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Excitations of Two-Phonon Surface Vibrations in Nucjiei~

R. H. I KMMER) A. DE SHALIT, t AND N. S. WALL

(Received June 21, 1961)

The features of inelastic scattering leading to two-phonon nuclear surface vibrations have been examined
in Born approximation. Comparison is made with recent experimental results of inelastic alpha-particle
scattering experiments on spherical nuclei. Good agreement is found between parameters derived from these
experiments and Coulomb excitation. This is not surprising since the comparisons have been carried out in
a relatively model-independent way.

somewhat diGerent phase rule has been put forth by
Austern very recently but no detailed comparison with
experiment has as yet been made. ' Blair' and others
have noted that the phase rule does not depend criti-
cally upon the model used for the interaction but is
obtained in either a diffraction analysis or a first-order
Born" approximation of inelastic scattering. In either
case the "phase rule" comes about because of the
appearance of periodic or near periodic functions in
the expression for the differential cross section, with a
phase determined by the angular momentum I. trans-
ferred in the excitation.

In the case of the two levels marked by 8 in Figs. 1
and 2, the point of particular interest is that both of
these levels are known to have spin and parity 4+"
and should accordingly yield angular distributions
which are out of phase with the elastic scattering
angular distribution. Instead they are clearly in phase,
without appreciable 6lling in of the minima or a
distortion of the angular distribution, with the 3
state as well as the elastic scattering except at small
angles. It should also be noted, particularly for the
Fe" case, that the slope of the envelope of the maxima
is considerably less negative than that of the other
odd-parity states, or the elastic angular distribution.
Furthermore, the differential cross section for the
scattering to this state is, on the average, considerably
below that of the other states observed in the Saclay
experiments. This latter point has led the Saclay group
to propose that these states are being excited by a
two-phonon process. The clear but anomalous behavior
of these angular distributions, in particular, has moti-
vated our study of inelastic alpha-particle scattering.

For simplicity we prefer to study the scattering
process by a simple Born approximation method rather
than use the diffraction analysis of Blair" and
Drozdov. " As usual we assume that the interaction

I. INTRODUCTION

'HE characteristic behavior of direct reactions has
in recent years made them an extremely useful

technique for determining the spin and parity as well
as detailed information on the wave functions of a large
number of nuclear states. This is particularly so in the
case of the deuteron-induced reactions', and more
recently Blair, ' generalizing on the work of Drozdov'
and Inopin, 4 has shown that inelastic alpha-particle
scattering can give detailed information on states
which are collective in nature. Prompted by the success
of the Blair analysis of inelastic alpha scattering and
the appearance of the octupole vibration state in nuclei
in the Fe-Xi region, the group at Saclay have extended
the studies of inelastic alpha scattering with better
energy resolution' than had previously been used. ' '
Some of their recent results are shown in Figs. 1 and 2,
the group marked 8 being of particular interest because
of their apparent contradiction of the so-called "phase
rule. " This rule relates to the position of the maxima
and minima in the angular distribution of o. s scattered
from a spin-zero nucleus. According to it these maxima
(minima) for the inelastic scattering to even-J states
with no parity change occur at the minima (maxima)
for the inelastic scattering to odd-J states with change
of parity. Furthermore, eius]ic scattering behaves, for
that matter, like inelastic scattering to odd-J states. A
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Commission contract by funds provided by the V. S. Atomic
Energy Commission, the Once of Naval Research and the Air
Force OfEce of Scientific Research.
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i04 =
spherical Bessel function of order 1. The second term
in (2) linear in ni is responsible for inelastic scattering
involving the excitation of a one-phonon state in the
nucleus. The differential cross section has been com-
puted by Hayakawa and Voshida, "and may be written
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for a square-well shape for V(r) in (2); I. is the angular
momentum of the excited state, AcoL, the excitation energy
and Cl, a parameter relating to the nuclear surface
tension. "The momentum transfer q in Eq. (4) is very
nearly equal to the E in Eq. (3), differing by not more
than a few percent for alpha particles on medium-
weight nuclei if the excitation energy is small compared
to the incident alpha-particle energy.

