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The three "spin" states of a maser are treated as individual chemical species. It is assumed that these
three species are in thermal equilibrium with the lattice at temperature T but that they are not necessarily
in chemical equilibrium with one another. The principle of minimum entropy production is used to derive
an equation of reaction equilibrium from which the steady-state behavior of the system with a microwave

pump may be completely described. In addition to the population distribution, which is in agreement in
6rst order with the results obtained by solving the rate equations, explicit expressions are obtained for the
internal energy, heat capacity, and entropy. The calculations are extended to include spontaneous emission

and cross-relaxation as well as the usual thermal relaxation mechanisms.

I. INTRODUCTION

1
CONSIDER E paramagnetic impurity ions in a~ diamagnetic crystal placed in an external magnetic

6eld. I,et us suppose that the interaction between the
spin magnetic moment of each ion and the combined
magnetic and crystal field gives rise to three unequally
spaced levels: E, (i=1,2,3). Spin lattice relaxation
mechanisms are "thermalizers. " That is, they tend to
bring the system to a Boltzmann distribution at the
lattice temperature T. These are denoted in the
customary way by the thermal transition probabilities
zv,; (s j=1,2,3) where nr;, =w, ; expt (E,—E,)/kTj. Time-
varying magnetic fields of the proper frequencies are
"equalizers. " That is, they induce transitions between
pairs of levels which tend to equalize (or saturate) the
population distribution. The radiative induced transi-
tion probabilities are specified in the usual way by
W,; (s,j=1,2,3) where W;;= W;;. Competition between
the thermal and radiative transition probabilities leads
to a steady-state population distribution, denoted by
e;. The power output, gain-bandwidth product, noise-
temperature, and other performance features of a
three-level maser may be calculated once the e; are
known. The conventional method used to calculate the
e; is by solution of the rate equations and normalization
condition:

=g (n,rr, ;—n;w;;)+g W';;(n, —e,) =0, (1)

quantities such as the internal energy, heat capacity,
and entropy, and to describe in detail what happens to
the "pump" power. The theory may be readily extended
to include spontaneous emission and cross-relaxation.

II. STATISTICAL MECHANICS AND IRREVERSIBLE
THERMODYNAMICS OF A THREE-

LEVEL MASER

A. Statistical Mechanics

We divide the E paramagnetic ions into three
chemical species corresponding to the three energy
values, E;. We assume that these three chemical species
are in thermal equilibrium with the lattice at temper-
ature T' but they are not necessarily in chemical
equilibrium with one another. The total partition
function for a single ion with spin energy E; may be
written as the product of s; and s~, where si
=exp E~/kT and s~—is a factor associated with all
other contributions to the energy of the ion. We
assume 2~ is the same for all three chemical species
and focus our attention on the partial partition function
s;. The corresponding partition function for e; identical
ions of energy E; is

Z;= /exp( —E;/kT) j"'/e;!. (3)

The free energy P, associated with the ith species is
given by

F';= knrT lnZ;= —k—n, T lns;+kT lne;!
=n;F,+kT Ine;!. (4)

3

X=+ e,.
i=1

(2)
The internal energy, entropy, and chemical potential
for the ith species may be found from Il; as follows:

It is the purpose of this paper to analyze the problem
of a three-level maser from the point of view of statisti-
cal mechanics and irreversible thermodynamics. This
approach yields results which are consistent with those
obtained by a solution of the rate equations. In addition
it enables one to calculate related thermodynamic

U;= T'(d/BT) (F;/T) =n—,E;, (5)

S,= —(BF,/BT)n;= —k inn;!, (6)

p,;= (BF;/Bn~) T =E;+kT inn;.

The expression for p; is obtained with the aid of
Stirling's approximation,

* Based on work performed under the auspices of
Atomic Energy Commission.

