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APPENDIX B

In this appendix, a covariant version of the kine-
matics of Sec. VI is presented and compared with the
kinematics introduced in Appendix A.

It is rather obvious that the new set of variables is
represented by the following five quantities.

E'=—(k'+k)- (p'+E"),
n'=(p'— k") (k+E)/(p'+E")- (k+E),
x/=—p"- (k—F),
—k"- (k—F),
o=k~

KIM

where E’ is the dispersion variable, and 7, %/, ./, and
v’ are the fixed variables.
These quantities are related to the former ones by

E'=%(3+n)E+atay,
—31 B3+ E+ (Bui—x)+20

—1(3+n)E+ Ga—x)—20

=3A—nE+3(w1—x),
x2’=x2+M22,
v'=3(—pl—pl—pl+22:40),

where x=ov-+x;+x,. It is seen that the two sets of
variables are inequivalent.
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In the (2m,2y) problem, the Mandelstam representation is written for the two independent gauge-
invariant amplitudes. On the basis of unitarity limitations on the asymptotic behavior of these amplitudes,
only a j=1 subtraction in the y+m — v+ channel and a 7=0 subtraction in the y++ — 7= channel
are allowed. No over-all subtraction constants are required and the Thomson limit is automatically
maintained. Only the effect of 27 intermediate states is considered. The odd-7 7 contribution involves the
amplitude for the process y-+m — 27 analyzed by Wong and shown to be proportional to a pseudo-
elementary constant A. Even with a == P resonance, the correction is negligible (£19%) if we use the value
of A estimated by Wong on the basis of 7% decay and confirmed by Ball in connection with photopion pro-
duction on nucleons. A moderately important contribution comes from the S-wave interaction if we use a
recent estimate of 7= S-wave phase shifts obtained from crossing relations. For the pion-pion coupling
constant \ of order —0.20, this effect is ~109, in y+m — v+ scattering. For y++v — w4, the correction
for the 7=0 state at threshold is positive and ~1009, of the Born approximation. However, as the energy
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is increased, the correction quickly changes sign.

I. INTRODUCTION

N the (2m,2y) problem, both strong and electro-

magnetic interactions are involved. In principle,
one can calculate electromagnetic interactions on the
basis of perturbation theory. Our purpose here is to
understand the effects of strong pion interactions on the
(2m,27y) vertex.!

Attempts have been made in recent years to under-
stand strong pion interactions at low energies by using
the Mandelstam representation.?® In particular, a
P-wave pion-pion resonance has been conjectured in

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

LA preliminary account of this work was given at the 1960
Winter meeting of the American Physical Society, December
29-31, 1960 [Bipin R. Desai, Bull. Am. Phys. Soc. 5, 509 (1960)].
We employ units #=c=p=1, where u is the pion mass. For the
charge ¢ we use the units ¢2~1/137. The metrlc is defined so that
we have ¢g®°=1 and g¥=—1, where 7=1, 2, 3

2§, Mandelstam, Phys Rev. 112, 1344 (1959) 115, 1741 and
1752 (1959).

3 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

connection with the nucleon electromagnetic structure.
If such a resonance exists, one might expect its effects
to be appreciable in Compton scattering on pions (e.g.,
y+m7— vy+7). One may recall in this connection
Compton scattering on protons (e.g., v+p—v+9p),
where the 3-3 resonance causes a large increase in the
cross section above the value given by the Klein-
Nishina-type formula.? Pion-pion forces may also be
manifested in the final-state interactions of pion pairs
produced by photons (e.g., y+v— w+=). Such final-
state interactions, if they are substantial, may be
observed experimentally by producing a pion pair from
a high-energy photon in the Coulomb field of a nucleus.

Further, an understanding of the (2m,2y) vertex is a
prerequisite for a theory of nucleon-photon scattering
and, in fact, for most problems where a vertex con-

*W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365
(1959) ; Phys. Rev. 117, 1603 (1960).

5G. F. Chew, 1958 Annual International Conference on High-
Energy Physics at CERN (CERN Scientific Information Service,
Geneva, 1958).
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necting strongly interacting particles with two photons
is involved. For example, in the calculation of the
electromagnetic mass of charged pions, one needs the
pion Compton scattering amplitude for virtual photons.
The information obtained here may, therefore, be
helpful in understanding the mass difference between
charged and neutral pions.

We shall investigate the (27,2y) problem within the
framework of double-dispersion relations proposed by
Mandelstam.2 We do not think it pertinent to go into
the principles and conjectures underlying the
Mandelstam representation, since we have nothing
new to contribute to these general questions, which
have been the subject of so many papers. Following the
effective-range approximation given by Chew and
Mandelstam we assume the behavior of the amplitudes
to be dominated by nearby singularities.®* Moreover,
the contribution of intermediate states containing one
or more photons will be neglected since, even though
they correspond to near singularities, powers higher
than e? are involved.

In the next section, we shall go into the kinematics
of the problem and show that because of Lorentz and
gauge invariance only two invariant amplitudes are
involved. The Mandelstam representation for these
amplitudes is then written in Sec. ITI, and the question
of subtractions discussed. In Sec. IV, the helicity ampli-
tudes of Jacob and Wick are introduced.® In Sec. V, we
consider Compton scattering, v+ — v+, and discuss
the effect of the 77 interactions. In Sec. VI, pion-pair
production, y+v — 7+, is considered and the effect
of final-state = S-wave interactions discussed.

