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where we have used (S,Ms~S+5 ~S,Ma)=s(5+Ms)
X (5—Ms+1). Also

(S+F 4FsF sF4S )
=-',(5+ )(F 4(Hs+Ht)F4)
=-', (S+S )((Hs+Ht+2)F 4F4)
= sr (5+Ms) (S M8—+1)(eo+E+2)

X(s~—sE) (s~+ sE+1) (A3)

(S F4FtF rF 45+)
= r~ (5—MB) (5+M s—1)(eseE+2)

X (~@+-,'E) (-,'p —-,'E+1). (A5)

There are two off-diagonal terms:

(5+FrF sF4$ )=(S+5 )(F 4F+4)
= s (5+Ms) (S—Ms+1)

X (-,' —-,'E) (-', +-,'E+1), (A6)

(S FsF,F 4S+)= ,'(S M-s)(—5+Ms+1)
X (-',p+ ,'E) (-,'y-',E+—1)-. (A7)

In the last line we have used the fact that —(+sr)F+4
acts like J+ in a space with "angular momentum"
J=~LM, and 3fg= —'E'0

Similarly,
The inhomogeneous terms, which come from the left

side of (6.6), must be calculated separately for each
case, although the commutors may be used to reduce

(S I'sF sS+)= ,'(5 M-B)(—5+Ms+1)(ep+E), (A4) the operators:

(5+Fr P;F r(i)5 (i))=-', (S~ P;(Hs(i) —Hr(i)]5 (i)),
(S Fs P'F s(i)5+(i))=-,(5 P;LH, (i)+Hr(i)]5+(i)),

(S~ 4Fs Q;F r(i)5 (i))=(S+F 4P;F4(i)5 (i)),
(5~4 r 2 ' F—s(i)5+(i)) (5~4 Z ' F—4(i)5+(i))

The right sides of these equations are calculated by using the determinant forms (Table II) and (6.7).

(AS)
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A quantum mechanical calculation of the time-dependent Mossbauer transmission has been performed
neglecting solid-state effects. The source considered consists of nuclei which decay via a two-photon cascade,
the second of which is emitted without recoil and is subject to resonant absorption by a foil whose resonance
may be shifted due to a small relative velocity between source and absorber. The transmission is obtained
when the transmitted recoiless photon is measured in coincidence with the first photon of the cascade. The
result is in agreement with that obtained by considering the absorber as a classical dielectric slab capable
of absorption and dispersion. The initial condition has been investigated in detail by considering the full
cascade. In this manner, one sees that the usual simple assumption that the nucleus is in the first excited
state immediately after the emission of the first photon, gives the correct boundary condition.

INTRODUCTION

i
= HE most common Mossbauer experiment is

performed by measuring the transmission of
recoiless radiation through a thin resonant absorber
which may be in motion relative to the source. In this
manner, the hyperhne structure of the isotope employed
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may be investigated. ' An interesting variation of this
simple experiment has been performed by several
groups. '—' They make use of the most popular
Mossbauer isotope, Fe'~. The source contains Co"
which decays by electrongcapture to Fe'"~ which
decays in turn by a 122-kev photon followed by a

' S. S. Hanna, J. Heberle, C. Littlejohn, G. J. Perlow, R. S.
Preston, and D. H. Vincent, Phys. Rev. Letters 4, 177 (1960).' F. J. Lynch, R. E. Holland, and M. Hamermesh, Phys. Rev.
120, 513 (1960).' R. K. Holland, F. J. Lynch, G. J. Perlow, and S. S. Hanna,
Phys. Rev. Letters 4, 181 (1960).

4 C. S. Wu, Y. K. Lee, N. Benczer-Koller, and P. Simms, Phys.
Rev. Letters 5, 432 {1960).

E. L. Garwin, University of Illinois, Urbana, Illinois, 1960
(unpublished).
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14.4-kev photon (competing with internal conversion)
to the ground state. The 14.4-kev photon is the one
which is emitted without recoil about 60%%uo of the time
even at room temperature. ' These investigators measure
the transmission of the 14.4-kev photon through a
resonant absorber foil. The recoiless photons, however,
are counted in delayed coincidence with the 122™kev
photons. The spectrum of transmitted radiation gives
information on the temporal aspects of the emission
and absorption processes involved, with well-defined
initial conditions. In this paper, an attempt is made to
calculate the line shape (transmission vs absorber
velocity) of the transmitted radiation as a function of
the delay time, employing the principles of quantum
mechanics.