In the next section we outline the calculation of the
differential cross section in a erst-order Bornapproxi-
mation for the last term in the expansion of the po-
tential, Eq. (2). This term, being quadratic in n, can
of course give rise to two-phonon states. However, the
linear term in the potential can also give rise to a
two-phonon state through a second-order correction to
the first-order scattering. We have also carried out this
second-order calculation and present it as well, in the
next section. Details of both calculations will be found
in the Appendix. The two second-order terms may
further be described by saying that second-order
scattering term involves an excitation which goes
through an intermediate state and must be summed
over all intermediate states, whereas the 6rst-order
direct two-phonon transition arises from the term in the
potential quadratic in the deformation and does not
involve any intermediate states in first-order. In Sec.
III we compare the results of this analysis with experi-
rnent and discuss some of the approximations in the
analysis.
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between the scattered alpha particle and the nucleus
is confined to within an interaction radius R. The
inelastic scattering involves an excitation of the nuclear
degrees of freedom also. Assuming that the states which
are preferentially excited are collective states, we
describe this excitation in terms of a distortion of the
nuclear surface and write

V= V(r,n), r(R=RpI 1++ni Vi„]
$,m

=0)

for the interaction potential. Here the n~ are collective
coordinates for the nuclear surface" and play the role
of destruction and creation operators for "phonons" of
angular momentum l; V~ is a spherical harmonic of
order l, and Rp some average interaction radius. An
expansion of (1) in powers of n is appropriate since
nuclear distortions are usually small. One finds, to
second order,

U(r, a.)= V(r)+pi(r) Q ni„Vi„
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(0The first term in Eq. (2) produces the elastic scat-
tering; for a square well of depth Up the angular
distribution is well known:
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kp, kr are the initial and final momenta in the c.m.
system, K= Ikp —kyI is the momentum transfer, Mp
the reduced mass, and j,(kRp) denotes the usual
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FIG. 2. The differential cross section for 44.4-Mev alpha
particles scattered from the various states in Fe ' designated in
the drawing.

' A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
26, No. 14, (1952).

Fro. 1. The differential cross section for 44.4-Mev alpha
particles scattered from the various states in Ni' designated in
the drawing.
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II. TWO-PHONON EXCITATIONS

It is clear that the higher-order terms in an expansion
like (2) will lead to interactions that allow for more
than one phonon to be excited in the nucleus. We
consider the qualitative features of such processes in
this section. Thus the third term in (2) will excite a
two-phonon nuclear state. Assuming that the nuclear
transition is from a zero-spin initial state Is)=

I
L=O)

to a final state of angular momentum I., I f)=
I L), only

the jr, (qr) term is picked up from the wave function of
the n particle in Born approximation by the two-
phonon interaction. Calling the transition operator T,
one gets for the transition amplitude (see Appendix 1)

(LI T IO) = (-')' Z ~2««
L, L'

X I (2L+1)(2i+1)(2l'+ 1))'

xI dr rsv2(r) jr, (qr), (5)
EO 0 0&~

(k&ut) '

&2C,)
In deriving (5) we have taken the quantization axis of
I. along the momentum transfer direction q in which
case only the projection M =0 contributes. The
constants Acing and C~ still refer to a single-phonon state
of spin It, and we have used the Wigner" round bracket
notation for the vector addition coefFicient.

H V(r) is again taken as a square well, then vs(r) in
the radial integral becomes proportional to the
derivative 6'(r —Ro) of a delta function, so that

«&'v (r) j~(q~)

8
I
Ro j&(qRo))

Mp

2 VoRo'L(qRo) jz, i(qRo) —(I.—3)ji (qRo)), L)0
= ——VoR DqRo) j (qR )—4jo(qRo)), L= 0. (6)

The di6'erential cross section for the two-phonon state
excited by a particular multipole X in the interaction
then becomes, putting 7t= l= /' in (5),
d&(2phi 1 ~ 1 q

2

=-I —
I (2Ly1) (27+1)2

dQ 2 (&)
(X 7~ Lq 2 )Ate&q )Vs' 2 kf

xl
(0 0 0) &2Ci) l. Eo)

I
I:(qRo)jz-t(qRo) —(L—3)j~(qRo))' L&0

X
I L(qRo) j,(qR,)—4j, (qR,)) L=0 (7)

and I.can only be even, 1.& 2X. Since for the scattering
of intermediate-energy alpha particles, qEp is usually a

'~ A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1937l.

fairly large number, the first term in the square bracket
is much enhanced over the second, so that the charac-
teristic oscillations in the cross section (7) with angle
are determined almost completely by (qRo)'j&2 i(qRo).
Thus we get oscillations out of phase with the single-
phonon angular distribution which involves the same
final angular momentum I.and always in phase with the
elastic cross section. Also the additional factor
(1/42r)(hcoh/2Ch) in (7) will reduce this cross section
by more than an order of magnitude. Hence these
two-phonon excitations may be identified by their
in-phase oscillations with the elastic cross section (3)
and small cross section. The slower drop-off in magni-
tude of the envelope of (7) with increasing angle com-
pared to the single-phonon cross section is another
important difference. Inserting the asymptotic form
for the first Bessel function in Eq. (7), one finds a
cos'qRp behavior for the differential crosg section which
has a constant envelope. The reason for the slower
drop-off for the two-phonon cross section in this model
is the better localization of the interaction vs(r) at the
surface.

