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The intermediate-coupling shell model for nuclei is considered in terms of the classification of states in a
harmonic oscillator according to the irreducible representations of the unitary unimodular group in three
dimensions, SU3, introduced by Elliott. The properties of this group are used to produce the approximate
spectrum of a quadrupole force, acting within an oscillator shell. When specialized to the 1p shell, a more
general interaction, including exchange forces, is shown to be approximately diagonal in the chosen repre-
sentation, and its approximate spectrum is computed. A method is developed for calculating the matrix
elements of interactions not diagonal in the representation, in particular the single-particle spin-orbit po-
tential, using the generating functions of the group, SU3. The intermediate-coupling energy spectra of the
nuclei of the ip shell are then calculated to the 6rst or second order in perturbation theory. The results are
compared with experimental spectra, and with calculations of Kurath.

I. INTRODUCTION

'HIS paper is an investigation of new methods of
calculation of energy spectra in the nuclear shell

model, with particular application to the 1p shell. The
energy levels in this model are the eigenvalues of an
interaction matrix in the space defined by restricting
the particles outside the closed shells (the core) to the
lowest available unfilled shell. The interactions con-
sidered usually contain a two-particle central potential
and a single-particle spin-orbit potential. The competi-
tion of the two potentials produces "intermediate
coupling" eigenfunctions, which are pure in neither L-5
nor j-j coupling.

The calculation of the matrix elements of the inter-
action is central to the problem. This is usually done by
factoring the many-particle basis functions into prod-
ucts of functions of smaller numbers of particles, so
that the many-particle matrix elements required can be
expressed in terms of those for fewer particles, and
ultimately in terms of single- or two-particle matrix
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elements of the single- or two-particle potentials which
are calculated directly. The fractional parentage
methods of Racah' are useful for this reduction. How-
ever, for many particles, or for particles with high
angular momentum, this may be a di%cult program.

Ke have investigated a diferent method of obtaining
the matrix elements, based on Elliott's group-theoretic
classification of states for a harmonic oscillator shell
model. ' In Sec. II, we review some of Elliott's results,
in a slightly different presentation. In Sec. III, we
show that Elliott's classification scheme approximately
diagonalizes a two-particle quadrupole interaction.

In Sec. IV we specialize to the 1P shell, where Elliott's
classification scheme is related to the supermultiplet
scheme of signer. ' Here the group theory of the Klliott
scheme provides a direct way to calculate the spectrum
of a central, spin-independent potential. Even for the
spin-dependent potentials used in intermediate-coupling
calculations, we may use the group theory to obtain
approximate spectra, with a small correction term which
is not diagonal.

The remaining problem is the calculation of the spin-
orbit matrix elements, and those of the nondiagonal

' G. Racah, Phys. Rev. 63, 367 (1943), and further references
therein.' J. P. Elliott, Proc. Roy. Soc. (London) 245A, 128 and 562
(1958).' E. P. Wigner, Phys. Rev. 51, 106 (1937).
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central term. In Secs. V through VII we introduce a
method for calculating those elements which will be
useful for a perturbation treatment. We again use
group theoretic methods to avoid the necessity of the
fractional parentage reduction. This method is not
restricted to the 1p shell.

In Sec. VIII we calculate the spectra of 1p shell
nuclei in the perturbation scheme developed. The re-
sults are compared with experimental spectra, and with
previous matrix calculations of Kurath. 4

II. CLASSIFICATION OF STATES BY SU3

Elliott' has introduced the classification of states of
many particles in a three-dimensional harmonic oscil-
lator potential, using the unitary unimodular group in
three dimensions, SU3. This group is defined in terms
of linear transformations in three dimensions among the
oscillator quanta contained in the wave function of a
single particle in the potential. We define the operators
which create one oscillator quantum, with angular
momentum projection along the z axis of 1, 0, —1, by
Q~*, Qp*, and Q ~*, resPectively. The three oPerators
which annihilate one quantum are then Q&, Qp, and Q &.

They obey the usual commutation relations:

Since the commutators of these operators are simply
the operators again, they are the generators of a
linear continuous group of transformations of the
form exp(i8u, *u„). If we restrict the coeKcients of
i8 to the Hermitian combinations u,*u„+u„*u„or
i(u„*u„—u„*u„), the group becomes the unitary group,
U3. If we further eliminate combinations of the gen-
erators which are simply multiples of the unit operator,
we are restricted to the unimodular unitary group, SU3.

We shall find it convenient to redefine the generators:

H =0uuii+u i u i+u—o up)

H& ——Q&*Q&—Q &*Q ~)

H2= 2Qp*Qp —Qy*Qy —Q y*Q (2 3)

Py= —Qp Q])

F y= —Qy Qp,

P5= —Qp Q

F r),
= —Q y Qp,

F4= —Qy Q y)

P 4= —N y Qy.

The generators of the three-dimensional linear trans-
formations of the quanta are the operators which
annihilate, say, quantum p, , and replace it with quantum
v. These operators are of the form u„*l„,where v and p,

each take any of the values 1, 0, 1. From (2.1) we

obtain new commutation relations:

[ug uyyup up]=up upsy', up uy~KF . (2 2)

[up)u p ]=Bqp ) [u~,u p] = [u~,u„]=0. (2.1) From (2.2) we obtain the commutators quite simply:

[Hi,p~i]= Wp~i, [H2,pgi]= &3pgi,

[H,,p~g]=~p~g, [H2,P+g]=+3pgn,

[Hi,pg4]=&2P~4, [H2pg47=0;
[Fip' i7=-,'(H2 —Hi), [F6,F g]=-', (H2+Hi)) [P4)F 4]=Hi,

[P 5@4] P—ip — [P4)pi] —Pg) [Pg)P—i] F4)

[F 4,F57=Fi, [p ip 4]=p [Fi,F 6]=F 4.

(2.4)

We notice that Hp commutes with all the other
operators, and is thus a multiple of the unit operator.
Hp is simply a multiple of the oscillator Hamiltonian,
and must commute with the other generators, since the
number of quanta is conserved in these transformations.
We drop Hp to restrict to SU3, as we mentioned.

The subscripts of the P have been chosen for con-
venience. It turns out that [F„,F ]=&F„+ for eWnz
The commutator is zero if there is no F„+ de6ned. If
u= —m, [F„,F „] is a combination of Hi, H2. Any
commutator not appearing in (2.4) is zero.

These generators have been dehned for single-
particle wave functions. If we label the operator for
the ith particle by G(i), we may define a many-particle
operator by G=P; G(i). The commutation relations
(2.4) will hold for the set G, as well as for the G(i),
since [G(i),G(j)7=0 for iW j.

The many-particle space of m particles in the Ãth
oscillator level is spanned by functions containing mX

4 D. Kurath, Phys. Rev. 101, 216 {1956).

quanta, in any combination of the three kinds (1,0, —1).
This space carries a reducible representation of the

group SU3. The reduction under U3 breaks up the
many-particle space into invariant subspaces, char-
acterized by the symmetry of the wave functions under

permutation of the oscillator quanta. The permutation
symmetries are classified, as usual, by the partitions

fi, f2, fa, of the mN quanta into the three kinds, with

fi+f2+ f3 mN. We may ch——oose fi)f2) fa. When we

restrict ourselves to the unimodular group SU3, only
the differences fi f2, f2 f3 are nee—ded —to classify the
invariant subspaces. We follow Elliott's definitions, and
use (X,p) to label the invariant subspaces, or the irre-

ducible representations of SU& they carry, where
X=fi- f2 and p= f2 f3. —

Elliott notices that two of the generating operators,
which we have called Elj and H2, commute. Since the
generators do not mix functions from diferent invariant
subspaces (X,p), Hi and H, can be simultaneously
diagonalized within each subspace, yielding eigen-
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values E and e, respectively. From (2.3) we obtain by
inspection the eigenvalues E, e for states of one oscil-
lator quantum:

Hi~m)=nz~m)

H2
~
m) =2

~
et) for m =0,

= —
~
m) for m= a1.

(2.5)

Eo= 2X+p. (2.6)

Clearly the maximum value of E possible for maximum
e ls E=p.

The basis functions in the many-particle space are
not completely labeled by ), p, e, E. Other quantum
numbers may be required to determine the functions
uniquely. For example, the symmetry of the wave
function under permutation of the particles can be
specified, since this operation commutes with the trans-
formations of SU3, which are symmetric in the particles.

No use has been made of the group of three-dimen-
sional rotations, R3, which is a subgroup of SU3. How-

ever, it turns out that H2 does not commute with L',
the angular momentum operator, so that we cannot
simultaneously diagonalize both. We note from the
definition (2.3) that Hi is identical with the operator
Lo, whose eigenvalues are the z projections of the angular
momentum. Therefore, H~ does commute with L'.

In physical problems, we shall want to distinguish
states with different angular rnomenta L. Elliott' has
shown that states of different L and M can be generated
from the basis functions f&,„,z(r) defined by X, ii, eo, E,
by rotating the function in space, and averaging over
all directions (Q) in space. The averaging integral is
weighted by the functions D*~IP(Q), the representa-

For a state with many oscillator quanta, the eigenvalues
will be simply the sum of single-quantum eigenvalues.