One of our main results is negative and very sur-
prising, in view of the large enhancement of nucleon
Compton scattering by the 33 resonance.’ We find that
the effect of the 2r P resonance on pion Compton
scattering is negligibly small. The important matrix
element here is that for y+#— 7+ and has been
estimated by Wong on the basis of the #° lifetime,
where this amplitude also plays a role.” Wong’s esti-
mate, confirmed in order of magnitude by Ball in
connection with photoproduction of pions from
nucleons,?® is smaller by about a factor of 10 than one
might naively guess. Since this matrix element appears
squared in the Compton amplitude, the 27 resonance
turns out to make a contribution only of the order of
1%. In Sec. V, we shall discuss the probable reason
for the smallness of Wong’s amplitude. We do not here
consider a 37 bound state or resonance, which may
play a large role in pion Compton scattering.

In the y+vy— 7+ channel only even angular-
momentum states are involved because of charge-
conjugation invariance. By a reasonable choice of 77

8 M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).

"How-sen Wong, Phys. Rev. Letters 5, 70 (1960) and Phys.
Rev. 121, 289 (1961).

8 James S. Ball, University of California Radiation Laboratory

Report UCRL-9172, 1960 (unpublished); Phys. Rev. Letters 5,
73 (1960).
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S-phase shifts, we find in Sec. IV that the contribution
of the final-state interaction is large. For the =0 state,
where the interaction is strongest, the contribution at
low energies is found to be positive corresponding to
attraction and is of the order of 1009, of the Born
amplitude at threshold. As the energy is increased,
however, it quickly changes sign. Such a circumstance
corresponds to the fact that the pions are produced
with a large relative separation (~ one pion Compton
wavelength) and have, therefore, a fairly small proba-
bility of interacting with each other.

II. KINEMATICS AND INVARIANCE
CONSIDERATIONS

Figure 1 describes the (2m,2y) vertex under con-
sideration, where the wavy lines indicate photons and
solid lines indicate pions. For the sake of symmetry,
we shall take all the lines as incoming. Let p;, p» be the
four-momenta of the pions and e, 8 the corresponding
charge indices, while ki, k; are the four-momenta of
the photons and e;, e the corresponding polarization
vectors. We then define the three Lorentz invariants
s, §, and ¢ as follows:

5= (k1t+p1)*= (katp2)?, (2.1a)
§= (k1 +p2)*= (katp1)% (2.1b)
t=(k1tke)?= (p1+p2)*. (2.1¢)

From energy-momentum conservation, we have
s+5+i=2.

Notice that s, §, and ¢ are the squares of the energies of
the following three reactions in the barycentric system:

kitpr— —ke—ps, (vFr—v+m) (2.22)
kit ps— —ka—p1, (vFr—y+7) (2.2b)
kitke— —p1—ps, (v+y— wt7w).  (2.2¢)

The S matrix is defined as

Syi=087—1(2m)"[ 160 (k1)w (pr)w (koo (p2) ]
X (k1 tp1tkot-p2) T 1iy
where f and ¢ indicate final and initial states, respec-

tively, and the ’s indicate the energies of the different
particles. For the given charge indices o and 3 we have
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for the T matrix
T ap= (8ap—0a30p3) T+ 84308s1™,

where 7'¢ and 7 denote the T matrices corresponding
to charged and neutral pions, respectively. Henceforth
we shall suppress the charged and neutral indices. We
shall concentrate our attention mainly on the charged
case and only comment on any alterations needed in
the neutral case.

We may further write

T: e2uTﬂy61v,

where T* is a tensor of second rank which can be
expressed in the most general form as
Tw= Ak *ko"+ BAtky’+Chotke’+ Dki#ky"+ EA*Ry”
+Fkotky”+Ghi*A?+HAAY - TRyt AP T g+,
where A=p;—ps, and g*” is the conventional metric
tensor.! The amplitudes A---J are functions of the
invariants s, §, and ¢. Gauge invariance requires that
(a) k9, T*=0 and (b) T*%;,=0. With the above con-
ditions and the requirement of zero photon mass,
ki?=0=£%s?, we obtain
T(s,5,8) = (ea- krer-ko— ko~ kiez-€1) A (s,5,1)
+(—61‘62k2'A+(kz'kl/kz'A)€2'A61'A

+€2'A€1'k2—62'k161'A)B(S,g,t). (23)

Crossing symmetry requires
A(s,58)=A4(5,s,t), and B(s,5)=—B(5,s2). (2.4)

The foregoing results have been obtained independently
by Gourdin and Martin.®

III. MANDELSTAM REPRESENTATION

The Mandelstam representation for 4 and B can be
written for charged pions as

A(s,3,)= (4we*/1—s)+ (4me?/1—3)

al(s l') 1
o f ds f it ( + )
'—t \s'—s §'—3§

1 ® ,, ag(s',é')
+; f ds f4 ds Ry 3.1)

B(s,3,0)= (4me*/1—s)— (4me/1—3)

1 o By 1 1
+— f ds’ f at’ ( )
w2 Jy 4 —t \§'—s s'—35

Ba(s,5")

+—f dsf d’(s —s)(s—s)

9 M. Gourdin and A. Martin, Nuovo cimento 17, 224 (1960).
The Cini-Fubini approximate version of the Mandelstam repre-
sentation has been used by these authors, but no numerical
estimates have been attempted.