)On leave from St. Louis University, St. Louis,
during the summer of 1960.

lne;!~n; inn, —n;. (8)
L. D. Landau and E.M, Lifschitz, Statistical Physics (Addison-

Missouri, Wesley Publishing Company, Reading, Massachusetts, 1358),
p. 120.
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Cp1= C1231 C1232

C$2= C2232 C2233)

C$3= C3231= —C3233,

C(4:—C4231= C4233. —

In Eq. (11), C&23; means the change in 23; due to the kth
reaction,

4

Ce —=g C223,.
k=1

(12)

We assume the vahdity of the Gibbs relation when the
system is not necessarily in thermodynamic equilibrium:

TCS=CU P, h4,C23,+CW—. (13)

We set dS'=0 on the assumption that the sample
volume and static magnetic field are held constant.
With the aid of Eqs. (10)—(12), Eq. (1.3) may be
rewritten as follows:

B. Irreversible Thermodynamics

Let 8; denote the ith chemical species and consider
the following "chemical" reactions among these species.

(1) Bg+~B2,

(2) B~~B3,

(3) Br+~B3,
(9)

(4) B1+hv31+~B3.

The first three reactions are thermal relaxation processes
in which the lattice supplies or receives energy from
the paramagnetic spin system. The last reaction
represents a radiative transition induced by the
presence of a time varying electromagnetic field of
frequenCy v31

——(E3—Er)/h.
We define the chemical a%nities A; (J=1,2,3) and

the differential degrees of advancement C$3 (k= 1,2,3,4)
as follows:

~i=p2 —
ps&

A 2=p3 p2~

+3=@3 P]~

Two approximations are made in obtaining the right-
hand side of Eq. (16) from Eq. (10):

A,&&kgb' and hp;,g(kT.

Combining Eqs. (15) and (16), we have

(17)

s = 1—(23,—233)/(Nr —N3), (22)

where the lV s represent the normalized Boltzmann
population distribution. In the presence of the con-
straint on the system represented by A3/0, the
principle of minimum entropy production requires that

(rh/re 1) (C;S/Ch) =0. (23)

Carrying out the indicated

differentiation

on the
second form of Eq. (18) leads to the condition

c;S/ch (N/3k T') Ew»A 1'+w32A2'+w»A 32j

~(N/3kT')pm21A1'+w32(A 1' 2A1—As+As')
+w A 'j. (18)

The second form for Eq. (18) follows from the fact
that the A; are not independent:

A2= A3—Ag.

In thermodynamic equilibrium Cp/Ch=0. It follows
from Eqs. (18), (10) and (7) that A1=A2=As=0,
p, 1

——ps ——h48, and 23,/n, =expt (E; E;)/kT—$, which is the
normal Boltzmann distribution.

In the presence of a radiative "pumping" Geld, A3 is
held fixed at a nonzero value:

A3= she~3, 0&~ s~& 1. (20)

Equation (20) may be used as the de6ning equation
for s, the saturation parameter. It may be readily
interpreted with the help of Eqs. (7) and (10).

231/233 ——exp Lh v31(1—s)/k Tj. (21)

When s=0, there is no "pumping" Geld and we have
the Boltzmann distribution. When s= 1, the "pumping"
field completely saturates levels j. and 3 for which
231——n3. If Eq. (21) is expanded and only the linear
term is retained, s is seen to be the same as the parame-
ter defined by Overhauser':

(24)~21~ 1 ~32~ 2 ~

TCS=CU+Q A,CP,+A3C/4.
j=1

The internal entropy production associated with the
irreversible relaxation processes is

(25)h42= frh41+ fsh43,

where

(14)
This is equivalent to the equation of reaction
equilibrium

C;S/Ch= (1/T)A, (Cg~/Ch).

The C$,/Ch and the A; are related as follows:

c(1/ch= crnr/ch= 232w2] —Srw12 (N/3k T)w21A1,

c(2/ch= c2432/ch= 233w32 —232w23 (N/3kT) w32A 2,
(16)

C(3/Ch= C3231/Ch= 233w31—231w13 (N/3k T)w»A 3,

c$4/ch c4231/ch (233 231)~13—(N/3kT)~13(A3 hv31)

f1=w21/ (w21+w32) and f2= w32/ (w21+w32) ~ (26)

This is one of the principal results of this paper. In
conjunction with the normalization condition g; 23,=N,
it enables one to calculate the normalized population
distribution of the three-level maser in terms of the
saturation parameter, the relaxation rates, the energy

' A. W. Overhsuser, Phys. Rev. 92, 411 (1953).
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level separations, and the lattice temperature. From
Eqs. (7) and (24), it follows, for example that

238/232
——expL(f1shv81 —hv32)/kT]. (27)

If we take the linear term in the expansion of Eq. (27),
the population diGerence is

~P312V21 P82(2P21+2V82)
F3 e2=

3kT

In the limit of complete saturation, s=1, Eq. (28)
yields a well-known consequence' of the rate equations.