From the commutation relations (2.4) of the F with
H~ and H2, we find that the F are raising and lowering
operators, which change the values of E and c. In par-
ticular, E is increased by 1 by F & and F5, lowered by i
by F& and F &, increased by 2 by F4, and lowered by 2

by F 4. e is increased by 3 by F& and F5, lowered by 3 by
F & and F 5, and is not changed by F~4.

Since these raising and lowering operators are gen-
erators of the group SU3, they do not take us out of a
given invariant subspace (X,p). If we now operate re-

peatedly with various of the F, on any state of the
space, we shall eventually reach a state with a maxi-
mum value of e for that (X,p). There may be several
states in (X,p) with that value of e, which we shall call
eo. These states will have values of E differing by 2, and
can be generated from any given one by repeated opera-
tions of F4 or F 4.

Using the results of (2.5), we can construct the maxi-
mum e by filling the largest partition (fi) with (0)
quanta, and f2 and f3 with (1, —1) quanta. One can
see simply then that

tion functions of R3. Then the averaged function,

2L+1 t
~ D*~ir (Q)fi„,x(Q 'r)d—Q=N~ir (r)) (2.7)

2

is an eigenfunction of L' and Lo, with eigenvalues
L(L+1) and 3f, respectively.

This averaging integration is equivalent to an opera-
tor which first projects the part of the function fi„,x(r)
with angular momentum I, and which then changes
the z projection of angular momentum from E to M.
We can define the erst operation by the projection
operator P~, and the second by (L+)~ x for the case
that M&E. The successive operations of L+ must be
divided by the appropriate matrix element, to make the
operation unitary. The combination of the projection
of L, and normalized change of E to 3f, defines an
operator P~~. Then (2.2) becomes simply

P~'fi „x(r)=P~ir'(r). (2 g)

The usefulness of this procedure of obtaining the
functions jlpi, L',M) from the functions ~X,ii, c,E) is
demonstrated by a theorem proved by Elliott': The
space carrying an irreducible representation (X,p) of
SU3 can be completely spanned, by projecting all
possible L and 3II from only the states of maximum c,

~

X,li, eo,E)with al'l available E. (Alternately, the states
of minimum e have the same property. ) In some cases
the set of functions generated in this way will be over-
complete; there may be linear relations among some of
the states produced by I'~~ on functions of maximum

eo, with different E.
We shall find that the states with maximum e are

particularly convenient for calculating matrix elements,
so that the fact that all states of a given (X,p) can be
generated in this way from eo will prove useful.

III. THE CASIMIR OPERATOR AND THE
QUADRUPOLE FORCE

We introduce the following bilinear combination of
the infinitesimal generators of SU3.

C= (1/36)t 3Hi2+HP+6(F4F 4+F 4F4)

+6(FiF i+F iFi)+6(F~F 5+F sFg)$. (3.1)

It can be seen from (2.4) that C commutes with every
generator of the group. It follows that C also commutes
with every finite transformation of the group. By
Shur's lemma, C must be a multiple of unity within
each invariant subspace. Therefore, within a given sub-

space, every basis function is an eigenfunction of C,
with the same eigenvalue. The eigenvalue in general
will be different for different invariant subspaces, and
may be used to distinguish the invariant subspaces of
SU3, as the eigenvalues L(L+1) of L' distinguish the
invariant subspaces of the rotations R3. C is the Casimir
operator for the group SU3.'

' G. Racah, mimeographed notes, Institute for Advanced Study,
Princeton, New Jersey, 1951 (unpublished).
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The eigenvalue of C for a given invariant subspace
(X,p) may most easily be calculated by taking as an
eigenfunction the function with maximum e and maxi-

mum E for that 6p since F~, F5, and Ii4 all yield zero,
acting on this function. Then, using the commutation
relations (2.4),

C~Ep, op)= (1/36){3Hi'+Ho +6((Fp,F 4g+PPg)P ig+PPp, P pj)} )Ep&op)
= (1/36) {3Ep'+ op+6LEp+-', (op —E)+-', (op+E) g} ) Epl op)'

= (1/36) L3Ep'+ oo'+6 (Eo+oo)j I Eo,oo)=C~„[Eo,oo). (3.2)

And from (2.6), 6nally,

Cio= LP+P) 9+~+3)—~Pj/9. (3.3)

2(4x/5)i(r /b)'Y '(0.) b'=5/%co (3 5)

Between single-particle states in diferent oscillator
shells, the matrix elements of Q„(i) are clearly zero; the
generators of SU3 commute with the number of oscil-
lator quanta.

Using (3.4), C can be written

C= (1/36)(Q Q+3L. L), (3 6)

where the dot represents the scalar product of the
tensors. Now

Q Q= Z Q(&) Q(J)+Z Q'(&).
iwj i=1

As long as we operate only within the space of functions
with all particles in the same oscillator shell, we may
use the result of (3.5) to replace Q (1) Q(2) by

r2r2r~2 r22

Q Ym (~&)Y~ (~2) 4 F&(cose&&) (3 7)
5 g2 $2 m y2 y2

This is simply the form of a two-particle quadrupole-
quadrupole interaction. ' Q Q acting within a single
oscillator shell is then the interaction summed over

J. P. Elliott, Proceedings of the University of Pittsburgh
Conference on Nuclear Structure, 1957 (University of Pittsburgh
and Ofhce of Ordnance Research, U. S. Army, 1957), p. 298 ff.

The Casimir operator C can be put into an interesting
form if we replace the infinitesimal generators (2.3) by
an equivalent set de6ned by Elliott, ' in terms of com-
ponents of irreducible tensors. The new generators are
simply linear combinations of the old:

Lgi= & (Fgp+Fpi); Lp Hi, ——
%i=~~3(F+p+F~i); (3.4)

Q~, = (6)~F~4, Q, =H, .

The three components I„ form a rank one tensor,
which is simply the usual operator for orbital angular
momentum. The five Q„ form a second rank tensor.
Klliott' shows that the matrix elements of the single-
particle operator Q„(i) between harmonic oscillator
states in the same shell are equal to the matrix ele-
ments of the solid harmonic

pairs, plus a single-particle term:

n r2r2 n

Z 4——P.(- 9")+Z Q (').
$2 $2 i=1

(3 8)

Now C and L'= L L can. be diagonalized simul-
taneously, and the basis functions labeled by (X,p), L.
This is the complete reduction of the many-particle
space under the groups SU3 and R3. Thus, the repre-
sentation "almost" diagonalizes the quadrupole inter-
a,ction, except for the single-particle term, Q'(i). Using
(3.6) again, this last term becomes

Q'(i) =36C(i)—3L'(i).

C(i) can have only one value for each shell, since for a
single particle, only the symmetric partition (X,p)
= (X,O) is possible, where X is the number of quanta.

Although the quadrupole-quadrupole force (3.7) is
not the most general two-body interaction which can
be considered in the shell model, it may represent the
long-range part of a more general interaction. In those
cases where a long-range approximation may be made,
the reduction of the many-particle space under SUB
and Rp provides a useful representation in which (3.8)
is diagonal, with eigenvalues 36Ci,„—3I.(L+1). One
expects that L'(i) can be treated as a perturbation,
so that

36C),„3L(L+—1) 36riCir —
o

+3P„,L~PL(')~~„,L) (3.9)
i=1

gives an approximate energy spectrum for n particles
in the gth shell, interacting through the quadrupole
force.

IV. CENTRAL INTERACTION IN THE 1P SHELL

The 6rst excited harmonic oscillator level, the nuclear
1p shell, has several simplifying features which makes
the treatment of a general central two-particle inter-
action quite easy. First, from consideration of angular
momentum and parity, it is clear that only monopole
and quadrupole forces interact between pairs of par-
ticles. That is, in the usual Slater treatment, in which
radial integrals are done first, the angular part of any
potential V(ri —rp) becomes

4x
Pp+FpFp(coseip) =Pp+Pp PY (1)V *(2). (4.1)—
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Within the 1p shell, (r;/b)'=2, and L'(i) =2. Therefore on any two-particle state in the 1p shell. In particular

n n

Q.Q=25 P Pp(cosoip)+36 P C(i) —6n. (4.2)i' i=1

From (3.3), with (X,p) = (1,0), we find C(i) =4/9. So,
we find we can rewrite the entire interaction:

(36Cg BL—;P 10—)Pg
= (36C;, BL—@' 10—) (3C 7/—3)
= (36C,"—3L —10). (4 9)

Since P; P;j= —P;,' for wave functions totally anti-
symmetric in x, 0., v,

n

p Z V(r' —r)
iwj

n(n —1) f'Q Q ny
=Fo +Fp/

2 ( 50 10)

(36C@—3L.'—10)P '
= —(36C;;—BL;P—10)P,, P,,
= —(36C;; 3LP —10)P-,;
= —(36C;;—3L '—10)(S '—1)

Thus
(4.10)

=Fon(n —1)/2+Fp(1/50) (36C—3L'—5n). (4.3)

(C—4/9) (3C—7/3) = (C—4/9),
(L'—2) (3C—7/3) = (L'—2),

(4 8)

This is diagonal in the (X,p), L scheme, and has
eigenvalues

Fpn(n —1)/2+FpL36Ci, „—BL(L+1)—5nj/50, (4.4)

where Ci,„is obtained from (3.3).
A more general central interaction, which has spin

and isobaric spin dependence, may be written

V;,=V(r, r;)[W1,;+—MP,; +BP ' HP 'j —(45)

where the coefficients satisfy W+M+B+H=1. The
operators P;, , Pij . and P; exchange the space, spin,
and isobaric spin coordinates, respectively, of particles
~ ~

Z) Jo
Again the 1p shell provides a simplification. Since in

this shell there is one oscillator quantum for each
particle, the permutation symmetry of the quanta is
identical with that of the particles. Thus, the particle
symmetry denoted by the partition (fi,f&,fp) is identical
with the quantum symmetry (X,p) = (fi—f&, f&—fp).