3.2)

BIPIN R. DESAI

Here a3, as, 81, and B; are the double spectral functions.
Notice that the crossing condition (2.4) is explicitly
contained in Egs. (3.1) and (3.2) for as(s,5)=0a2(5,s)
and Ba(s,5)=—p2(3,5). The poles at s=1 and §=1
correspond to single-pion intermediate states in re-
actions (2.2a) and (2.2b), respectively. The lower
limits on the above integrals correspond to the fact
that the least massive intermediate states in the three
channels given in reactions (2.2a)-(2.2c) are the two-
pion states. For neutral pions, the only difference is
that the poles are absent. Subtractions are perhaps
necessary in the above dispersions relations and we
shall discuss them later on.

The region in which the double spectral functions
ay, az, 81, and B2 are nonzero are given as follows: For
both ay(s,t) and Bi(s,t) the region is defined by the
curves

t=4(2s+1)%/s(s—4) (3.3a)
and
1=4(s—1)/s— (3.3b)
For a(s,3) and B2(s,3), the curves are
(s—4)(5—16)—81=0 (3.42)
and
(s—16) (3—4)—81=0. (3.4b)

Notice that there are no anomalous thresholds involved.

By a proper choice of amplitudes, the pole terms
correspond in the y4-7 — v~ channel to the Thomson
amplitude, which 4 and B should approach in the
zero-energy limit. Hence on the basis of zero-energy-
limit theorems, subtractions are unnecessary. We thus
differ from the observations of Gourdin and Martin,’
who use a different set of amplitudes and are uncertain,
therefore, about the number of possible subtractions.
We may go farther and discuss possible subtractions
on the basis of unitarity limitations on the asymptotic
behavior of the 4 and B amplitudes. Such an analysis
was first carried out by Froissart in the case of scalar
particles®® and was applied by Singh and Udgaonkar to
the pion-nucleon problem."* We give below the results
for the 4 and B amplitudes which are derived in Secs.
V.B and VLB.

For the y+m—y+n channel as s approaches
infinity, we have

|4|Ss, |B|Sconstant (3.5a)
for fixed ¢ (i.e., for cosf=1),
|4]Ss, |BISs (3.5b)
for fixed § (i.e., for cosf=—1), and
4|78 |BlSs (3.5¢)

for any other value of cosf, where 8 is the scattering
angle in this channel. For the y++v — 7=+ channel as

10 Marcel Froissart, Phys. Rev. 123, 1053 (1961).
1Y, Singh and B. M. Udgaonkar, Phys Rev. 123, 1487 (1961).
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¢t approaches infinity, we have

415t |Bls¢ (3.62)
for fixed s or § (i.e., for cosp==1) and
41, |BlS (3.6b)

for any other value of cos¢p, where ¢ is this scattering
angle in the channel. Since y++v — w+= is an inelastic
channel, we may assume that the 4 and B amplitudes
do not attain their maximum values given by expression
(3.6a) in the forward or backward direction. For
cos¢p=+1 we then have

4| S | B[S

where € is any small positive number.

From the above asymptotic conditions, we observe
that no arbitrary over-all subtraction constants are
allowed in the 4 and B amplitudes since their presence
violates conditions (3.5¢c) and (3.6b). Thus we do not
anticipate that any new parameters will appear in our
problem. One subtraction in ¢, corresponding to j=1
in the v+ — v+ channel, is allowed for both 4 and
B amplitudes. However, further subtractions bring in
powers of ¢ larger than or equal to unity and are in-
compatible with the asymptotic behavior of expression
(3.6¢). One subtraction in s (and 3) is allowed for the
A amplitude, corresponding to ;=0 for the
¥+ — w47 channel, but subtractions for 7>0, where
7 is even, are incompatible with expression (3.5a) since
they bring in powers of s (or §) larger than or equal to
two. For the B amplitude, the first subtraction involves
(s—3) and is incompatible with relation (3.5a).

(3.6¢)

IV. HELICITY AMPLITUDES

In the present problem, we shall use the helicity
amplitudes given by Jacob and Wick.® Thus we have a
simpler connection between unitarity and analyticity
than when the conventional electric- and magnetic-
multipole amplitudes are employed.

In a two-body collision, we denote the helicities of
the initial particles by A, and A and of the final particles
by Ac and Ag4, respectively. The corresponding scattering
amplitude is given by

805 Nehahahe) = (1/p) 225 (7+3)
XNha| TH(E) |Nako)dri? (0),

while the differential cross section is
do/dQ=1g(0;Nec;haha0) | 2 (4.2)

Here we have A=A,—\p and u=\.—MAq; 7 is the total
angular momentum; p, E, and 6 are the barycentric
momentum, energy, and scattering angle, respectively;
(Al Ti(E)|Nahs) is the corresponding 7" matrix; and
dr,7(0) is the function given by Jacob and Wick.®

In the (27,2v) problem, the pions have zero spin, and
therefore zero helicity while the photons have helicity
+1 or —1 depending on whether they are right or left
circularly polarized.