The experimental results are in general agreement
with the theory developed here. For extremely short
times, the transmitted line is greatly broadened. As
the delay time grows longer, the line develops a damped
oscillatory behavior, the central peak of which ap-
proaches the natural linewidth. For very long times,
the oscillations become quite rapid, and the central
peak becomes narrower than the natural line while the
area under the other peaks becomes more significant.
One extremely interesting point is that for certain
delays and relative velocities the transmission is greater
than it would be if the absorber were not present. Thus,
the resonant absorber seems to produce a time bunching
of photons.

Hamermesh' has performed a simple classical calcu-
lation of this e6'ect. He assumes that the source and
absorber are composed of a collection of single level
damped harmonic oscillators with natural frequency
coo and damping factor F. The radiation field emitted
by the source can be represented as a damped electric
field,

a(t) =expLi(&es+il"/2) t].

If this field is Fourier decomposed, each frequency
component sees a different index of refraction ss(a&) as
it traverses the absorber. The standard expression for
the dielectric constant e (e=e') of such a collection of
damped oscillators is

absorber of thickness d,

a'(ta) =a(ta) expl icadn (ta)j. (3)

The inverse Fourier transform of (3) is a'(t), the square
of the magnitude of which is the transmission,

In the above, we have hta=cas —cds', p is given by
P = —(rd/I'), and J I (Pl't) &j is the usual 8essel
function of order m. Curves of the transmission have
been plotted by Hamermesh for various values of the
parameters P and (Ace/I').

In the usual manner, ' we arrive at the coupled system
of equations which the expansion amplitudes a„(t)
must satisfy,

In the above, te„ is the energy corresponding to
I p„)

(i.e., Hsl p„)=co„ly„)) and the time dependence of
the matrix elements has been explicitly displayed. The
inhomogeneous term expresses the boundary condition
a~(0)=5„t, at t=0, the system is in the pure state
corresponding to p=l. More useful than (6) is its
Fourier transform. ' If we write

a„(t)= —(27ri)
—' I dto expl i(ca„—ca)t)A, ((o), (7)

QUANTUM MECHANICAL APPROACH

The time development of a quantum system is deter-
mined by its Hamiltonian. In what is to follow, we
separate the Hamiltonian into two parts, LEO, which
includes the nuclear effects and the free radiation field,
and H, the interaction term which is responsible for
transitions between the pure states

I p„) of the free
Hamiltonian. The true state lit) (belonging to the total
Hamiltonian) may be expanded in terms of the

I y„),

e(ca) =1+r(res" ee'+iteI')—' (2) then (6) can be written as
In the above, zoo' is the resonant frequency of each
absorber nucleus, and r is a constant which depends on
the density and properties of the absorber nuclei. In
this manner, the Doppler shift due to the possible
relative motion of source and absorber is taken into
account. The frequency distribution of the transmitted
field a'(to) differs markedly from a(a&), the field leaving
the source, each component being altered by a frequency-
dependent phase change due to the presence of the

S. S. Hanna, J. Heberle, C. Littlejohn, G. J. Perlow, R. S.
Preston, and D. H. Vincent, Phys. Rev. Letters 4, 28 (1960).' M. Hamermesh, Argonne National Laboratory Report
ANL-6111, 1960 (unpublished).

The introduction of +is in (8) ensures that the system
will display the correct behavior for t(0 and gives us
the proper causality conditions.

For a single nucleus having only one excited level
(at energy &ds) and two competing modes of decay,
radiative (matrix element (IHI)) and internal con-
version (matrix element (Ihl)), there exist only three

s L. I. SchiiI, Qnantnm ilfeehantes (McGraw-Hill Book Com-
pany, Inc. , New York, 1955), p. 195.