In particular, for two particles, the space-symmetric
state has (X,p) = (2,0), with Cpo ——10/9, and the space-
antisymmetric state has (X,p)=(0,1), with Cpi=4/9.
Since

(3C—7/3) (2,0) = (2,0) and

(3C—7/3) (0,1)= —(0,1), (4.6)

we see that (3C—7/3) has the same effect as the space
exchange operator I';, , and can be used in its place.

The other exchange operators can be simply written
P; =(S.'—1) and P. ;/= (T;~ 1). We can still —use

V(r; r;) =Fp+ (Fp/50)—(36C;;—BL@'—10). (4.7)

Using the above expressions for the exchange operators
in (4.6) yields awkward expressions like C;,C;; and

C;;L;j. To reduce these, we use the fact that the two-
particle space-antisyrnmetric state (0,1) has C&„=4/9
and L(L+1)=2. Then

V;,=Fo[W+M (3C,; 7/9)+—B(S' 1)—H—(T'—1)]
+ (Fp/50) $36C@—BL;P—10)
XL(W+M)+ (B+H) (S 1)7. (4—.11)

We can reduce the term C(S —1) by rewriting it:

(',P*+7/9)-P'= ', P P +(-7/9)P'
= —io (T'—1)+(7/9) (S'—1). (4.12)

We can now write the interaction (4.5), dropping
additive constants. We shall not need these terms, since
we shall restrict our considerations to relative energies
within each nucleus.

Va, Fo(BMC,;+——BSP HT')—
+ (Fp/50) f36(W+M) Cg —3 (W+M —B—H)L;P
—10(B+H)S.'—12(B+H)T '+28 (B+H.)SP"

—3(B+H)L 'S") (4.13)

This form of the two-particle interaction is par-
ticularly convenient when we sum over pairs to obtain
the total interaction ioP;+p V;;. Now

n n

oi P L,P= oi P LLP(i)+Lo(j)+2L(i) L(j)j
iw j i'

n
= (n —2) P L'(i)+L' (4.14)

n

C;,=C+(n —2) P C(i),i'
-', Q S; =S'+(n —2) Q S'(i),

But C(i), I.'(i), S'(i), and T (i) are all constants which
can be dropped for considerations of energy splittings.
Thus, each two-particle term in the interaction t/';;, with
the exception of L; 5;,~, can be expressed as a many-
particle operator of the same kind, and with the same
coefficients it had in V';;.

C, L', 5', and T' can all be diagonalized simultane-
ously. Thus, the energy spectrum for io g V@ without
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the P L;PS,P term can be expressed exactly as a sum
of terms C, L(L+1), S(S+1), and T(T+1), with the
appropriate coeIIicients from (4.13). If the term in

Q L'S' can be shown to be small, its effect on the spec-
trum can be calculated in perturbation theory. This
will be done below.

In Table I we list eigenvalues of C (or Cq„) for the 1p
shell. For each case we give the particle symmetry label

Pf], and the equivalent (X,y). For each ()i,p) we give
the maximum value of e, eo, and the possible values of
L. We only include the particle numbers e=i to 6,
since the two-particle interaction s g V,, has the same
spectrum in the 1p shell, for 12—n, particles as for ts

particles, up to an additive constant. That is, e holes
behave like I particles, under —,

' P V,,
Finally, we shall make specific choices for the form

of the interaction. For oscillator orbitals the Slater
E~'s can be expressed in terms of Talmi integrals' I„;

where

I'=,~, L5 (Is+Is)+2It],
F'= (25/12) L(Is+I s) —2It],

(4.15)

For a Gaussian two-particle potential,

V(rt —rs) = V(r) = Vs exp( —r'/res). (4.17)

TABLE I. C)tis for 1p shell.

2p 00

I„= V(r)g'r+' exp( —x')dx
gs (2P+I)!I" s

x'= —.(4.16)
2)2

We obtain
r" &

"+'
I,=V,

~ ~
=V,&+&.

&2bs+.ss)
(4.18)

V(Serber) = —11.6C+0.51L' (4.20b)

V(Meshkov) = —9.3C+0.3PI s —1.35Ss

+0.40T'+0.10L'S' (4.20c)

We choose the ratio (V2b/rs) = 1.3, which is equiva-
lent to Kurath's choice' L/K=6. 8. We also use his
choice of Vo= —45 Mev. The choice of range is not
very critical; a variation of 2b'/rs' from 1 to 2 will
change p only from 0.5 to 0.33.

Substituting these choices into (4.15) and (4.13), we
obtain

Vg = —( t (3.74)3M+ (4.03) ss (W+M) ]C,;
+ (—4.03)s (W+M —8—H)Lo'
+f(3.74)B+ (4.03) ss (8+II)]S,P
+D 3.74)II —(4.03)-', (8—+II)]T;P

+ (—4.03)~~ (8+II)L;PS '} (4.19)

Kurath' uses the exchange mixture, 8'= H =0,
3f=0.8, 8=0.2, which gives a stronger spin triplet
than spin singlet strength in even-L states, as is ob-
served in the deuteron and Ii'. The Serber mixture,
8"=&=0.5, 8=II=0, gives nucleon-nucleon scatter-
ing symmetric about 90', as observed experimentally.
A mixture which gives both properties has been sug-
gested by Meshkov': H/'=M=0. 4, 8=0.2, B=O. For
these three mixtures we obtain:

V(Kurath) = —13.8C+0.30I s—1.35S
+0.40Ts+O. IPLsSs ' (4.2Pa)

f
L1]

L2]
[11]

[3]
[21]

L111]

L4]
[31]
[22]

[211]

[41]
[32]

[311]
[221]

L42]
[411]
C33]

[321
[222

(& ~)

(10)

(20)
(01)

(30)
(11)
(00)

(4o)
(21)
(02)
(1o)

(31)
(12)
(20)
(01)

(22)
(30)
(03)
(11)
(00)

C

4/9

10/9
4/9

28/9
16/9
10/9
4/9

25/9
16/9
10/9
4/9

24/9
2
2
1
0

0, 2
1

1, 3
12
0

0, 2, 4
1, 2, 3
0, 2

1, 2, 3, 4
123
0, 2
1

0, 2, 2, 3, 4
13
13
12
0

6p

6
6
3
3
0

The Kurath and Meshkov mixtures diGer solely in the
coefficient of C. For all three mixtures, the L'S' term
is small.

V. THE INTRINSIC REPRESENTATION

In the previous section we have diagonalized the
major part of the two-particle central force in the 1p
shell, using a representation whose basis functions are
eigenfunctions of C, L', S', and T'. Clearly we can also
diagonalize Lo, So, and Ts, and write the basis functions

Is)LM„SM,,TT,).
Alternatively, we may obtain these approximate

eigenfunctions by extending the basis
~
()p)e,K), de-

fined in Sec. II, into spin and isobaric spin space. These
basis functions, which diagonalize C, S', T', IIt (or Ls),
IIs (or Qs), Ss, and Ts, may be written

i (Xp) e,K,SMB,TTs).