(4.1)
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V. COMPTON SCATTERING CHANNEL
In the barycentric system, we can write

k= (k,k1), pri=L(+1)} —ki],

ky=(—k,ky); po=[—(B+1)} —ko];

and k;-ko=—#?2 cosf, where 6 is the scattering angle
and we define

s=[k+(F24+1)1, (5.1a)
t=—2k2(1—cosb), (5.1b)

and
§=[—k+ (B241)]2—2k2(14-cosh). (5.1¢)

Here s is the square of the barycentric energy, and ¢ the
square of the corresponding momentum transfer. The
differential cross section is

do

aQ

2

; (5.2)

1 7T
81 A/s
where T is the 7 matrix defined in Eq. (2.3).

A. Helicity Amplitudes

Here we have A\;=0=M\4 and therefore Ao=X\, A=y,
with the A and u values being &=1. If we denote the
helicity amplitude by fu(6), we have

1 »
fux(0)=; gl G+ T (s)dr(0), (5.3)
and
do/dQ=| f(0) 2. (5.4)

If we denote A and u indices by ==, we have
Ty i(s)=T-_(s),

T, i(s)=T-4(s).

and

Using Eq. (5.2) with appropriate values for the polari-
zation vectors e;, and e, and comparing it with Eq.
(5.4), we obtain

B(s,5¢) 8wk s
d(S,S‘,t)= L —f++(0); (ssa)
s—§ s§s—1s—1
and
1 4—1
b(s,5,0)= *[A (s,8,)+—B (s,é,t)]
4 s—3§
&k s
=——f1_(0), (5.5b)
t s—1
where )
f++(9)=; Z_:l (GH+3) T4 (s)d1,7(6),  (5.6a)
and

1 o
f+—(0)=; E (J+HT4—(s)d1,—1(6).  (5.6b)
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Thus we have

a(s,5)= B (s,éjt)
s—§
dqs R RUC)
=% QD) T, (5.72)
s—1 N
and
1 4—¢
b(s,5,8)= —[A (s,55)+—B (S,g,t)]
4 s—S§
das d1,—17(6)
I S QDT () (5.7b)

s—1 3
The d7(f) functions are given by Jacob and Wick as
P} (cosf)— P;_i’ (cosd) -+ 72P;(cosh)

dlylj 0 = 5.8
v G+ 55
and P} (cosh)+P;_y' (cosf) — 72P;(cosh)
b1 O =— = L (s
Jj(G+1)

where the primes indicate derivatives with respect to
cosf. In Egs. (5.7a) and (5.7b) we have s3—1 and ¢ in
the denominators, and therefore we can use

d1,19(0) Pj_y""(cosf)— P;"’(cosf)+ 7P (cosh)

= , (5.9a)
14-cosh 7(+1)
and
d1,-17(0) P;_1"(cosf)+ P, (cosh)+jP; (cosh) (5.9b)
1—cosf FG+1) C
B. Asymptotic Behavior
Unitarity demands that
T4 <1, (5.10a)
and
| Ty i(s)| <1. (5.10b)

Further, the Legendre functions and their derivatives
satisfy the following relations:

Pi(D)=1, P/(1)=37(+1)/2, (5.11a)
P/ ()=(G-1i(G+1(G+2)/8.  (5.11b)
For cosf=—1, we use the relation
P;(—cosf) = (—1)7P;(cosh).
For cosf# =1, we have for large values of j
P;(cost) = 7h(6) (5.12a)
Py (cost) = j*h1(6), (5.12b)
and
P (cosh)= 73ha(6), (5.12¢c)

where %(0), #1(6), and /2(f) are functions of 6 only.

BIPIN R. DESAI

For the ¢ and b amplitudes given in Egs. (5.7a) and
(5.7b), if we keep ¢ fixed and let s approach infinity,
then, since cosf approaches 1, we have from Egs. (5.9),
(5.10), and (5.11)

1 1 1 1
Ia’l §“‘Z (j_}—%) H—jmax2=—(kR)2->—, (513&)
§2 §2 §2 s

and
11 1
18] S (43— —jmax*=—(kR)* >, (5.13b)
S S N

where R is the interaction radius in the sense of
Froissart’s analysis’® and is essentially a constant.
Similarly, if we keep § fixed and let s approach infinity,
then, since cosf approaches —1, we have

|@| £ constant, (5.14a)
and

|5] £ constant. (5.14b)

For cosf# 1 and s — «, we have from Egs. (5.12a)-
(5.12¢)

1

1 j+3
la] S— 3 ]__2_>S—5/4’
N X

- (5.15a)
S 2
and J
1_j+3
[b|S-X ——st (5.15b)
s 7t

From these asymptotic conditions for the @ and b
amplitudes, we have for the 4 and B amplitudes as s
approaches infinity

|4|<s, |B]|Sconstant (5.16a)
for ¢ fixed, i.e., cosf=1;
|4|Ls, |B|Ss (5.16b)
for § fixed, i.e., cosf=—1; and
|4|Ss7y, |BISsd (5.16¢)

for cosf=41.