~%. Heitler, The Quantum Theory of RaChatiog (Oxford Uni-
versity Press, New York, 1954), p. 163.
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significant amplitudes. They are as follows: (1) A(pi),
nucleus in excited state, energy &pp, (2) B&(co), nucleus
in ground state, one photon k present, energy p&i,

(3) Cp(pi), nucleus in ground state, one conversion
electron p present, energy co„. If this nucleus is initially
excited, (8) may be written as

(po pip+—i p)A (pi) = 1+Pq HqBq(pi)+go hpCo(pi), (9a)

(pi pii+—ip)Bi, (pi) =Hi,*A(pi), (9b)

initial condition is that the first photon of the source
cascade is emitted at t=0. Thus, we are able to say
that the source nucleus is in the first-excited level with
unit probability at that instant. We can write (8) for
this system as

(pi —pip+i', /2)A (pi) = 1+Pi HgBi(oi), (12a)

(pp —&oi+ip)Bi, (pi) =A(po)Hi, "'+C((o)Hi,*e '"~o, (12b)

and
(pi pi„+—i p)Co(pi) =ho*A (pi). (9c)

(pp —cop+i', /2)C(pi)=gz B&(pi)H&e'~". (12c)

For simplicity, {p, ~Hi,
~ q,„z) has been written as H&

and (rp, „~hp~ po'd) as h, . When substituting (9b, 9c)
into (9a), we obtain

A ((o) IH& I

'
(M —(op+zp)A (co) =1+Pg

CO
—

COIt, 16

A(p~) /h, /'
+Ep (1o)

CO M~ ZE.

Each of the sums in (10) may be evaluated by first
converting them to integrals and then employing the
symbohc identity

(x+ip) —'= P(1/x) —iir5(x).

The 6-function contribution gives an imaginary term
which results in a finite linewidth. The principal value
term results in an energy shift of the line and will not
be considered further since it may be eliminated by
correctly choosing our expansion states. In this manner,
(10) may be rewritten as

A (pi) = P(p pio+iy—,/2+iyii/2] '

P(p=pi +—iF/2j

where 7„yg, and F are the partial internal conversion,
partial radiative, and total linewidths, respectively. We
find, for example, that yz is given by pz ——Vp&' H '/s
where U is the volume of normalization and H ' is
the square of the matrix element averaged over all
possible k directions. Let us for the present ignore
polarization eGects and consider H& to depend only on

~
kj. Finally, it should be noted that the Fourier trans-

form of (11) leads to the simple usual exponential
decay,

~
a(t) ~'=exp( —Ft).

,The simplest quantum mechanical model for resonant
Quorescence is that in which only two nuclei participate,
the source and the absorber. In general, we will never
consider the details of the solid-state questions arising
in connection with the conditions for recoiless emission
or absorption. For our purposes, we will take all
processes to be recoiless and will later attempt to
overcome this restriction by a phenomenological ex-
tension of our results. First we will consider a one-
dimensional experiment in which the source nucleus is
located at @=0 and the absorber at x=xp&0. The

The three states of interest are as follows: (1) only
source excited, energy pip, amplitude A(p&); (2) both
nuclei in ground state, one photon, k, present, energy
pi&, amplitude Bi,(pi); (3) only absorber excited, energy
~po', amplitude C(pp).

We have written cop' for the first energy level of the
absorber to allow for the Doppler shift due to its motion
relative to the source (pip' ——coo+pipe/c, where v is the
absorber velocity). Actually, the various frequency
components of the source radiation experience diGerent
Doppler shifts. A more careful calculation reveals that
the only effect of this exact treatment (aside from
adding mathematical complications) is to alter the
final transmission by terms of higher order in m/c

which would be immeasurable for such experiments
because of the small relative velocities employed (v&1
cm/sec, typically).