Although these functions are not eigenfunctions of L2,
they may be used to generate such solutions by pro-

r I. Talmi, Helv. Phys. Acta XXV, 185 (1952).R. Thieberger,
Nuclear Phys. 2, 533 (1.956-57). ' S. Meshkov and C. W. UIIord, Phys. Rev. 101, 734 (l956).
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TABLE II. Intrinsic functions
I (Xy,)ppK, 3Es) for the 1p shell.

n=3

n=4

m=5

T=1, S=O
T=O, S=1

T=O, S=Q

T=1, S=Q

T=O, S=1

I (2o)4o, o& =
I ot041

1(20)40, 1) = lot, otf
l(2o)4o, o) = (v'p)(lot, 041 + [04, otl}
I(3o)6o, —;& = lot04, otl

I (4o)8o, o& =
I ot04, ot041

I (»)» —:& =
I
Itoto& ot041

[ (31)71, —-)=
I 1)otog, otog I

f (22)62, 0) =
[ It140t04 ot041

1(22)6o, o& =(g-.')&
I tt-140tog, oto4 f+ f

—Itigoto), otog1 }
f (22)62, 1) = [1totog, Itot041
f (22)62, 0) = (v —,')(11totog, 140t041+ 1140tol, ltoto41)
1(22)62, —1&=

[ 140t04, 140t041
f (22)60, 1) = (Q'p){ f ltot04, —1toto41+ I

—Itot04, Itot041}
f
(22)60, 0) =-p'( 11tot04„—140t041+1140t04 Itotopl+ I 1totog, 1$0to41+ I

—14oto4„1tot04[}

jection, P~, as described in Sec. II. Using Klliott's
theorem, we need only choose e= eo to span the
whole space. We therefore define a set of functions:

1
()if')epE, Ms), which we call the "intrinsic representa-

tion, " where S, T, and T3 are not explicitly written.
A useful feature of these intrinsic functions is that

they are often easily expressed in terms of Slater deter-
minants of the single-particle orbitals in the 1p shell:

Pi, pp, p—i, with spin up or down, proton or neutron
state. In particular, if we require the maximum possible
e for a given number of particles, the number of deter-
minant wave functions consistent with a given S, T, T3
is very small. This is particularly useful, since the
maximum occurs for the highest (Xfi) symmetry, that is,
with the greatest eigenvalue of C. Because C has a
large negative coeKcient in the usual central-force
choices (4.20), the states of highest Ci,„or ep lie lowest
in energy. It will be useful to have simple determinant
expressions for these low states, for the calculation of
perturbation terms.

In Table II we give the determinant forms of the

1
(Xfp)epE, Ms) for the 1p shell, for highest Cq„, for 2 to

6 particles (or holes). We always choose Ts T. The-—
determinants for each are denoted by one row of orbi-

tals, since the other rows diGer only in the particle
labels. The orbital functions pp, pi, and p i we further
abbreviate by 0, i, and —i, respectively. The arrows
denote spin up or down, and proton orbitals are sepa-
rated from neutron orbitals by a comma. We have
shown only functions with E)0, which are all we shall
need explicitly.

We saw that the functions generated from the intrin-
sic functions by L projection, P~~, form an LSMI,M+
representation in which the central interaction —, Q V;;
is approximately diagonal. If the total interaction also
contains noncentral terms, like a spin-orbit force, states
with diferent total angular momentum J will no longer
be degenerate. We may generate eigenfunctions of J'
from the intrinsic states, using a J projection operator,

vt'M IK,f ) paE „,E„I'M IK—,~), (5.2)

P~z, which is the generalization of P~L to J space.
This is not simply a transformation to an LSDJ
representation, since there may be more than one value
of L possible for a given value of J. Then J projection,
I'M~[ (Xp)epE, Ms), gives a linear combination of the
LSJMg functions, with different values of L. In these
cases, however, there are several possible values of Mg,
corresponding to the multiplicity of L for a given J.
The J projection for each value of Mz will, in general,
produce an independent linear combination of the
LSJMg functions. That is, the functions

I'M
1 (Xlu) epEpCVS)

with all values of J, M, E, 3fq, span the same space as
the

f
(Xp)LSJ3Eq). However, the I'M

1 (Xfp)epK IVs) do
not form an orthogonal basis in general, and may be
overcomplete, in the sense that some of the functions
are linearly related.

The projected intrinsic functions, I'M~
1 (Xp) epE, Ms),

form a representation in which C, S', T' can be di-
agonalized, and may be taken as a zero-order repre-
sentation for a perturbation treatment of the other
central-force terms, I', P L;,'S,ps, and any noncentral
terms, like the spin-orbit interaction a g; I; s,. Since
the projected intrinsic functions with different values
of E and 3Is have the same eigenvalues Ci,„, S(S+1),
T(T+1) (that is, are degenerate in zero order), the
first-order energies are obtained by diagonalizing the
perturbation terms in the projected intrinsic repre-
sentation. We shall abbreviate the basis functions:
PM'

1
E,Ms)

Diagonalizing an operator V in the nonorthogonal
basis &M~

1
K,Ms) means finding linear combinations

of the functions, such that

v g b,„r IK,&)=)i P f,„I' IK,f ). (5.1)
E', p X) JIB

0
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then solutions of (5.1) can be found by solving

Q +K'v, IcpbEcp ~bx'v ~

Ep
(5.3)

Since P~~~E,p) is a nonorthogonal basis, ((ax „,x„))
is not a Hermitian matrix. However, as long as the
P~~~E,p) are linearly independent, ((a)) is related to
a Hermitian matrix by a similarity transformation, and
therefore has the same eigenvalues, X, as that Her-
mitian matrix.

Even if there are linear relations among some of the
basis functions, (5.3) still provides valid solutions of
(5.1), although these are not unique. The complete
set of eigenvalues, X, of V will still be produced, but

there will also be spurious solutions, X', resulting from
the spurious enlargement of the space by introduction
of nonindependent basis functions. The b~„' which cor-
respond to these solutions are just the coefficients of
the linear relations among the basis functions,

P bx„'P~'
~
E,p) =0.

Treating L' by degenerate perturbation theory actu-
ally involves no approximation; L' has no matrix ele-
ments connecting the P~~~ (Xp)epE, IVB) to states of
other (Xp), 5, or T. The matrix elements of L' in the
J-projected intrinsic space P~~~ E,p) can be obtained:

L'P~
~

K p) =P~~L'
~
K p) =P~ (J'+S' 2J S) ~

—E p)
=P~~([J(J+1)+S'(S+1)—2(E+p)p] iK p)

—(2(S+p)(S—p+1)) J+~E, p —1)—(2(S—p)(S+p+1))'J ~E, p+1)}
= [J(J+1)+S(S+1) 2(K+y—)y]P~~

j E,p)
—( (J+Kp) (J+E+' —p+ 1)(5+p) (5 p+ 1))~P—~ i E, p —1)

((J+E+—~) (J K~+1—) (5 u) (5'+~—+1))'*P~'l E ~+1) (5 4)

The matrix elements of L' do not connect different E.
If we denote a single-particle wave function by its

total magnetic quantum number,
~
te, ), for nz, )0

(eg , )~)=—. ~pop)), then we define
)
—mi)=R(~)~yg;),

for m;) 0, where R(~) is the operator which rotates the
function about the y axis through x radians. For m;(0,

~

—m;) = —R(~)
~
m;). Then we define the many-particle

intrinsic wave functions
~

E, —Ms) t—o be the func-
tion obtained from ~E&Ms) by replacing every single-
particle function

~ m;) by
~

nz;) For a—part. icular value
of J', R(m) ~j,m;)= (—)'+ ~j, tn;) ~ From this i—t can
be shown simply that the relation between

~
E, —Ma)—

and
~
E,MB) is given by

PM'I —K, —~s)= ( )'+'+ +~'P~—'IE,~B), (5 5)

where P is the number of single-particle functions in

~E,Me) with m;&0.

VI. SPIN-ORBIT IN FIRST ORDER

We shall consider as a perturbing term the single-
particle spin-orbit interaction, P i" 1; s;. For the
first-order calculation of the energy contribution, we
shall need the matrix elements of g 1,"s, between the
projected states P~~~ (Xp)epE3IIe) for various values
of E, Ms.

Since P I s commutes with P,~~,

$ I sP~ ~E,MB)=P~ P l. s~K,Ate). (6.1)

For the perturbation calculation, we are considering
only the operations of P 1 s within the space of func-

That is, (P I s} simply generates functions in the (Xp)
space, with diferent e, E, M g. We could also generate
these same functions by operating on

~
(Xp)epE, 3IIe)

with combinations of the SU3 group generators F+',
8+5, 8+4, and of the spin operators, S~. Each state

~ (Xp) 'eE'M
s) can be generated by the appropriate

combination of F, 5„, which change 6p E Mp to
e', E', MB'. There may be more than one independent
operator for each of these transformations.

Let us expand:

&(i) s(i) =lo(i)~o(i)+i+(i)~-(i)+L(i)~+(i); (6 3)

and from (3.4)

l+(i) = —li(i) = F5(i) F i—(i), —
L(i)=L,(i) = —F 5(i) —Fi(i).

(6 4)

Fi(i), F5(i) give zero, operating on a function with eo.

Therefore,

1(i) s(i)
~

(Xp)epE, Me)
= Llo( ) o( )—F- ( ) -( )-F- ( ) ( )3

&(
~
(Xp) eoEMe). (6.5)

tions with given (Xp)5, T. We shall denote by {P1 s}
the restriction of the operator to that space. With that
restriction,

fQ I s} i (Xp) eoE,Me)

&",x',~e'
~ Pp) e'E', M s'). (6.2)

I P ton Universit Press, Princeton, New yersey, y957) Clearly the first term gives states with the original 6= 6p,
' A. R. Edmonds, Angular 3IIomentum ie Quantum 3Eechunics ~ ~ ~ ~

p 59 E lV+ ' the second term lowers ep to t.'p —3, and changes
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E to E+1,Ms —1; the third term lowers « to ep —3,
and changes E to E 1,—and Ms to Ms+1.