C. Fixed Momentum Transfer Dispersion
Relations

In Egs. (5.7a) and (5.7b) we notice that since B is
an odd function of s—3§, no new singularities are intro-
duced in the @ and & amplitudes. Moreover, we have
d1,7(m)=0 and d;_1/(0)=0, corresponding to the
vanishing of the forward helicity-flip and backward
nonhelicity-flip amplitudes. However, these zeros are
absent in the @ and b amplitudes because of the presence
of the factors s§—1 and ¢ in the denominators in (5.7a)
and (5.7b). The ¢ and & amplitudes have the further
property that each is expressed in terms of a given type
of helicity amplitude.

We shall now proceed to write dispersion relations
for the @ and & amplitudes rather than the 4 and B
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amplitudes because of their simple properties given
above. We shall not, however, use the Mandelstam
representation in its full generality, but only the part
of it obtained by keeping ¢ (the square of the momentum
transfer) fixed. In order to derive maximum benefit
from the Mandelstam representation, i.e., in order to
use information about the singularities of the scattering
amplitude in all variables, we write down partial-wave
dispersion relations. If we do so in the Compton
scattering channel, the total amplitude for y-+v — n+7
is explicitly involved, corresponding to the cut ¢>4.
For the fixed momentum transfer dispersion relations,
however, because of crossing symmetry, only the
absorptive part of the y-4m— y+7 amplitude is
involved except for the j=0 amplitude for the
¥-+v — 7+ channel. By making proper subtractions
(see Secs. V.B and VI.B), we then have, for fixed ¢,

4re?
= iy
1 p> 1 1
+ f4 ds’ ax(s ’t)(s'—ers'—s)’ (5.17a)
and
b= arC9(0)
> _(1—s)(1—§) *

1 1
+- f ds’ bi(s’ t)[ + -
s'—s s'—35 2pq

Ibp g it2p g
Xln(s P Te T )] (5.17b)
s'+p2+q—2p g

where C,°(#) is the correction term coming from the
7=0, v+v — 7+= amplitude continued to negative ¢
values (see Sec. VI.C) and is allowed in & but not in @
by the asymptotic conditions (5.13a) and (5.13b). The
correction terms C,%¢(#) and C;%"(¢) for the charged
and neutral case, respectively, are connected through
the relation (6.10) to the correction terms C,%7()
given in Eq. (6.16). In Egs. (5.17a) and (5.17b) we
define a1(s,t), b1(s,t), p—, and ¢_ by

a1(s,t) =Ima(s,t)

drs «© (6)
=—2 (274+1) ImT++’(s)— , (5.18a)
s—1= s§—
b1(s,t)=Tmb(s,t)
drs o ~1%(0)
——~—IZ (274+1) ImT, J(s) . (5.18b)
S§—1 =1

p=1(4—10)%/2
g-=1(—1)%/2.

and
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Using the unitarity of the S matrix we can express
Ima and Imb in terms of a sum of the absolute squares
of the amplitudes for y+4-x — », where 7 stands for the
possible intermediate states. In this preliminary calcu-
lation, motivated by the success of the analogous
approach for yp scattering,’ we neglect the contribution
of all but the 2 intermediate states. If a 3 resonance
or bound state exists, its contribution may be non-
negligible. However, because of insufficient information
about such a state, we do not consider it in the present
discussion. In the above approximation, then, a knowl-
edge of the y+4m — 2r amplitude is sufficient to give
Ima and Imb. This amplitude has recently been studied
by Wong on the basis of the Mandelstam represen-
tation.” Only a single invariant amplitude is involved,
and only odd angular momenta need be considered.
We denote the helicity amplitudes (yr|T7(E)|rr) for
a given angular momentum j and energy E in the
v+ — 27 reaction by R,/(s), where + indicate the
photon spin parallel or antiparallel to the photon’s
direction of motion.® From unitarity, we then obtain

ImT.i(s)==%3[Ri(s)[?,
Ryi(s)=—R_i(s)=Ri(s).

The Ri(s) amplitudes are connected as follows to the
amplitudes M ;(s) given by Wong:

where
(5.19)

i 2 |'(s—1)2(s-4)]3
RG] Gaml s
i+
M;(s)|2 (5.20
2 +1)| i(s)[% (5.20)
Thus from Egs. (5.18a) and (5.18b) we obtain
1 (s—4)37}
"1“’”:75&;)2[ |
i(j+1 d1,1%(0
3 2D o0 (s )
jodd 2741 1+-cosf
and
bi(s,t)= 32 [(S 4)°]
+1) 6
25L4]m2 O 5oy
jodd 2741 1—cos