C. Internal Energy, Heat Capacity,
and Entropy

It is now a simple matter to compute the internal
energy, heat capacity, and entropy of a three-level
maser.

From Eqs. (34) and (35), if 2p21 ——w32, we find that
the heat capacity of a saturated maser is less than that
of an unsaturated maser by -', Xk(hv»/kT)2.

FOI tile special case of 5= ~ and ~2j.=- ~32,

X fkv81) '
S(s=1)—S(s=0) —'1Vk ln —

I I
. (37)

3 l,kT)

It is not surprising that the entropy of the para-
magnetic spin system in thermodynamic equilibrium
is less than that of the saturated system. The entropy
is a maximum for the equilibrium state provided the
energy is held constant, a condition which is clearly
not met when a radiation field is pumping energy into
the system.

D. Povrer Absorption

It is instructive to inquire what happens to the
power I'», absorbed by the maser system:

Thus

3

U=Q U, =Q 23,E,,

C1r= (4)U/4) T)Ir,

S=p, k23, (1—ln23, ) = 1Vk —k p; n, ln23;.

(29)

(30)

(31)

1V (I3P13iP„= (n.,—233)I8P,3W,8=—
I I (1—s) W1, (38)

3 EkT)

A fraction s of this power increases the internal energy
of the maser without an increase in temperature. This
is represented by the last term on the right-hand side
of Eq. (14):

lY
U(s=1) =—(v3,+v, 1)

3

(P212P» —P822V821

(v21 —v32)
I I, (32)

9k T L w21+2v32 )
2/h'

U($=0) = (P31+P21) (V21 +P21P82+P82 )) (33)
3 9kT

JV 13 t' P21R21 P82'2P82'l

Clr(s= 1)= (v» —.») I
I+4'(T), (34)

9kT ( 2P21+2v82

dt4 lV (hv13)—-43 ——s(nr —138)kv18W18=I Is(1—s) W13. (39)
df 3 l, kT)

The balance, (1—s)P13, increases the temperature of
the sample without an increase in the internal energy
of the spin system. If the maser material is kept at
constant temperature T, this power boils off some of the
liquid helium or liquid nitrogen coolant. In the steady
state the rate of increase in internal energy is exactly
compensated by the power lost due to thermal
relaxation. This latter is represented by

2Th'
C~($=0)= (P21+P21P82+P82).

9kT'
(35)

PdP) X ( 2P21W32 )
TII I

= (skv18)2I 2P31+ I. (40)
d1 ) ~1~ 3kT E 2P2].+2P32)

By equating Eqs. (39) and (40) for the steady state,
In Eq. (34), C (T) is added to take into account the we 6nd an explicit expression for the saturation
temperature dependence of the thermal relaxation rates. arameter .

&fr &f2q
@(T)= — (P21 P32)

I
»1 —P32 I. (36)

9kT 0 BT BT)

W13 (2P3.+2P21)

W18 (2P82+2P21) +2v8 12P21+2P812P82+2P212P82
(41)

If the thermal relaxation rates increase linearly with
temperature, a not unreasonable assumption, then
4 (T)=0.

From Eqs. (32) and (33), if 2v» ——w82, we find that
the internal energy of a fully saturated maser exceeds
that Of an unSaturated maSer by 18K(hv»)2/kT.

'See, for example, J. Weber's review article on masers, Revs.
Modern Phys. Bl, 681 (1959).