The functions we are considering have S a good
quantum number, therefore the changes of Mq gen-
erated by {g1.s} can alternately be generated by the
spin operator S . The first term in {P1 s}, which
changes none of the quantum numbers, is clearly
proportional to the unit operator, since the state
characterized by (»), «E, Ms, T, To, on which it
operates, is unique.

There are two independent combinations of the many-
particle operators F =g; F„,(i) which generate a state
(ep —3, E+1) from («K); they are F i and F pF4.
Although one can apparently construct other operators
which do this by adding factors like F&F j to these two
operators, Fi (or Fp) can always be commuted to the
right until it annihilates the state (ep,E). The terms
left after commuting will always be F i and F pF4,
multiplied by some combination of the diagonal opera-
tors Lp and Qp. This multiplying factor is just a number,
so that no new independent operators can be con-
structed to generate (ep —3, K+1). If it happens that
K has its maximum value in (ep,E), then F pF4 on this
state yields zero, and F & is the only independent
operator leading to (ep —3, K+1). Similar considera-
tions show that (ep —3, E—1) can be obtained by
operations of F p and F iF 4 on (ep, E). If E has its
minimum value in (ep,E), F p is the only independent
operator.

We find then, that {PI s} operating on (ep,E) can
generate at most five independent states, and that these
are the states generated by the many-particle operators

j., F gS, F gF4S, F 5S+, F gF 4S+.

Thus we may write

{+1s} I (»)«K,M, &

=[A1+BF iS+CF pF4S +DF pS++EF iF 4S+$

X I () ii) eoK,Ms&. (6.6)

The coefjIicients A, 8, C, D, and E can be determined
by multiplying this equation on the left by the conju-
gates of the five functions on the right: ((»)
&' ' '

I s+Fi~ &' ' '
I s+F &p &' ' '

I
s Fp, —and &' ' '

I
s F4Fi-

We use F *=F and S *=S+.This yields five simul-
taneous algebraic equations in the coefFicients A, 8,
C, D, and E, which can be solved in terms of the
"homogeneous" matrix elements

&(») Io.*o
I (»)

and the "inhomogeneous" matrix elements

((»)".I0.*{K1 s}I (») ),

where 0 is a typical operator in (6.6). The homo-
geneous terms are obtained by commuting 0 * and
0p, using (2.4), since 0,* contains F's which will

annihilate
I (»)eoE,Ms). The inhomogeneous terms

are calculated by direct operation of P I s on the deter-

minant forms of the intrinsic functions (Table II).
Since P 1(i) s(i) is a single-particle operator, acting
on a determinant function

I a,b,c,

$1 sfab, c,
= l(1 sa),b, c, +la, (1 sb),c, . I+ . . (6.7)

Explicit formulas for the matrix elements are given in
the Appendix. Many matrix elements will be zero.

In Eq. (6.6), we may immediately operate with the
F~4 and S~ on the intrinsic functions, using'

(ii&Eq (iI+K+2)
!F 4!(»)opE,Ms&=— i2)( 2 )

X I (»)epE&2, Ms), (6.8)

S, I (»),K,M,&=[-;(S~M,) (S~M,+ 1)j-:

X
I (»)eoE, Ms+1).

Also, from (2.4), we may replace F i and F p by —L~
and —L, respectively. Further, using L+=J+—S+,
(6.6) becomes

{g1 s}IE,Ms)
=A'IEMs)+B'J+IK Ms —1)+C'J IE+2, Ms —1)

yD'J IE, M,+1)+E'J,IK 2, M,y1&,—(6.9)

where the coeflicients in (6.8) have been absorbed.
Operating on both sides of (6.9) with Pire, we now
obtain equations of the form (5.2), relating the different
Pcs!E,3IIs&. The coefficients are„,rc, are simply the
primed coeflicients (6.9) multiplied by the appropriate
matrix element of J+.
&sr Jy!K,Ms)

= [-,'(JoE+Ms) (JoE+Ms+1)]l
XPsrsl E,Ms&. (6.10)

Then diagonalizing ((ax„,z.„)) yields the first-order
contributions of P 1 s to the energy.

For the special case of wave functions totally sym-
metric or totally antisymmetric under space exchange,
(6.6) will always have the simple form

{&1s}l(»)&=(1/&)I SI(»)) (611)
as can be shown, e.g. , for symmetric functions, Is),
F (tj ) I

s&= ls» and Is'» F'(ij) Is' &= I"
&"I1(s)'(s)ls&=&"IF (&j&1(& s(~)F*(si) ls)

=&s'll(j) s(s) ls&
Then

& &" ll(s) s(i) ls&=-2 &"ll(s). s(~) ls)

" ( gxs)F+4 has matrix elements in —(~o It) similar to those of
the angular momentum operators J~ on I J,Mq)= ~s'p, x2K). See
reference 2.
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Space symmetric functions occur for the highest (Xp) S=o, &L S)=0, and there is no first-order spin-orbit
for 2, 3, and 4 particles: (2,0), (3,0), (4,0), respectively. contribution.
However, for (2,0), T=L, and (4,0), we must have For five particles, (6.6) takes the form

{2I s}II,p) =[p —pL+S-7II, p&,

{Z I s}I1, —2&=L—
p
—(I/15)L S++(4/15)L+S+F,7I1, ——',).

For six particles, T=o, (6.6) becomes

{PI s}I2,1) =[I—'gL+S 7I2,1),

{QI.s}I2,0) =[ ',L S=—-,' I. S +—-,'L S F 47I2,0),

{PI s}I2, —1)=[ 1 ,'&—&L —S+—+pL+S+F47I2, —1),

{PI s}I0,1) =[——,',L+S +—,'LMW47I0, 1),

{PI s}lo,o) =[—;,(I,,s +Lw, )+-', (Lww, +L,s,F,)7lo,o&.

(6.12)

(6.13)

We have obtained these equations by using the matrix
elements as calculated in the Appendix.

The calculations for 12—e particles may be replaced

by calculations for e holes, using the functions of
Table II as hole functions. However, we must remember

that a single-particle interaction like P I s operating
on a given m-hole function is equivalent to —P I s act-
ing on the equivalent e-particle function, up to an
additive constant. " Therefore, the calculations for e

particles can be used for 12—e particles, with an over-
all change of sign.

It should be pointed out that this method of calculat-
ing matrix elements within an invariant subspace (Xp)
depends only on the properties of the group operators,
and therefore is 'quite general; it can be applied to any
oscillator shell.

VII. HIGHER ORDER AND CENTRAL TERMS

The second-order perturbation terms are of the form

&(~~~) "IF'2 I sl(~i'u')&&(~'I') IF'2 I sl(4) ")
(7.1)

where E~„are the eigenvalues of the diagonal part of
the central force, and other quantum numbers are
understood. Here we are forced to consider matrix
elements of P I s connecting different (Xp). However,
since P I s operating on the intrinsic ground state
changes p by 0 or 3, it can only connect (Xp) to those
(X'p, ') for which p= pp, ol' pp 3. Since we have taken pp

as the highest possible for the given number of particles
and T, the available (X'ii') are a limited set. From
Table I we see that for x=2, 3, 4 there is only one
(X'p') for each, reached by P I s. In these cases, the
sum (7.1) has a single nonzero term, and can be
rewritten

&(I ~) IF'(2 I s)'I 0~)&-[&Ou) IF'2 I sl (~~I )&7'

In general, there may be several (X'p') connected to
the highest symmetry by P I s. Then we can approxi-
mate the second-order term by a term of the form (7.2),
where we use an average excitation energy hE. Since
the coeKcient of P I s is not known for each nucleus,
but is adjusted to 6t the data, this approximation
should not be too critical, assuming P I s can be
treated as a perturbation at all. The relative weighting
of the separate terms in the numerator of (7.1) is
changed somewhat by this procedure, but since all
these terms are positive, and the denominators of the
same sign, no sensitive cancellation of terms is altered.

To calculate (P I s)' we find what states within the
representation (Xp) are reached by its operation on

I (Xp)po&,~s). Expanding,

using the closure relation for the intermediate states.
Now we do not actually have to calculate the o6-

diagonal terms, but only the part of (Q I s)' within the
space (Xp). We denote this by {(QI s)'}.The second
term in (7.2) is the square of the first-order term we have
already calculated.

"D. M. Brink and G. R. Satcheler, Nuovo cimento 4, 549
(1956).

&([i+(j)s (j)+L(j)s+(j)+lo(j)sp(j)7.

We 6nd we can group the states by the change of E
(or Ms):

(a) l+(i)l+(j)s (i)s (j) and L(i)L(j)s+(i)s+(j) reach
states with dE= —6MB——~2, Ac=0 or —6. These
states are generated from

I (XIi)ppK, Ms) by F4S S and
F 4S+S+ for 6&=0, and by F &F &SS, F 5F &F4SM,
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F 5F,5+5~, F,F Q 4S+S+, F,F,F 4F 45pS+, and
F qF ~F4F45 5 for d, e= —6. For most cases in the 1p
shell, many or all of these terms will be zero.

(b) l(i)lo(j)s (i)so(j) and L(i)lo(j)s(i)so(j) reach
states with AE= —AM8= &1, Ae= —3. These are the
same states reached by (P I s}, and are generated by
F 1S, F 5F4S, F 5S+, F IF 45+.