In Egs. (5.21a) and (5.21b) we retain only the j=1
term and substitute the corresponding @; and b; in the
dispersion integrals (5.17a) and (5.17b). This seems
to be a good approximation, since energies under
consideration are low. Furthermore, because of the
assumed P-wave 7w resonance, the amplitude for j=1
is expected to be larger than the higher waves. A similar
approximation has been made in proton Compton
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scattering, y+p— v+p.> Here only the wp inter-
mediate state is retained, and by neglecting all but the
contribution of the resonance in the j=% and 7'=%
state (7 being the isotopic spin), the results obtained
are in good agreement with experiments.5 Reintro-
ducing the charged and neutral superscripts ¢ and #,
we have then the following relations:

dre? 1 1
(1—5)(1—8) 3(B2¢/7)?w

X f ’ ds’[(s’;4) 3]%|M1<s'>|2

1 1
x( - ) (5.222)
s$—s §—38§

dre? 1 1

401 )+
(1—s)(1—3) (32\/71-)2

as(s,)=

be(s,t)=
% f ds'Ts' (s'—4)° ¢ M (s") |2
4
111
pENEE
s'—s §'—§ 2p.q

1 (S’+z>-2+q_2+2p_q~
n
s'+p2+q—2pg-

1 1o r(e—aep
o)== f ds[ - J

s

)] (5.22b)

1
+ 4

s'—s s'—3
1
3(324/7)2 7

), (5.23a)

b1 (s,1) = 4xCL0m (1) +

><foo ds'[s'(s'—4) 1(s)]?

1 1 1
v

s'—s =35 2p_q_

"+ p g 2 +2p g
ln(s b g )] (5.23b)
sS+p g —=2p g

The M;(s) amplitude has been obtained by Wong
using partial-wave dispersion relations.” Keeping only
the contribution of the 2w, J=1 intermediate state,
we observe that the phase of Mi(s) is given by the
phase of the = P wave. By replacing the left cut
involved in the partial-wave dispersion relations by a
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TasLE 1. Values of [1,(s)/By(s)J? and [Ib (s)/Bs(s)?
for sg=10 and I'=0.4

s [1a(s)/Bs () [1o(s)/Bs () T
5 2X 10~ 6108

10 5X10% 5X10-3

15 4X10% 9X10-8

20 1075 4X1073

single pole at @, Wong gave the M(s) amplitude
M1(s)=A(1+a)Di(1)/ (s+a)Di(s),

where A is a pseudoelementary constant proportional
to the residue of the left-cut pole, and D;(s) is the
denominator function of the P-wave = system which
is necessary to give Mi(s) the required phase. The
position ¢ is given by the behavior of the P wave, and
is larger for higher values of the P-wave resonance
energy. The constant A is estimated by Wong on the
basis of the #° lifetime, where it plays a role.” For a
0 lifetime of ~4X 1071 sec, he estimates A to be ~e.
With the Frazer-Fulco value for the P-wave ww reso-
nance position sp~10 and width I'=0.4, Wong found
a~5.7. When these estimates of A and a are inserted
into the dispersion integrals in Egs. (5.22a) and (5.22b)
for charged pions, we find by an exact calculation that
their contribution is <19%. Near s~~sg, we of course
expect the imaginary parts of ¢ and b to be important.
For any s value, we have from Eq. (5.26)

(5.26)

I.(s)=TIma*(s,t)=TIma"(s,t)

A2 14a\[ (s—4)*71#| D:(1) ]2
= 5.27
3(32\/#)2(s+a)[ s ] 1(s) , (5272)
and
Iy(s)=Imbe(s,t)=Imd"(s,)
D,(1)|?
—4)3 . (5.27p
3(32\/#)2(s+a) Lote—a7F Dy (s ( )

The ratios [74(s)/Bys(s)? and [1+(s)/By(s)]? are given
in Table I, where By(s) is the minimum value of the
Born term in Egs. (5.22a) and (5.22b) attained in the
forward direction. We observe that the above ratios
are not greater than ~19, near the resonance energy
sr~10. We have, so far, discussed the resonance con-
tribution only for sg=~10, but for a higher sz value ~20
the situation will not qualitatively change.

The biggest correction to the Born amplitude seems
to come from the C,%¢(¢) term and is roughly of the
order ~109, if we take A=—0.20 (see Sec. VI.C). The
ratios of the differential cross section do/dQ to (do/d)s
is given in Table II for §=90 deg and #=180 deg,
where (do/d)s is the differential cross section obtained
by keeping only the Born term. For 6=0 deg, the &
amplitude is absent, and hence the contribution to
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TasiE II. Values of ( ) / ,,c) at =90 and 180 deg.
Q)

s 0=90 deg 0=180 deg
5 1.06 0.93

10 1.10 0.89

15 1.12 0.88

20 1.13 0.87

25 1.14 0.86

do/dQ comes entirely from the Born term. For the
neutral case, of course, the contribution of C,%"(?) is
the only important one. If the correction term for the
I=2, j=0, y+v— 7+r amplitude is neglected (see
Sec. VI.C) we have from Eq. (6.10)

COm()~C0o(1).

The above results are in great contrast to the results
in proton Compton scattering where, as described
earlier, the 3-3 resonance in the intermediate pion-
nucleon system increases substantially the cross section
coming from the Born term.® The reason for the
negligible contribution of the = resonance is, of course,
the smallness of the y+m — 27 amplitude as is seen
from the factor 1/[3(324/7)%] in front of the integrals
in (5.22a) and (5.22b). The normalization of the
constant A introduced by Wong is evidently misleading,
since A~~e suggests a substantial magnitude for the
v+ — 27 amplitude. Numerical factors should be
absorbed in A so as to make it appear small compared
to e. The reason A should be small is probably associated
with the minimal character of the electromagnetic
interactions which appear in y4m — 27. This ampli-
tude is essentially the vertex joining a single photon
to three pions. Now from minimality we know that a
photon line can couple directly only with a charged
pair, and then the coupling constant is e, the elementary
charge. In the case under consideration, therefore, we
need a two-particle intermediate state. A two-pion
intermediate state or, in fact, any state containing an
even number of pions is, however, forbidden because
G conjugation does not allow an even number of pions
to go into an odd number. Thus particles heavier than
pions (e.g., kaons or nucleon-antinucleon pairs) must
be created in intermediate states. The constant A should
then be of the order ¢/M (where M is the nucleon or
K-meson mass) and therefore be small. In Compton
scattering, the contribution of the 27 intermediate
state is proportional to A? and thus to 1/M2.

