cosp) do, p~(Q) o(t, cosg),
8~

and

t=4q'= 4(p'+1),
s= —q' —p'+2qp cosg,

8= —
q p —2qp cosp. (6.1c) do, o (4)= (1—cos'4)dp, p'(4).

(6.1a) h+&'(t) =— d(cosp) dp, p'(p) b(t, cosg),
(6.1b) 8m

where
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The d&'(g) functions are

2P, i'(cosp) —j(j—1)P,(cosp)
d, o'(4)=-. . . , , (6 7)

L(j—1)j(j+1)(j+2)]'*

tudes as
h '(t) = (-,')lL2h

'
'(t)+h+ "(t)], (6.10a)

h+"()= (-')'Lh+"(t) —h+' "(t)] (6 1ob)

and
do. o'(4) =P (cos4) (6.8)

P/'(cosp)

1—cos'P ((j—1)j(j+1)(j+2)]'*

where primes indicate derivatives with respect to costt.
In Eq. (6.4), we have (1—cos'@) in the denominator,
and we find

where hp" (t) and h+& "(t) are the charged and neutral
amplitudes, respectively. Similar relations hold for
h '(t) amplitudes. We then have

1 t "4 Im hp&" (t')
hp&'(t) = himp" (t)+— dt'

t' t—
1 t

" Im hp&'r(t')
dt' —,(6.11)

B. Asymptotic Behavior

The general procedure for establishing asymptotic
behavior is the same as in Sec. V.B. Relations (5.11)
and (5.12) together with the unitarity limitations

(6.9a)
and

then give us for t —& ~

~
a

~

&constant,
~
b

~

& constant

for fixed s (or 8), i.e., cosP= &1, and

for any other value of cosP. Equivalently, we have

where
g21 1

hii
&' r(t) =— d(cosp) d2, O'(p)— (6.12a)

vS~, (1—s) (1—s)
and

g2pl
hei+& r(t) =—'d(cosp) do o&'(p) . (6.12b)

(1—s) (1—8)

From Eqs. (6.6) and (6.9), we have
~
h &'(t)

~

&1/t' and
~h+'(t)

~
&1/t in the physical region. Hence, in the

above relations, no subtraction constants are needed.
The integral along the left cut corresponds to the
correction to the Horn term for the crossed channel

y+~ —+ y+n. As we have already seen, the correction
is probably small and we shall neglect it in this pre-
liminary calculation.

For the integrals in Eq. (6.11) involving positive t

values greater than four, we shall use unitarity. ln the
approximation of including only two-pion intermediate
states, we have

for cosQ= &1 and

for cos&W&1.
where

Imhpi'(t) =» r(t)A't'(t)$(t —4)/t]-*' (6.13)

(t) = ft/(t 4)]' exp(i8.z) i 8san(6 14).
C. Partial-Wave Dispersion Relations

Knowing the singularities in the amplitudes a and b,
we can write down partial-wave dispersion relations
for h '(t) and h+&'(t). The branch cuts in a and b are,
of course, the same as those in 2 and B. There is a
branch cut t)4 for the amplitudes hp'(t). Corre-
responding to the cut s &4 as well as 8 &4 in A and 8,
there will also be a cut t& —9/4. We shall project out
the Born term and write it explicitly as h&p'(t). Before
we write down partial-wave dispersion relations, how-

ever, we introduce amplitudes hy' corresponding to
a definite isotropic spin I of the final two-pion state.
From charge conjugation or, equivalently, from crossing
symmetry, we notice that only even angular momentum
states are allowed and, therefore, only states with I=O
and I=2 need be considered. For the I=O and I=2
states, we designate the amplitudes by the superscripts
0 and 2, respectively. An elementary calculation then
gives their relations with the charged-neutral ampli-

is the pion-pion scattering amplitude defined by Chew
and Mandelstam for angular momentum j and isotopic
spin I; 8; being the corresponding phase shift. '

At low energies, we shall neglect the integrals in Eq.
(6.11) along the right-hand cut for j)2, since the
pion-pion amplitude for D and higher waves is expected
to be small. We then have

h '(t) = h '(t),
since always j&2;

hp' r(t) =hii+& r(t)
for j&2; and

1 I" ft' 4):—
h+' (t) =hii+' (t)+— dt'~

h ' '(t')A*' '(t')
X . (6.15)

Thus we consider the xm interaction correction only to
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TABLE III. Values of hz+0 (/), ReC+ (t), and ImC+0 (t)
for X= —0.20, in units of e .