In writing (12), we have already eliminated the
amplitudes for internal conversion, resulting in the
added factors of (ip,/2), in the previously discussed
manner. If the conversion coeKcient is large (i.e.,
y,))yz) or the geometry favorable, the source nucleus
will decay in the same manner as it would if the ab-
sorber were absent. To good approximation, we may
assume that A(p&) is the same here as given by (11).
When substituting (12b) and (11) into (12c), we obtain

C(pi) = —2$'riie'"~o{pp —cop+'LF/2)

X (pi —pip +iF/2) . (13)

'Fhjs expression may be used in turn to solve for Bi(pi)
via (12b),

B,( ) =H,*( —,+iF/2)-i( — +i.)-'
~i(a)—k) xoPB

X 1—i—
2 (p~ —pio'+iF/2)

The time-dependent amplitude can now be obtained
from (7). Finally, this allows us to calculate the spatial
wave function of the radiation field,

y(x, t) =P, I;4'&'-""~b,(t) for t&g&xo
iJ$H *&i(eu0—iI'l2) (a—t)

&&L1—oiv&(~o —~o')—'(1—e' "—""'"-*)7 (13)

where L is a normalization length. For x&xp, the
square of the magnitude of the wave function is the



CALCULATION OF MOSS 8 AU E R TRANS M I SS I ON

r2(Viip (Vii )
&2r) ( r ) (~o—~o')o+r'

1 (pii)

2 4F ) (Mo (do) +F

The probability of a photon emission for the source
nucleus is pic/I'. The factor of —,'arises because only
half of the emitted photons will be headed in the
forward direction in this simple one-dimensional model.
This explains the first term as the source emission
contribution. The second term is the absorption term
since it merely multiplies the incident Aux by the
absorption cross section. The third term gives the
probability of re-emission, the absorption multiplied
by the appropriate conversion fraction (another factor
of —', enters here as in the first term).

transmission,

&(r)=ogive "'(1 —
pic(ohio ~o') 'sing(~o —ooo')rg

+pic'(coo —~o') ' sin'Poor(~o —coo'))), (16)

where 7=1 x. T—he various terms in (16) may be
identified as the counting rate due to the emission from
the source, the e8ect of absorption due to the absorber,
and the subsequent re-emission from the absorber,
respectively. This correspondence becomes more evi-
dent if (16) is integrated over r. This latter case
describes an experiment in which no coincidence
measurement is made. The result is

(Q7 Mi Mo+Zo)Cgq(M) =Ho (Bing(co)

+Do(o)& "*'j
and

(18c)

(~ oog (uo'+—iy,/—2)DI, ((o) =P, H,e"*oC&,((o). (18d)

The chain A —+8—+C occurs as it would in the
absence of the absorber to the same approximation as
discussed previously. Thus, A(or) and B(~) can be
obtained by solving (18a-18c) after setting D(&v) equal
to zero. The result of this calculation is

to have two excited states, one at energy 8", the second
at energy ~o (W) cup). The Mossbauer level is the lower
of these two. At t=0, the source is in the state with
energy 8'. At some later time, it emits photon k and
goes into the level at energy coo. At a still later time,
photon q is emitted as the source nucleus goes into its
ground state. This is the Mossbauer photon which
may or may not be absorbed by the second nucleus.
Four amplitudes must be considered for this problem.
They are as follows: (1) A (&o), the source at level W,
no photons present; (2) B~(co), the source at level coo,

one photon present (k); (3) Co, (~), the source in its
ground state, two photons present (k,q); (4) Di(co),
the absorber excited to energy ~0', one photon present
(k).

The appropriate set of equations for these amplitudes
1S

((o—W+io)A (a&) =1+go HgBi(cu), (18a)

(~—~o—col,+iy,/2) Bi (cu) =Hi, *A (a)
+Q, H,Ci,o(o)), (18b)

VERIFICATION OF THE t=o BOUNDARY
CONDITION

and
A ((v) = (cv W+iA/2) '— .

The boundary condition previously used was the
one in which the source was excited with unit proba-
bility at t=0. All other amplitudes were taken to be
zero at that time. This corresponds to the assumption
that a measurement of the first cascade photon emitted
by the source at t= 0 establishes the state of the source
nucleus. In this section both radiations in the cascade
will be included explicitly. The source will be assumed

BI,((u) =Hg*(co —W+ih/2) '((o—coo—ooy+iF/2) ', (20)

where A. is the linewidth of the first-excited state and
F is the total linewidth of the second-excited state. The
radiative linewidth of this second level will again be
denoted by yz. We can now use (19, 20) together with
(18c, 18d) to obtain Ci, (&v). Substituting (18c) into
(18d) and using (20), we obtain