VI. PION-PAIR PRODUCTION CHANNEL

In the barycentric system we can write k1= (¢, —q),

k2= (,9), pr=(—g, p), and po=(—g, —p), where
t=4¢=4(p*+1), (6.1a)
s=—g*— p*+2qp cosg, (6.1b)
and
§=—g—p"—2gp cos¢. (6.1c)
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Here ¢ is the scattering angle, ¢ is the square of the
barycentric energy, and s is the square of the momentum
transfer. The differential cross section is

1 7T
81r\/t

A. Helicity Amplitudes

If N,, Ny are the helicities of the photons and A, Ag
those of the pions, we have A;=0=2\y, and A=As—Xs.
If we denote the helicity amplitudes by Fao(¢), we have

Fro(@)=(1/9) 25 (j+2) M (9)dri'(4),  (6.3)

| Fro(a) |2 (6.4)

If by M, .(¢) we denote My ¢'(£) with Ae=1 and Np=1
(i.e., A=0) and A,=1 and Ap=—1 (i.e, A=2), re-
spectively, then we have

My i(O)=M- (),

do[)

aQ gq

(6.2)

and
do/dQ=

and
M, iQ)=M_(1).

As in Sec. V.A by comparing Egs. (6.1) and (6.3) for
appropriate polarization vectors, we have

a(s,é,t)=47r(——_t—;) Z Qj+10)M, 7 &.e)
—ir Y QD) 29 65
=2 1—cos?op
and ()
¢ of
b(s,s,t>=41r( - ) > QDM
=47r§0 Q@+ () dooi(6), (6.5b)
where
o 4 t % .
/u(t)—;( <t—4)3) My@),  (6.60)
and
17 ¢t \?
W(z):;(m) M40, (6.6b)

In terms of ¢ and b we have

1 1
hoi(l)=— f d(cosp) dao(6)alt, cosp),
8r v,
and
1 1
hyi(l)=— f d(cosg) doi(#)(t, cose),
&r J_,

where

s, (¢) = (1—cos?p)da,o* (¢)-
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The d?(¢p) functions are
i1 —Jj(G=1PF;
do (¢)=2P fCOS¢). ‘](J .)P (C?Sqﬁ)’ 6.7)
LG-DiG+DG+2)T

do,o'(¢) = Pj(cose),

and
(6.8)

where primes indicate derivatives with respect to cos¢.
In Eq. (6.4), we have (1—cos’$) in the denominator,
and we find

d,0(8) P’ (cosg)
1—cos’p [(j—1)i(G+DG+2)T

B. Asymptotic Behavior

The general procedure for establishing asymptotic
behavior is the same as in Sec. V.B. Relations (5.11)
and (5.12) together with the unitarity limitations

M, i) <1, (6.99)
and

M) <1, (6.9b)

then give us for — o

|a| Sconstant, || < constant

for fixed s (or 3), i.e., cosp==1, and
lal S, o] S
for any other value of cos¢. Equivalently, we have
415t [BlS¢
for cosp=-1 and

4]0, |BlS

for cosp=4=1.

C. Partial-Wave Dispersion Relations

Knowing the singularities in the amplitudes ¢ and b,
we can write down partial-wave dispersion relations
for k_7(t) and %.7(f). The branch cuts in ¢ and b are,
of course, the same as those in 4 and B. There is a
branch cut ¢>4 for the amplitudes #A57(¢). Corre-
responding to the cut s>4 as well as §>4 in 4 and B,
there will also be a cut ¢<—9/4. We shall project out
the Born term and write it explicitly as %p+7(f). Before
we write down partial-wave dispersion relations, how-
ever, we introduce amplitudes As" corresponding to
a definite isotropic spin I of the final two-pion state.
From charge conjugation or, equivalently, from crossing
symmetry, we notice that only even angular momentum
states are allowed and, therefore, only states with 7=0
and 7=2 need be considered. For the /=0 and I=2
states, we designate the amplitudes by the superscripts
0 and 2, respectively. An elementary calculation then
gives their relations with the charged-neutral ampli-
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tudes as

R ()= (3)}[ 2R (O+ R ()], (6.10a)

k2 ()= ) ()—hm(1)],  (6.10b)

where 4,7°(¢) and #,7*(f) are the charged and neutral
amplitudes, respectively. Similar relations hold for
h_7(f) amplitudes. We then have

1 =9 Im b (1)
Bt T (1) = b (£) +— f "
™

— i'—t

1 p*  Imhe?I()
+_ f dzl_ )
T Jy t—1

and

(6.11)
where

hp_? ! 1al da, 0’
p I I()=— 2,00(¢p)———,
O] i 1:1 (cos¢) dz,0 (¢)(1 (-39

2

(6.12a)
and

hpi? ! 1d do,o? ‘
g (1) =— 0.0/ () ———————.
1) \/6[1 (cosg) du /@) =

From Egs. (6.6) and (6.9), we have |4 _7(¢)| 1/ and
|hi(#)| £1/¢ in the physical region. Hence, in the
above relations, no subtraction constants are needed.
The integral along the left cut corresponds to the
correction to the Born term for the crossed channel
y—+7— y+x. As we have already seen, the correction
is probably small and we shall neglect it in this pre-
liminary calculation.