( ) I+( ) —(/) -( ) +(2) L( )I+(2) +( ) -( ) Io( )io(j)
Xso(i)so(j) reach states with De=0 or —6, and no
change of E, Mz. Ae=O is generated by the unit opera-
tor, and &~= —6 by F 5F ~, F 5F' Q4, and F ~F ~F 4.

To separate the Ae=O and —6 parts of the 6rst two
operators, we write

~+(~)L(j)=[—F-~(~) —Fs(~)][—Fi(j)—Fs(j)]~
F-~(~)F-~(j)+2[Qo(~)+Lo(~)]4

and

operating on ~0.

We find this classification also allows us to calculate
the diagonal matrix elements of the central-force term

2 P L'(ij)5'(ij), which we previously ignored We w. rite

L'g j)5'(fj)= [P(i)+P(j)+21(f) I(j)]5'(ij). (7.3)

In the 1p shell, P(i) =2, so that

[P(~)+P (j)]5'(ij)=45'(i j)=4S'+const (7.4)

for a given number of particles.

The remaining term in (7.3) operating on { (gp)~,E,
Ms), reaches the same states as part (c) of ((P I s)'},
treated above, and can be handled in the same way.

As in the calculation of the first order terms, we write
the operation of {(Q I s)'j as a sum of operators from
(a), (b), and (c), above:

((P I s)'}~ E, Ms)=g. C0 ~E,Ms) (75)

This equation is multiplied on the left by the or-
thogonal set (E,Ms~0,* The. resulting matrix elements
can be calculated, and the equations solved for the C,.
The operators 0, must be broken up into operators
8+4, S+ which change E, M g, and functions of operator
J. Then projection P~~ yields equations of the form,
for ((Q I s)'}

{(PI s)'}P~~~E,Ms)=g nx „,x„P~~~E',v). (7.6)

For a spin-orbit interaction a+ I s, with average ex-
citation energy AB, then diagonalizing the matrix

(7.7)

yields the combined first and second contributions to
the energy.

We list the second-order spin-orbit terms for the
cases S=O only, for which there is no 6rst-order term:

a=2
v=4,
m=6,

T=1, ((P I s)'}
~
(20))=[2—~~L']) (20))

((2 I s)'}1(4o))= [(8/3) —AL']
l (4o))

T=1, ((P I s)'}
~
(60)62,0)=[3~—(3/20)(I-' —10)+~~(L+L~ 4

—2)]{(60)62,0)

((2 I s)'}
I («)60,0)= [2—

5 (L'—6)+ (1/2o) (L+L+F-4+L-L-F4]
i («)60,0)

(7.8)

It turns out that for m=2, 3, 4, or 5,

-'{&L'(V)5'(V)} l (~~))= [L'+ o st)] I (~~)) (7.9)

so that this term can be treated along with L'.
For n=6, up to an additive constant,

T= 1: —'{Q L'S'} |2,0) = [-', (I.'—10)+53 (L+L~F 4
—2)]

~
2,0)

-,'{QL'5'} ~0,0) =[—,', (L'—6)+—,', (L+L+F 4+L I. F4—4]i2,0)
T=0: —'(P L'S'}

~
2,Ms) = [8+(7/5) (L'—10)—5 (L+L~F 4

—2)]
~

2 Ms)
-'(g L'5'} t 0,Ms) = [(17/10) (I-' 6) ,', (L+L+F,+LM—M, —4—)]

~
0,Ms)—

(7.10)

VIII, COMPARISON WITH EXPERIMENT

We can now calculate the energy spectra of the 1p
shell nuclei, using the zero-ordei' wave functions
Pnr~~ (Xp)eoE,Ms) in which'C, S, and T2 are diagonal,
and L', ~~P L'S', and P I s are perturbations. By com-

parison with the experimental energy levels" we shall

"F Azjenberg-Selove and T. Lauritsen, Nuclear Phys, ll, 1
(1959).

try to find a set of exchange parameters for the central
interaction (4.19). Since the nuclei of the p shell are
not of radically diferent size, we would expect one
choice of these parameters to suffice for the entire shell.
The strength parameter of the spin-orbit potential will
be allowed to vary with the number of particles, to
provide the best fit to the spectra.

Intermediate-coupling calculations have already been
done in the 1p shell, 4 in which complete matrices for the
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interaction in the shell have been constructed, and di-

agonalized by digital computer. The perturbation
method used in this paper is an approximation to the
exact diagonalization of the matrix when we choose the
Kurath exchange mixture (4.20a). For several cases of
interest, we have compared the approximate and exact
predictions of the spectra, as a function of the spin-
orbit strength parameter, a (Figs. 4, 6, and 8), to see
how good the approximation is.

The approximation method has the advantage that
only a few matrix elements are required, and these can
be obtained quite simply, without use of fractional
parentage. The matrices are small, and can be diagonal-
ized by hand. Also, the central force parameters can
be changed without requiring recalculation of the
matrices, so that various exchange mixtures can be
tried. Only the coefficients of I.' and —', g L'S' affect the
energy in erst order.

The approximation is somewhat better than 6rst-
order perturbation in I.S coupling as used in Inglis'

paper, " since the matrix elements of g I s between
different L in the same (Xp) are taken into account.
Thus we obtain first-order splittings for six particles,
T=O, while in LS coupling, erst order gives zero."
The ability to calculate second-order contributions also
improves the approximation. We have not exhibited
second-order results except when the first order gives
zero.

The number of 1p particles for a given A is n =A —4.

n=2, 3) 4

The highest (Xp) states of two, three, and four par-
ticles are space symmetric, so that the first-order spin-
orbit energies are given by (6.11):

I.7I & &+~ 5.55 ri/ I+ T= 0
IIIII~ 5p) 5.25

4.52 /l l/ll 2+
«/l l /«//T=O

I+

2+,Ta I

5.56
3.75
X5

2+
0+

T=I

He

0+ 2. I 8

l.5

Li

I+

g ~- I.SMev

FIG. 1. Comparison of calculated and experimental spectra
for A =6, using the Kurath or Meshkov exchange mixtures,
g= —1.5 Mev.

7.47 5/2

J=—0, 2, while the Serber mixtures predicts 3 Mev. The
data give 1.71. Mev. Also, the Kurath and Meshkov
mixtures predict the splitting of the J=O, T=1 above
the J=1, T=O level to be'„3.5 Mev, compared to 3.56
experimentally. The Serber force gives no splitting.
This seems to eliminate the Serber choice.

All three mixtures predict the (Xp) = (0,1) states to
be above 8 Mev, where no spins have been identified.
For this excitation, and a —1.5 Mev, the second-
order perturbation eGects are small.

For )s= 3, (8.1) gives energy splittings E(J=—,')
—E(J= ss) = —xsa, and E(J= ss) —E(J= Vs) = —(7/6)a,
so that the latter splitting is 7/3 the former. The ex-
perimental spectrum (Fig. 2) seems to show a much

7.I 8 (5]2)

s 54/////~ (/s, /2)
/////// s +) ~6,5 ()~L)=()ql)

//////j/////////j
j~/p///()/////)/j

=—
L J (J+1)—I.(L+1)—S(S+1)j. (8.1)

2s 5.25 5l2

We find that the spectra for these nuclei can be fit
fairly well with a —1.5 Mev; in particular, this gives
the correct splitting of the J=2, J=3 levels for m=2,
T=O. Since these two states are unique for two 1p
particles, the first-order splitting is "exact."

If we use the range and strength assumed above for
the central force, we can try to find the best exchange
mixture (4.20) by comparing the calculated with the
experimental spectra (Figs. 1, 2, and 3). For I=2, T=0,
the "center of mass" of the L=2 triplet (J=1, 2, 3) is
predicted by all three mixtures to be 3 Mev above
L=O, J=1, since 03L'+0.1L'S'=05L'=3 for S=1.
The experimental result is 3.2 Mev (Fig. 1).

For m=2, T=1, we have S=O and the Kurath and
Meshkov mixtures both give a splitting of 1.8 Mev for

0.48 0.43

LI

4.6S ( &'l2 ) 454

Be

3.5 &2

0.75 I]2

a~-l.5 Mev

"D.R. Inglis, Revs. Modern Phys. 25, 390 (1953).
FIG. 2. Comparison of calculated and experimental spectra for

A =7, using the Meshkov exchange mixture, u —1.5 Mev.
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I8.2

17.6
l6.6

I (Tao)

I+(T I ) 17 ~~~/-$2sI~ I7 ~4/LL2„I)
2+(T= I )

8.0

IO.O

/2-9////I///2 /g 2 4
/////////////'/li'/

p+ 0+

5.0

0+

8 (a) {b)
FlG. 3. Comparison of calculated and experimental spectra

for A =8, using (a) the Kurath (b) the Serber mixture,
u —1.5 Mev.

larger ratio of splittings, but there is evidence that the
level seen at 7.47 Mev in I,i' comes from a lower

P,ii) symmetry (1.1) than the ground state. There is
also evidence of the ss, (3,0) state in the region of the
6.54-Mev level. "This would make the splittings some-
what closer to the prediction, with a —1.5 Mev.