&
i(co-~p) zp

Da(~) = —-'ivzHo*
((o—ooo —cog, +il'/2) (oo —W+iA/2) (oo —ooj,—(uo'+ir/2)

(21)

Substituting (20) and (21) back into (18c) gives the
desired result for Co, (cu),

q

Co, (co)=-
(oo W+i A/2) (co co—o coo+iI'/2)— —

We can now obtain the Fourier transform of (22),

Ci (/) = —(2ori) i, ~ d(u expLi((so+co —(o)tj

&&C~,(~). (23)

The wave function corresponding to this amplitude is

g'( —a-q) oYBx j —i (22)
2 (M —M o' —(go+ LF/2)

f(xi,xo,t) = (L/4'') I dkdq Co, (~) exp/i(kxi —coot)j
)&exp/i (gxo —co,t)). (24)
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)(e~&&&++a—ce) &e
—~&&&'+&a'—ce') &e ~( &»—oem' &)e

—~& &'»—oetI' &)

Xe~(&~+»P-»oe ~(&'~+&'&P-»'&& (2g)

The function C&, (pp) has the proper analyticity so that
the integrand is nonzero only for t)0. This allows us
to perform the t integration from —po to +~. Since
the time dependence in the integrand is completely
specided, the integral over t is the easiest to do. The
result of this integration is 2mb(a&' —&o), so that

T(r) =L'(2pr) ' dppdkdk'dqdq' Cg, (a)Cp, ((u)*

)&e'&~—~') 'e'&~+&—' &')

For x2)xo and 7-~&0 we find

(26)

T (r) = —,'y~e —r'{1—y~ ((up
—(up')

—'
sinL((op —(op') r$

+ygP(cop —ppp')
—' sin'l -', (cup —ppp')rj}. (27)

This result is the same as that obtained in (16) except
for the added factor of —,'here. This arises since only
half of the first emitted radiation is detected by the
counter. The rest is emitted in the backward direction.

The detailed treatment of this section verifies the
validity of the simpler treatment of boundary conditions
which we have used up until now. Once performed
rigorously, it is now sufficient to resort to the simpler
treatment again which is what we will do in the re-
mainder of this paper.

Everything done up to this point may easily be
repeated for a three-dimensional system. The only
additional complications which arise are those of
geometrical origin and in no way alter the general
conclusions already reached. In this case, however,

Obviously, f(x&,x&,t) can be considered as a probability
amplitude. Therefore,

l f(x&,xp, t) l' is the probability
of simultaneously finding the first photon at x& and the
second photon at x2 at a time t. If we place a detector
capable of sensing the erst radiation at x~ and another
which detects the second at xp, then lP(x~, xp, t) l' be-
comes the probability of simultaneously counting both
photons at the time t. If x~)x2, then the erst photon
was emitted from the source at a time t~=t—x~, and
the second was emitted at a time t~=t—x2. Thus, we
have t&(t2, and a delay has been inserted into the
counting system which is r=x&—x2. In this manner,
this calculation is seen to parallel the actual physical
manipulations made in a laboratory delayed coin-
cidence measurement. Since the experiment described
above has no way of determining the length of time
which the source nucleus spends before its first decay,
we must integrate over the time t. Combining (23)
and (24), and using the discussion of this paragraph,
we obtain the transmission as a function of the delay
time,

T(r) = L'(2pr) —' dppda)'dkdk'dqdq'dt C&,(&u)Ck, (pp')*

the probability of the source being re-excited by re-
emission from the absorber is small for reasonable
source-absorber separation because of the small solid
angle subtended by either nucleus at the site of the
other. Therefore, the previous assumption concerning
the simple exponential decay of the source is certainly
valid here (even if there is no conversion present).

THICK ABSORBERS

Real experiments, however, are performed with
absorber foils which are composed of many nuclei.
Such a system is described in analogy to (12), by

(pp (op—+iy, /2)A ((u) = 1+Qg VgBg((u), (28a)

(6) M y+ 't p) Bg (M)

=H&*LA(~)jest e-'"'&C&( )], (28b)
and

(co—~p'+iy. /2)C~(&u) =Pa P~e'" *'B~((u). '(28c)

The amplitudes 2 (&o) and Bq(M) have the same meaning
as those in (12). Now, however, C~(a&) is the amplitude
for the excitation of the tth absorber nucleus (located
at xq) with no photons present and all other nuclei in
their ground states.