For the integrals in Eq. (6.11) involving positive ¢
values greater than four, we shall use unitarity. In the
approximation of including only two-pion intermediate
states, we have

Imhi 2 (1) = ket T () AT ([ (t—4) /1,

2

(6.12b)

(6.13)
where
AP =[1t/(t—4) ] exp(i6,)) sing;T  (6.14)

is the pion-pion scattering amplitude defined by Chew
and Mandelstam for angular momentum 5 and isotopic
spin I; §;7 being the corresponding phase shift.?

At low energies, we shall neglect the integrals in Eq.
(6.11) along the right-hand cut for j>2, since the
pion-pion amplitude for D and higher waves is expected
to be small. We then have

h 1) = s (),
since always j>2;

1) = b1 ()
for j>2; and

1 p= '—4N\?
0T () =hp "1 ()+— f dt'(——)
wTJy 4

() A ()
X .

; (6.15)
i'—1

Thus we consider the 7 interaction correction only to
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TasLE III. Values of /5. 0(t), ReC,” 0(t), and ImC,0:9(¢)
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Taste V. Values of ¢,9(¢) /o5, J’(t) and ¢,2(t) /o 5,2()

for A=—0.20, in units of e2. for A=—0.2

¢ B0 (2) ReC,20(8) ImC,°°(¢) ¢ o0() /o (f) o42(8) /o> (t)

4.0 0.289 0.395 0 4.0 5.60 1.29

4.5 0.237 0.042 0.208 4.5 2.15 1.21

5.0 0.203 —0.026 0.178 5.0 1.54 1.16

6.0 0.146 —0.059 0.093 6.0 0.76 1.05

7.0 0.109 —0.056 0.056 7.0 0.54 0.99

8.0 0.086 —0051 0.037 8.0 0.42 0.94
12.0 0.045 —0.032 0.010 12.0 0.22 0.83
16.0 0.027 —0.022 0.002 16.0 0.21 0.77

the 7=0 state (i.e., S state). Following Chew and
Mandelstam, we write?

A%T () =Ny (1) /Dol (1),

where NoI({) and Do!(f) are the numerator and de-
nominator functions in the w7 S amplitudes. From a
modification of the form given by Omnes,?'? we have

°° ar (t'
AN
Xhp ST ()N ()

=hp "1 ()+C1(0),

where C.%1(#) is the rescattering correction term due
to the mm interaction.

In an earlier work,"® values for the .S amplitudes in
terms of the pion-pion coupling constant A have been
obtained from crossing relations. At present A>~—0.20

by ()= hp 1 (1) +7"r Y, (t)

(6.16)

TasiE IV. Values of %p,°2(t), ReC,2(#), and ImC,02(¢)
for A=—0.20, in units of ¢?

t s 02(0) ReC,02(f) ImC,02(t)
40 0.204 0.027 0
45 0.168 0.016 0.017
5.0 0.143 0.009 0.018
6.0 0.103 0.002 0.015
7.0 0.077 —0.001 0.012
8.0 0.061 —0.003 0.011
12.0 0.032 —0.004 0.006
16.0 0.019 —0.003 0.004

2 R. Omnes, Nuovo cimento 8, 316 (1958).
13 Bipin R. Desai, Phys. Rev. Letters 6, 497 (1961).

seems a reasonable estimate.’® For this A value, we have
calculated the correction C,%I(f) to the Born term
hpy®1(f). This correction, of course, comes from the
final-state o interaction in the S wave. From Tables
IIT and IV, we find that for the /=0 state the cor-
rection is large at low energies corresponding to strong
attraction, but for higher energies it quickly changes
sign. Such a circumstance can be understood as follows:
If we take the Born term %p.°(¢) to be approximately
a pole at t=—ip, then its slope is ~i¢p~2. Since the
distance at which the pairs are produced is ~i57%, the
larger the distance, the faster is the decrease of %5.°(¢)
in the integral in Eq. (6.16). We have here a case in
which the pions are produced at a relatively large
distance—about a pion Compton wavelength—and,
therefore, %p.°(#) decreases relatively rapidly, giving
rise to a sign change in the principal part of the integral
in Eq. (6.16). At higher energies this negative contri-
bution is ~709%, of the Born term. The ratios ¢..7(¢)/
op+1(t) of the total cross sections for a given I spin with
and without the correction terms are given in Table V.
Such interactions as discussed above may perhaps be
detected by rather accurate experiments on pion-pair
production by a photon in the Coulomb field of a
nucleus.
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