This result may also be obtained by using Eq. (22) as
the definition for s and solving the rate equations with
the linear approximation to the Boltzmann factor. ' As
the saturation is increased to higher levels, less of the
power absorbed is used to increase the sample temper-
ature (or boil the coolant) and more is used to increase

4W. A. Barker, Argonne National Laboratory Report 6390,
June, 1961 (unpublished).
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the internal energy of the maser system. In the limit
of s=1, when W13))iv;, , we see from Eqs. (38)-(41)
that

~322v21 ) (de~)
(h, )'i + i

= Ti i
. (42)

3kT 4 w32+w21 ] ( dt )

E. Spontaneous Emission and Cross Relaxation

In maser systems spontaneous emission' and cross-
relaxation' processes may be important. The foregoing
theory may be extended to take these mechanisms
into account. In addition to the thermal relaxation
probabilities m,; let us consider a spontaneous emission
probability A» and a cross-relaxation probability m»23.
22~ tends to deplete the population of level 2 and
increase the population of level 1 by emission of a
photon. It is important to note that the relation

iv21+A21 iv12 exp(hv21/kT) (43)

is now required to produce a Boltzmann distribution
among the energy levels of the maser system in the
absence of external constraints. m»23 tends to bring
the populations of levels 1 and 2 into equilibrium with
the populations of levels 2 and 3. It is important to
bear in mind that m»23 is appreciable only if v» p32

is small.
Spontaneous emission as well as nonradiative thermal

relaxation is now understood to be included in the reaction

(1) 81~~82. (44)

Cross-relaxation may be taken into account by adding
a fifth "chemical" reaction to Eqs. (9):

(5) &~&i+&3.
And to Eqs. (10) and (11), we must therefore add
another chemical amenity and differential degree of
advancement:

The right-hand sid.es of Eqs. (48) and (49) are obtained
from Eq. (10) and the approximations of Eqs. (17)
and in addition explicit use is made of Eq. (43) and of
the fact that v» —v32 is small. The rate of internal
entropy production now has two additional terms:

d;S
L(28 21+A 21)A 1'+~32A 2'+iv31A 8'+ 323 21 3A 3']

dt 3kT'

+ (iv21+A21)A I +2v32(A1 2A1A 3+A 8 )
3kT'

+3282123(A8 4A1A3+4A1 )] (~0)

The second form of Eq. (50) makes use of the inter-
relationship among the chemical amenities:

A5= A2 —Ay=33 —2A g. (51)

In thermodynamic equilibrium d,S/dt= 0 again leads
to the Boltzmann distribution. On the other hand if
A3 is held 6xed at a nonzero value to represent the
radiation "pump" 6eld, then the principle of minimum

entropy production requires that (8/BA 1) (d;5/dt) =0.
This now leads to a more general condition:

(23 21+A 21+ 82312123)A 1 (23 32+ 32v2123)A 21 (o2)

which is equivalent to the equation of reaction
equilibrium

ti2=tiif1 +t33f2 )

fl = (W21+A 21+32v2123)/ (W21+A 21+&32+3 W2123) ) (»)
f2 = (23132+ 3281.2123)/(23121+A 21+23132+32812123) ~

Since Eq. (53) is precisely of the same form as Eq.
(25), all the previous results derived for thermal
relaxation mechanisms may now be extended to include
spontaneous emission and cross relaxation by using
the following simple prescription:

A3—= (t 3
—

t 2)+ (t 1—P2),

d(3=—d 3232 = d3281 d3283. — —
(46)

(47)

iv21 ~ 23 21+A 21+ 32v2123)

23132 + 23 32+ 323 2123
2

(55)

The relationship between the dg;/dt and the A; is now
more complicated than that specified by Eqs. (16).
The first of Eqs. (16) now has an added term due to
spontaneous emission:

dtl!dt d1281/dt 28223121 281ZU12+282A 21

(1V/3kT) (w21+A21)A1. (48)

An additional equation is required to describe the
specified cross-relaxation eRect.

d f3/dt = (iv2123/N) (281233—2322)

—(+28'2123/9kT)t A3+h(v21 v32)j
~1V2v2123A 3/9k T. (49)

' T. Maiman, Nature 187, 493 (1960) and Phys. Rev. Letters
4, S64 (1960).' N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman,
Phys. Rev. 114, 445 (1959).