Let us consider an absorber slab of cross section L'
and thickness d. If the source is moved far from the
absorber, the photons incident on the absorber may be
considered as plane waves traveling in the positive s
direction. Under this last approximation, (28b) becomes

S(k„o)S(k„,o)e(k.)
(M Qlp+zp)Bg(M) =Hp copL

((o—(op+iI'/2)

+E« '" *'Ct(~) (29)

where we have again assumed that the source decays
as it would if no absorber were present. The normali-
zation has been chosen so that the total photon intensity
incident on the absorber is (~y~/I'). In the above,
8(k,0) is the usual Kronecker delta function

8(k 0)=1 for k=0
=0 for k/0,

and 8(k) is the step function

tj(k)=1 for k)0
=0 for k(0.

The time origin has been chosen so that the originally
emitted wave front reaches the origin at t=0.

Combining (28c) and (29), we obtain

~py@e'bG) z $

(s) &up'+iI'/—2)C, (pp) =i—
copL (M

—Mp+11 /2)

e~~l X7—XII



CALCULATION 0F M0SSBAUER rRANSMrSSr0N 1183

where the sums over k have been performed as before.
Thus, we have reduced the problem to an integral
equation for C&(co). The solution of (30) depends, of
course, upon the spatial distribution of the absorber
nuclei. The only case treated here will be the one in
which the summation sign in (30) can be replaced by
an integral (or consider the discrete lattice replaced by
a continuous distribution). If the wavelength of the
characteristic radiation is much larger than the typical
spacing of absorber nuclei, then this approximation is
a good one. The 14.4-kev photon in Fe' has X=10 '
cm, which is of the same order as the nuclear spacing
in the absorber crystal. Thus, we must admit that this
approximation does not appear to be too good here.
Most Mossbauer experiments, however, use iron ab-
sorbers which contain the natural abundance of Fe'
nuclei (i.e., 2.17%). In this case, the absorber nuclei
will be situated on random lattice sites (only about
one out of 50 will be occupied by a resonant absorber).
The actual transmission will then be determined by
the average concentration of active absorbers, and the
continuous absorber will give a good approximation to
the physical situation. (A detailed calculation for a
one-dimensional random lattice has verified this
argument. )

Our formalism up to this point has been sufficiently
general to include all absorber configurations. It can
also be shown that for well-ordered lattices, one would
expect resonant Bragg scattering as in the simple
x-ray case. We will, however, restrict ourselves to the
case where the continuous absorber approximation may
be used. When we introduce an absorber density p(x),
(30) may be rewritten as

myse'"'
(co —coo'+if/2) C(x,co) = i-

copL (co—cop+ iF/2)

dx' p(x')C(x', co) —. (31)
2 e X—X

nated by separating the integral into two parts,

m-gee'"'
(co —coo'+iF/2) C(s,co) = i—

copL (co—cop+'iF/2)

or'riip 1"—i ds' C(s', co)e'c'-"&"
coo -~ o

d

+ ds' C(s' co)e'c*' ' (33)

An iterative technique can be used to solve (33). If we
first assume that the s dependence in C(s,co) is given
entirely by the inhomogeneous term as exp(icos), then
this substitution for C(s', co) in the first integral removes
all s' dependence from the integrand. The second
integrand, however, will go as exp(2icos') which Quctu-
ates rapidly as s' varies across the absorber, resulting
in a small contribution. This latter integral can, in
fact, be identified with waves traveling backward
through the absorber. If this second integral is neg-
lected, we can obtain an otherwise exact solution to
(33),

C (s,co) = i (n.vie/cooL)—

X (co—cop+iI'/2) '(co—cop'+iF/2) '

eppes
&&exp icos i — . (34)

copo(co
—cop'+iF/2)

To obtain a quantitative estimate of the error intro-
duced in neglecting the previously mentioned integral,
it may be noted that a more exact solution of (33) has
been investigated which retains the backward traveling
waves. The lowest-order correction to (34) produces
terms which contain added factors of (Pp/2co) and
(Pp's/2co) where Pp ls given by