TABLE V. Values of o+o(t)/os+'(t) and o+'(t)/os' (t)
for X= —0.20.

4.0
4.5
5.0
6.0
7.0
8.0

12.0
16.0

ho+o '(t)

0.289
0.237
0.203
0.146
0.109
0.086
0.045
0.027

Redo '(t)

0.395
0.042—0.026—0.059—0.056—0 051—0.032—0.022

ImC '0(t)

0
0.208
0.178
0.093
0.056
0.037
0.010
0.002

4.0
4.5
5.0
6.0
7.0
8.0

12.0
16.0

o+'(t)/o o+'(t)

5.60
2.15
1.54
0.76
0.54
0.42
0.22
0.21

o+'(t) /on+'(t)

1.29
1.21
1.16
1.05
0.99
0.94
0.83
0.77

=hn 'r(t)+C+'r(t), (6.16)

where C~o r(t) is the rescattering correction term due
to the xz interaction.

In an earlier work, " values for the 5 amplitudes in
terms of the pion-pion coupling constant X have been
obtained from crossing relations. At present A~ —0.20

TABLE IV. Values of ho+o '(t), ReC+' '(t), and ImC+' '(t)
for X= —0.20, in units of e'

4.0
4.5
5.0
6.0
7.0
8.0

12.0
16.0

o+o '(t)

0.204
0.168
0.143
0.103
0.077
0.061
0.032
0.019

ReC+' '(t)

0.027
0.016
0.009
0.002—0.001—0.003—0.004—0.003

ImC+o, o (t)

0
0.017
0.018
0.015
0.012
0.011
0,006
0.004

"R.Omnes, Nuovo cimento 8, 316 (1958).
u Bipin R. Desai, Phys. Rev. Letters 6, 497 (1961).

the j=0 state (i.e., 8 state). Following Chew and
Mandelstam, we write'

~' (t) =& (t)/D (t)

where %or(t) and Dor(t) are the numerator and de-
nominator functions in the mz S amplitudes. From a
modification of the form given by Omnes, ' "we have

1 1 t" dt' (t' 4'i ~—
h ''(t)=h, "(t)+-

7rDQ (t) "4

Xha+o '(t') 1Vo'(t')

seems a reasonable estimate. "For this P value, we have
calculated the correction C+'r(t) to the Born term
hg+'r (t) . This correction, of course, comes from the
final-state x+ interaction in the 5 wave. From Tables
III and IV, we find that for the I=O state the cor-
rection is large at low energies corresponding to strong
attraction, but for higher energies it quickly changes
sign. Such a circumstance can be understood as follows:
If we take the Born term hz+o(t) to be approximately
a pole at t= —tg, then its slope is t~ '. Since the
distance at which the pairs are produced is t~ ', the
larger the distance, the faster is the decrease of hn+o(t)
in the integral in Eq. (6.16). We have here a case in
which the pions are produced at a relatively large
distance —about a pion Compton wavelength —and,
therefore, hz+o(t) decreases relatively rapidly, giving
rise to a sign change in the principal part of the integral
in Eq. (6.16). At higher energies this negative contri-
bution is 70% of the Born term. The ratios o+r(t)/
olt+r(t) of the total .cross sections for a given I spin with
and without the correction terms are given in Table V.
Such interactions as discussed above may perhaps be
detected by rather accurate experiments on pion-pair
production by a photon in the Coulomb field of a
nucleus '4

ACKNOWLEDGMENT

This problem was suggested as the topic of my
thesis by Professor Geoffrey F. Chew whose advice and
encouragement throughout the period of my work I
gratefully acknowledge.

"Yongduk Kim, Lawrence Radiation Laboratory, Berkeley,
California (private communication).