The Meshkov and Kurath mixtures put the un-
perturbed splitting of L=1, 3 at 4 Mev; the Serber
mixture predicts 5 Mev, which is closer to experiment.
However, second order tends to raise the —,

' energy rela-
tive to —,'. The Kurath and Serber forces put the lowest
unPerturbed (1,1) S=as level above 10 Mev, while the
Meshkov force puts it at about 5.5 Mev, quite close
to the —,

' (30) level, as the experimental evidence sug-
gests (Fig. 2).

For I=4, S=O and (8.1) is zero. The second-order
term is (us/AE) [(8/3) —trs L'] from (7.8). All mixtures
give the zero-order excitation of (2, 1.) levels above (4,0),
L=O, greater than 10 Mev. Thus the coeKcient L' in
the second-order term is less than 0.1 for lal &3, or
0.2 for lal &5. The central force has a coefFicient of L'
of 0.4 for Kurath and Meshkov, and of 0.5 for Serber
mixtures. Thus to fit the J=2, 4 levels of Be' for the
range and strength of the force we have chosen requires

a large spin-orbit force with the first two mixtures, or
a smaller lal with the Serber mixture. From the
neighboring 6=2, 3 nuclei, we might expect

I al to be
~1 to 2 Mev. Both the Kurath and Serber mixtures
put the (2,1), T=1 levels at about 17 Mev, while the
Meshkov mixture puts them at about 10 Mev, for
which there is no experimental evidence (Fig. 3).

Thus we find that the low-lying energy levels of the
nuclei with A = 6, 7, 8 can be reproduced with fair
accuracy using a two-body central force and a single-
particle spin-orbit term which can be treated as a
perturbation. However, we get conflicting evidence for
the proper exchange mixtures: The Kurath choice
conflicts with the close + levels in A = 7, the Meshkov
choice conflicts with m=4, T=1 data, and the Serber
choice does not agree with the v=2 or 3. The fits in
Figs. 1, 2, and 3 could be improved somewhat by in-
creasing the coefficient of L' in the central force [(4.20a)
and (4.20c)], which could be accomplished by a change
of strength, range, or even the radial shape of V(ri —rs)
[(4.15) to (4.19)].

The first-order terms for five particles in the projected
intrinsic space are obtained from (6.12):

(P 1.s}Psr'1»r') = sPsr'I 1 s)- s [(J-s) (J+s)]'P~'I 1, -s),
{21s}P~'l1, —s)

= L
—(7/15) —(2/15) (—)'+'(J+s)]P~'

—(1/30)[(J—-,') (J+-',)]lPsr ~
I 1,-', ),

where we have used (6.8) and (5.5):

(8.2)

P 'I —1, l)=(—)'+:P 'l1, —:)
=[ ( )'+'/2]P~—'S—+P 4l1,s) (83)-

The total perturbation is [cL'+a+ 1 s], where c is
the coefficient of L' in the central force, including the
eRect of P L'S' in first order. The perturbation takes
the matrix form in the sPace Psr~l 1,—', ), Psi~l 1, —xs),

using (8.2) and (5.4),

1 1
2 1 ——

2

(—le+ a~) (—c—(1/3o)~) L(J—s) (J+s)]'
1, —

s (—c—sa)[(J—s)(J+s)]' (—',c—a[(7/15)+(2/15)( —)~+'*(J+s)]},
(8.4)

where we have omitted the additive constant c(J'+S').
The solutions of the perturbation matrix are exhibited

in Fig. 4 (solid curves) as a function of a/c, with the
lowest root of J=ss set to zero. For J=--', , Pire l1,ss)=0,
and the matrix becomes one-dimensional. For J=9/2
there is a spurious solution, since there is only one state
of that spin in (3,1), that coming from L=4. The
spurious solution can be found by diagonalizing L2 in

'4 C. Levinson and M. K. Banerjee, Ann. Phys. 2, 489 (1957).

the degenerate space. The roots are 20 and 30, the
former corresponding to L(L+1) for L=4; the second
root is spurious, and its eigenfunction must have zero
norm.

It is interesting to compare the perturbation results
with the results obtained by Kurath, in intermediate
coupling, shown as dashed curves in Fig. 4. YVe have
used c=0.4 Mev to correspond to Kurath's choice of
parameters. The perturbation curves follow Kurath's
fairly well for the range shown, —6 Mev(a(0, with
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the exception of the second ~ level. It is surprising that
the higher order perturbation terms do not make them-
selves more strongly felt by a~—4 Mev, since then
a'/d, E~—1 for the Kurath force.

The experimental information on Be' is still rather
incomplete, but a tentative fit of the spectrum can be
attempted for a~—3.0 Mev (Fig. 5). We assume the
3.04 level is ~ and the 1.75 level is ~+, which does not
appear in the p-shell configuration. The broad level at
4.74 could be a combination of » —,', and —,

' as shown.
The predictions for the Meshkov mixture are the

same in first order. For the Serber mixture, c=0.5 Mev
and the entire energy scale is changed by 5/4, which

would improve the fit to the 2.43 and 3.04 levels. No
information on T= ~ levels is available.

FIG. 5. Comparison of
calculated and experimental
spectra for A =9, using the
Kurath or Meshkov mix-
tures, u~ —3.0 Mev.

4 r4////////
~//////////////i

5.04 (—3«)

(5/2 ) 2.5

(+) 2 0
/2

/2

Be

3/2

0~- 3.0Mev

n=7

The first-order perturbation results for m=7 can be
obtained immediately from those for m=5, simply by
using

i 1,—,') and
~
1, —~) as functions for 5 holes. This

simply changes the sign of P 1 s in the perturbation,
but not the two-particle term L'. Thus we need the
solutions of (8.4) for positive (a/c), which are shown
in Fig. 6. Again we have compared the perturbation
curves (solid) with c=0.4 Mev to Kurath's (dashed)
which were given only for a)3 Mev. We notice that
the Kurath curves rise more steeply than the first
order curves, indicating the contribution of higher
orders. Still the agreement is not too poor except for
J= 2, even at a= —6 Mev.

Be

The predicted spectra for B"are given for a= —4 and
—5 Mev in Fig. 7 for the Kurath or Meshkov mixtures.
Again the Serber force simply changes the energy scale
by 5/4.

For six particles, T=0, the terms in the total
perturbation

cL'+a+ 1 s+-', d P I.'S' (8.5)

can be put in the first-order from (5.2), using the results
(5.4), (6.13), and (7.10). The last term, in the absence
of the spin-orbit force, provides a small contribution to
the energies, and in particular, separates the two L= 2
states in (Xp) = (2,2), which are mixed in each intrinsic
state: E=0, 2. However, the terms which mix E in
(7.10) are small compared to the equivalent E-mixing
terms in (6.13), for a reasonable strength of the spin-
orbit force. We can then approximate (7.10) by drop-
ping the J'~4 terms, and using an average of the co-
eKcients of I.' in the E=O, 2 expressions:

P L'S'~4cx 2+1.5L'+const. (8.6)

Then for the Kurath or Meshkov exchange mixtures,
c=0.3 Mev, d=0.1 Mev, (8.5) becomes

0.45L'+0.48rc 2+a Q I s. (8.7)
2

a) 5

4

LLI

0

a (Mev)

FIG. 4. Energy spacing as a function of a, relative to J=2,
for n =5. Solid line: perturbation calculation. Broken line: Kurath
calculation, with X= —1 Mev. 0.1 P L'S'+ (a'/DE) (Q 1 s) '. (8.8)

Using (5.4) and (6.13) we can put this into the form
of a matrix in the projected intrinsic space, using the
five intrinsic states E, 358 from Table II. The matrix
can be diagonalized for each J, and each given value
of a. There will be spurious solutions for J=3, 4, 5,
which can be eliminated, as for five particles, by di-
agonalizing L' alone. The resulting first-order energies
for several low states are shown in Fig. 8, as a function
of a (solid lines). The dashed lines show the Kurath
solutions for those energies,

~

a
~
)3.

For T=1 there is no first-order contribution from

P I s, and L=I. We use the second-order expressions
(7.8) and the P I.'S' terms (7.10), and diagonalize the
matrix in the space P~~

~
2,0), I'~~

~
0,0), of the operator
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T= 0, we add the intrinsic function for (0,1) symmetry,
(0,1)11,0), to the two functions for (2,0) from Table II,
(2,0)40,1) and

l (2,0)40,0). For n =4, we acquire threy
new intrinsic functions:

l (2,1)51,Ms), Ms= 1, 0, —1.
The matrices in the enlarged space are obtained be

generalizing (6.6) to include the new functions:

{P1.s) I (P p) ~oE,~s)=P.O.
I (hp) ~oE,~s)

+pi, Oi,
l
(&'p') eo'E', MB'),

/{P1 s) l
(X'p')eo'E', Ms')=P, O,

l
(}I,'p')eo'E', 3Is')

+Pg Og
l

(}j.p) eoE,3Is)

5

4
L

LU

0
0

a (Mev }

FIG. 6. Energy spacing as a function of a, relative to J=-,' for
n=7. Solid line: perturbation calculation. Broken line: Kurath
calculation, E= —1 Mev.