For convenience, the absorber slab will be taken to be
normal to the direction of the incident beam. Therefore,
we have p(x) =p for all x and y when 0(s(d, and p(x)
vanishes for all other space points. Using symmetry
arguments, it is obvious that C(x,co) cannot depend on
g or y. The integration over x and y can be performed
and leads to

m.y~e'"'
(co cop'+i F/—2)C (s,co) = —i

cooL (co cop+iI'/2)—
7l "rilp

i ds C(s,co)e' I' —* l. (32)
coo ~o

Th.e absolute value sign in the integrand can be elimi-

The maximum value of
I pp/2coI is proportional to the

number of absorber nuclei in a cube with side
X=I 2/E(kev))X10 ' cm, since

IPo/» I --=~(v~/F) p&'

We have p'*(3&&10' cm ', so that
I
Po/2co

I
~&&1 «r

reasonable transition energies. For Fe" absorbers, we
have IPp/2coI (10 ' and I/ops/2coI (10 'd (cm).
Thus for d(10 ' cm, the largest correction terms are
of the order of 10 '. Thus, if (33) is valid, then (34)
will give the transmission to within 0.1% which is
sufFicient accuracy for our purposes considering that
we have already neglected larger effects which will be
mentioned later.

We are now in a position to calculate the radiation
field from (29) which for the continuous absorber
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becomes
b(k„o)b(k„,o)t)(k.)

(&p (ofc+zo)B)c((d) =Hfc (ppL
((p —(pp+iI'/2)

we have

P(s, t) =—MOL'

f+ dx p(x)e '"'*C(s,(p) . (35) 00

ef~ ec(fcz czzt)—

p J (p) (d—o+i p) (p) (p—o+iF/2)
Using (34) and immediately making use of the lack of
x and y dependence in C(s,(p), we obtain

Hk VOL
((o—(po+z p) B),((o) = b (kz, 0)b (k„,0)

((p—(pp+ir/2)

x'ppgd
Xexp —i . (39)

(dp ((p —(pp +zF/2)

It is useful to perform the k integration 6rst. Assuming
that Hk* is a smooth function of k, we obtain for s)0,

~PV~
X e(k,) —i

COO~ "0

~i(o)—k )z

ds
((o—p) o'+ iF/2)

o)OL&
t

H„*
p(S t) d~ eccz(z c)—

2x ((p —(pp+ir/2)
( fr puffs

Xexpl —z
I (36)

p)o ((d (po'+ir—/2) )

Xexp —i
(pp ((p —(pp +zr/2) .

(37)

The time dependent amplitude bof"d(t) can be obtained
by using (7). This latter integral over (p is complicated
by the presence of an essential singularity at co=coo'
—iF/2 in addition to the simple poles at ((d), ip) and-
(p) p

—iF/2).
We can obtain the spatial wave function of the

radiation 6eld from bo'" (t) as

4'(xct) =E) L *e'"' """b (")

dk(2zr)-1L —zei()cz—czoc)b fwd(t) (3Q)
dp

where, in the last line, we have replaced the sum by
an integral and made use of the "forward" property
of the field amplitude. Combining (37), (7), and (38),

Thus we see that the only nonzero photon amplitude
in this approximation occurs for k,=k„=0.The second
term does give a finite amplitude for backward scat-
tered photons which, however, is small because of the
factor expl i(op —k,)s] occurring in the integrand. Other
terms of this order have already been neglected in
using (34), and in order to be consistent, we will also
omit this small contribution. To lowest order, only
transmitted photons survive. The argument of
exp[i((p —k,)s7 is typically of the order of rd=d/er
where ~ is the mean life of the transition. For Fe",
r=10 z sec so that (d/cr) =1/3X10 'd (cm). Hence,
for reasonable foil thicknesses, this exponential factor
can be replaced by unity. The remaining integral can
be performed easily to yield

Hk &APL

fwd(~)—
((o—(po+ic) ((p —(po+ir/2)

Xexp —i . (40)
p)p (Go

—(dp +zr/2)