III. CONCLUSION

It has been shown in this paper that the principle of
minimum entropy production leads to an equation of
reaction equilibrium which may be used in a statistical
mechanical formulation to calculate the population
distribution of a three-level maser. The mechanisms
considered include thermal relaxation eRects, spon-
taneous emission, and cross-relaxation. The approxi-
mations made are

(1) hv, ,&(kT, 2/j=1, 2, 3;
(2) shv13&(kT

(A,«kT),
(3) f2'shv i3«k T

(4) v21—v32 0 (cross-relaxation).
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Inasmuch as s and f&' are less than or equal to unity,
approximations (2) and (3) are less restrictive than (1).
The results for the population distribution agree with
those obtained from the rate equations in first order
when approximation (1) is also made.

The new features of this paper include explicit
calculations of the internal energy, heat capacity,
entropy, saturation parameter, and minimum entropy
production of a three-level maser. The spontaneous
emission and cross relaxation mechanisms introduced
tend to reduce the value of the saturation parameter
from its value given in terms of m,, and 813 alone.
Since +2123 is appreciable when v21—v32 is small, this
cross relaxation mechanism has an interesting effect

on the maser's internal energy and heat capacity as can
be seen by an inspection of Eqs. (32)—(35) inclusive.
As s goes from 0 to 1, the internal energy of a three
level maser is increased by (21K'/9kT) (vs''+ v2t vss

+ v&2s) whereas the associated heat capacity is decreased
from its equilibrium value of (2Ah'/9kT')(v2P+v2tvss
+vs22) to zero.
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At low energies ionic collisions with atoms are largely elastic. Simple theoretical approximations to scattering
cross sections, ranges and straggling are derived for. power potentials, showing that the scattering is peaked
in the forward direction rather than isotropic. Using an approximate universal potential of Thomas-I'ermi
type a natural measure of range, p, and of energy, ~, is obtained for all ions in all substances. The corre-
sponding range-energy curve is computed.

At higher ion energies the electronic excitation becomes increasingly important. An approximate formula
is given for the electronic stopping contribution, increasing proportional to ion velocity at low and moderate
velocities. These results are applied in the interpretation of a few isotope eRects, observed in range
measurements.

~ OR ions with velocity e comparable to or less than
no=e'/A, an interesting competition appears be-

tween loss of energy to electrons and loss of energy to
atomic recoils, corresponding to stopping cross sections
per atom S, and S„. Quantities of importance to this
competition are S, and S„combined with some averages
over the differential cross section do-„ for scattering of
the ion by a recoiling atom. The present discussion of the
velocity region ~&no is intended as a step toward a
quantitative treatment of the processes involved.

At 6rst we shaH disregard energy loss to electrons
and discuss atomic recoils only. Bohr' introduced the
assumption that S„is nearly a constant in a considerable
velocity interval at low velocities, and used arguments
of the Thomas-Fermi type in order to give a comprehen-
sive description. In fact, the Thomas-Fermi treatment
gives an important simplification and a fair accuracy,
at energies large compared to the Rydberg unit.

*Deceased.' N. Bohr, Kgl. Danske Videnskab. Selskab, Mat.—fys. Medd.
18, No. 8 (1948}.

The scattering problem in nearly elastic collisions
between atoms and ions at low velocities can be treated
by classical mechanics. It follows from dimensional
arguments that the potential must behave as r-' if S„
is independent of velocity. The scattering in this po-
tential is very closely given by the useful formula

do„=(S„/2T ') (dT/T:),

where T = 2M''M2v'/(Mt+Ms)' is the maximum value
of the energy transfer T. The scattering cross section
(1) has a large probability for small angular deflections,
and is similar to the Rutherford scattering rather than
to the isotropic scattering of hard-sphere collisions.
Assume that the potential is V= $„Z,Z2e'a/2r', with the
parameter u given by

a= (A'/me') X0.8853(Zg1+Z2*') ',

and therefore of similar type to the Thomas-Fermi
unit of length. We then obtain the formula