The operators 0 and 0, are the same five appearing
in (6.6).

Generally, (see Table II) eo' ——eo —3. Since P I s
operating on 60 can at most reach co—3, 0~ must be
unity or some combination of F+4, S+, which will not
change 60. The operators 0& must be the same as those
considered in Sec. VII, for the second-order spin-orbit
terms. We can then project J by I'~~ in (8.9) to obtain
matrices for P 1 s, as before.

For m=2, this second approximation is exact, since
including (0,1) spans the whole space for p'. The spac-
ing of the three lowest levels (J'= 1, 0, 1) of N'4 can be
reproduced for a —4 or —5 Mev.

For v=4, even the inclusion of (2.1) does not repro-

The J=0 solution is shown in Fig. 8; it clearly does not
follow the Kurath predictions, and drops below the
experimental ground state of 8'0 (j=3) for (—a))3.
This probably means that the second-order perturba-
tion calculation is not consistent for these values of a.
The other T=1 levels will also be too low, and have
not been included in Fig. 8.

An attempt to 6t the spectra of Be",B"is shown in
Fig. 9. Ke have tried to fit the T=O and T= 1 spectra
separately. The fact that a smaller value of

l al is in-
dicated for T=1 seem to point up the difFiculty in the
second-order calculation, which probably overpredicts
the energy shifts compared to erst order. We might
expect second order in T=O to make a large diRerence,
but the Kurath curves agree well with first-order curves
for J=1 and 3, and less well for J=2, so that higher
orders than second would probably have to be included
for consistency.

7.3

6.8
6.76

5.0

4.5

8.4

5.6

X6

10.0

6.8

n=8) 9, 10

These cases can be treated as four, three, or two holes
in the 1p shell. However, the spectra observed are very
different from those for two, three, and four particles,
even including the effective change of sign of P I s. The
observed energy splittings require, in 6rst and second
order, values of

l
a

l
so large that the perturbation series

is not reliable.
In such cases, it seems to be necessary to include at

least the second highest (}p,) symmetry in a more exact
way. 'This is not difBcult to do: New intrinsic functions
are defined for the new (Xp). For example, for m=2,

2.8
2.5

.8
1.2

0~-4 Mev 0~-4 Mev

Frc. 7. Comparison of calculated and experimental spectra for
A =11,using the Kurath or Meshkov mixtures, for u~ —4.0 and
—5.0 Mev.
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duce the 4.43-Mev excitation of the J=2 level above
ground. For m=3, the problems is complicated by the
presence~rof two possible spins, S=O and 2, for (1,1),
and was not pursued, because of the scarcity of experi-
mental data with which to compare for C" and N".

7.5
7.4

( 3+,T=l )

7-7

IX. CONCLUSIONS

The perturbation calculations based on the intrinsic
representations seem to provide a fair picture of the
lower spectra of many of the 1p shell nuclei. This prob-
ably results from the dominance of C, the Casimir
operator of the group SU3, in the central two-particle
potential in the 1p shell, which causes a large separa-
tion of states of different (Xp). The perturbation matrix
elements were easily obtained in this scheme, because
of the convenient properties of the generators of SU3,
operating on states of maximum 60.

The methods presented for calculating matrix ele-
ments can be used in other shells of the harmonic oscil-
lator. Whether perturbation calculations will produce a
reasonable picture of the energy spectra depends in
part on the importance of the Casimir term in the two-
particle interaction in that shell. In general, the central
force problem is much more complicated. An investiga-
tion of these calculations for the 2s—1d shell has been
carried out by Banerjee and Levinson. "

Kurath and Picman" have developed an approach to
the 1p shell using Nilsson's distorted wave functions to
generate the intermediate-coupling wave functions. In
the limit of no spin-orbit force, the Nilsson functions
become the functions of our intrinsic representation.

IO-

6 particles: 8"

3.4 2+ S.I7
4.8 (2,T=g) 4 75

4.2

3.6

3.6 2, T=Q

0

2,2 I J=o

Be

Q.7 I+,T=O

I.4

Blo

Q.I5
,T=O

0 -4Mev 0~-3 Mev

The connection of the Kurath-Picman treatment with
our perturbation method is discussed in the dissertation
from which this paper is extracted, " and will be pre-
sented in a future paper.

FIG. 9. Comparison of calculated and experimental spectra
for 3=10, using Kurath mixture, a——4.0 Mev for T=O,
a——3.0 Mev for T=1.
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APPENDIX

C9

LLI

0
a {Mev)

O, T=1

Equations (6.6) become a set of simultaneous equa-
tions in A, 8, C, D, and E when both sides are multi-
plied on the left by ((lIp) epIC, MB~ 0 *, where 0, is each
of the five operators on the right side of (6.6). The
homogeneous terms, which are obtained from the right
side of (6.6), are calculated by using (2.4) and the fact
that Fs or Fi acting on (epIC) yields zero. We find

Fn. 8. Energy spacing as a function of u, relative to 1=3, for
n=6. Solid line: perturbation calculation. Broken line: Kurath
calculation, IC = —1 Mev.

"C. Levinson and M. K. Banerjee (to be published).' D. Kurath and L. Picman, Nuclear Phys. 10, 313 (1959).

((lb')epICMs~ 1 1~ (&p).pIC, Ms)=1, (A1)

(S+FrF iS )=-,'(SpS (IIs—Hi))
= is (S+M8) (S—Ms+1) (ep IC) (A2)

'~ See asterisk reference.
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where we have used (S,Ms~S+5 ~S,Ma)=s(5+Ms)
X (5—Ms+1). Also

(S+F 4FsF sF4S )
=-',(5+ )(F 4(Hs+Ht)F4)
=-', (S+S )((Hs+Ht+2)F 4F4)
= sr (5+Ms) (S M8—+1)(eo+E+2)

X(s~—sE) (s~+ sE+1) (A3)

(S F4FtF rF 45+)
= r~ (5—MB) (5+M s—1)(eseE+2)

X (~@+-,'E) (-,'p —-,'E+1). (A5)

There are two off-diagonal terms:

(5+FrF sF4$ )=(S+5 )(F 4F+4)
= s (5+Ms) (S—Ms+1)

X (-,' —-,'E) (-', +-,'E+1), (A6)

(S FsF,F 4S+)= ,'(S M-s)(—5+Ms+1)
X (-',p+ ,'E) (-,'y-',E+—1)-. (A7)

In the last line we have used the fact that —(+sr)F+4
acts like J+ in a space with "angular momentum"
J=~LM, and 3fg= —'E'0

Similarly,
The inhomogeneous terms, which come from the left

side of (6.6), must be calculated separately for each
case, although the commutors may be used to reduce

(S I'sF sS+)= ,'(5 M-B)(—5+Ms+1)(ep+E), (A4) the operators:

(5+Fr P;F r(i)5 (i))=-', (S~ P;(Hs(i) —Hr(i)]5 (i)),
(S Fs P'F s(i)5+(i))=-,(5 P;LH, (i)+Hr(i)]5+(i)),

(S~ 4Fs Q;F r(i)5 (i))=(S+F 4P;F4(i)5 (i)),
(5~4 r 2 ' F—s(i)5+(i)) (5~4 Z ' F—4(i)5+(i))

The right sides of these equations are calculated by using the determinant forms (Table II) and (6.7).

(AS)
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Quantum Mechanical Calculation of Mossbauer Transmission*f
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A quantum mechanical calculation of the time-dependent Mossbauer transmission has been performed
neglecting solid-state effects. The source considered consists of nuclei which decay via a two-photon cascade,
the second of which is emitted without recoil and is subject to resonant absorption by a foil whose resonance
may be shifted due to a small relative velocity between source and absorber. The transmission is obtained
when the transmitted recoiless photon is measured in coincidence with the first photon of the cascade. The
result is in agreement with that obtained by considering the absorber as a classical dielectric slab capable
of absorption and dispersion. The initial condition has been investigated in detail by considering the full
cascade. In this manner, one sees that the usual simple assumption that the nucleus is in the first excited
state immediately after the emission of the first photon, gives the correct boundary condition.

INTRODUCTION

i
= HE most common Mossbauer experiment is

performed by measuring the transmission of
recoiless radiation through a thin resonant absorber
which may be in motion relative to the source. In this
manner, the hyperhne structure of the isotope employed

* Work partially supported by joint contract with the 0%ce
of Naval Research and the U. S. Atomic Energy Commission.

t Based on a thesis submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at the
University of Illinois.

f. Some of this work was performed while the author was a
Gulf Research and Development Corporation Fellow.

$ Present add'ress: Institut fiir theoretische Kernphysik der
Universitat Bonn, Bonn, West Germany.

may be investigated. ' An interesting variation of this
simple experiment has been performed by several
groups. '—' They make use of the most popular
Mossbauer isotope, Fe'~. The source contains Co"
which decays by electrongcapture to Fe'"~ which
decays in turn by a 122-kev photon followed by a
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