This integral is of the same form as that considered by
Hamermesh. The result of this last integration is, for
$)s)0,
P(s, t) = —(ppL'iH~p*e '( " ' ")" ')

- n/2

X Q [—Z((po —p)o')(t —s)]"
n=o rrpyffd (t s)—

XJ D4zrpv&&(t s)/p)o')*' j (41)

Consequently, the transmission per unit incident Aux

may be written as

T()=(:./r)-L l~l

rz/4
exp

l

———pd-
F (

" 0 (pp' F (p)o —(pp')'+F'/4)
(T&=—' dh)y, . (43)

2x ~0 ((po—(pp)'+I'/4

=I'e r'l P $ i(dofc p)(r/rrpyffd)~)"—
n=o

X&.L(4~p&~rd/~o')'j l', (42)

where ~=3—s and Aco=coo —coo'. This result is seen to
be identical (except for normalization) with the classi-
cally derived (4) if we make the correspondence
p=(4 pdv /, r).

One result worth noting is that if (4) or (42) is
expanded in ascending powers of P, the first-order term
in P agrees with the absorption term of (16). Since P
is proportional to absorber thickness, (16) gives the
correct absorption for extremely thin absorber foils.

An interesting problem that may be considered
concerns the result of a measurement in which photons
are detected for all v-. This is the usual simple counting
experiment which does not make use of delayed co-
incidence techniques. The result of integrating (42)
over v can be written as
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This is exactly the same result as that predicted by
Visscher' from simple considerations. The maximum
cross section for a single absorption can be seen to be
f7m», where ,= (4 /, ')(~,/r).

CONCLUSION

(44)

We have seen that a quantum mechanical derivation
of the Mossbauer transmission (for absorbers which
do not have sufficiently good crystalline structure so
as to permit Bragg scattering) agrees with the previ-
ously mentioned classical result of Hamermesh. In
addition, the initial conditions were investigated in
detail by considering the first radiation of the cascade
which leads to the first-excited state (the Mossbauer
level). We were able to explicitly verify that the same
result is obtained as when we adopt the simpler ap-
proach where we consider the nucleus to be in the first-
excited state with unit probability immediately after
the emission of the first photon.

The actual problem contains complications not yet
considered here. The solid-state aspects have not been
taken into account. Let us say that the probability
that any nuclear absorption or emission will be recoiless
is given by the parameter f (determined from experi-
ment or some other theory). The density of active
absorbers is then essentially reduced from p to fp. In
addition to this substitution in (42), we must also
include an off-resonance Aux which is given by (1—f)
of the source radiation and cannot be affected by the
absorber except for normal scatterings. The effective
transmission then becomes

only "spinless photons. " For the case of a physical
transition between nuclear levels with spins I, and Ig,
we must use

2a (2I.„+1yy~
0

Mp ( 2Ia+1 ) I

in place of (44) when both source and absorber are
unpolarized. In the event that we do have polarization,
the angular dependence of the cross section must be
taken into account.

One of the most dificult problems to compensate for
in the previous calculations, is that of hyperfine
splitting. In reality, the emission and absorption spectra
contain many lines due to the hyperfine interaction
between crystalline 6elds and nuclear moments. In
Fe', the excited and ground states have spins of ~ and
—,', respectively, so that a dipole transition produces a
six-line spectrum. The simplest comparison with ex-
periment may be obtained by assuming that each
emission line only overlaps the corresponding absorp-
tion line of the absorber. This requires that one must
produce Doppler shifts in the absorber which are small
when compared with the hyperfine splitting so that
overlap of different components does not occur. This
situation is easily obtained if the splittings are large
compared with the linewidths involved. An interesting
problem which arises is that for very short times, the
lines become extremely broad. If the delay time is
chosen to be short enough, then the lines are so broad
that overlap must occur between different components.
No suggestion of the effects caused by this phenomenon
will be offered here.

in which T(r) is given by (42) with the substitution
of fp for p.

Equations (42) and (44) can be combined, which
allows us to rewrite the transmission as a function of
a . This is equivalent to setting P=pdo, in (4). We
have performed our previous calculations considering

'0 W. M. Visscher, "Evaluation of transmission integral, " Los
Alamos Scientific Laboratory, 1960 (unpublished).
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