Distortions of order ) = 2 appear to be the most
important excitations of the nuclear surface. "Then the
first group of two-phonon states is a triplet" with L=O,
2, 4 and we find the corresponding cross sections from
(7):

do "p"& t' 1 ) ' An~2)
' ( Voq

' kf

dQ (42r) 2C2) ~ Eo) ko
where

E= (5/2) L(qRo) j (qRo) —4j (qRo))',

F= (25/7) LqRo ji(qRo)+ j2(qRo)], L= 2, (gb)

E= (45/7)I qR.j.«R.)-j«qR.)),
all of which have exactly the same angular distribution,
namely cos'qRp when qEp&&1. In this limit the relative
intensities are 1:1.43:2.57 for I.=O 2 and 4.

A two-phonon 6nal state such as we have just
discussed can also be reached via a second-order
process, going through intermediate one-phonon states.
We compute the cross section for this process in second-
order Born approximation, going through one multipole,
X, in vi P&~ n&~V&~ only. The transition amplitude can
be obtained in closed form for this case if one assumes
in addition that v~ has a delta-function space de-
Pendence, i.e., vi= UoRo5(2' —Ro). Then for a transition
to a Anal state

I f)=
I L) one has the approximate result

(L I
T

I 0)= —2L2(2L+1)]'*(—i)~'(2K+1)

&L 7t 7~q t kco&y pVoq )VoRo')
I I

—
I I

&0 0 0) (2Ch) &Eo) L koRo )
xLj (qRo) —(—1)'j (PRo) ""'),

koRo))1, (9a)
"K.Alder ei a/. , Revs. Modern Phys. 28, 432 (1960).
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TABLE I. Parameter values obtained by
comparison with experiment.

Radius taken
from elastic
cross section

Uo taken
from elastic
cross section

Puce/2C3 X 10'
taken from
4+ Coul excit.

Fe'6 6.84f
Ni' 7.00f

3.6 Mev
4.4 Mev

10 6.3
5.8 1.8

12
94

'7 D, D. Kerlee, J. S. Blair and G. W. Farwell, Phys. Rev. 101,
1343 (1957).

"A similar value is found from an analysis of the 30-Mev
scattering data of reference 7.

'3 E. Rost and N. Austern, Phys. Rev. 120, 1375 (1960).
ee l. E, Mccarthy s,nd D, L, Pursey, Phys. Rev. 122, 578 (1961).

for Vo was taken from the 35' and 45' maxima in elastic
cross section, and A(ds/2C3 comes from the 22' maximum
in the 2+. This value is compared with the A(ps/2C3
taken from the 4+ angular distribution at the 28'
maximum, determined from (8c) by normalizing the
experimental curve to the 28' maximum. Table I shows
the values of Rp, Vp, and A(ps/2C3 determined in this
way, and compares the last parameter with its Coulomb
excitation value. " Similar results have recently been
obtained at 30 Mev. '

The values of the interaction radii are consistent
with other values determined from elastic n-particle
scattering. "The quantity Vo has signi6cance only as
a parameter determining the strength of the interaction
and must not be interpreted as the depth of an appro-
priate optical potential for n-particle scattering. It is
rather surprising that the same Vo seems to be appro-
priate for the square-well depth giving rise to the
elastic scattering and for the strength of the surface
interactions producing the inelastic scattering. ' From
Eqs. (4) and (8) one sees that the value of Vp has no
bearing on the ratio of the magnitudes of the scattering
cross sections to the 2+ and 4+ states. The values for
A(ps/2C3 quoted in Table I were determined at forward
angles because the Born approximation for the cross
section is expected to be least in error here, especially
for a well shape having a sharp cutoff. Going to larger
angles decreases the extracted value of this ratio, as
expected.

The approximations that we have used in this analysis
are clearly extreme, and one should properly also con-
sider the effects of surface diffuseness and absorption
e6ects in the interaction potential. A rather careful
analysis of such effects has been made recently by Rost
and Austern' and also by Pursey and McCarthy. "
However, in the Born approximation, certain relations
between the single-phonon and double-phonon angular
distributions are relatively independent of any detailed
assumptions about the interaction. To see this we
transform the radial integral in Eq. (5) for the two-
phonon amplitude by integrating by parts and then
transferring the derivative from one on r to one on q,

C

O
L

JD

o lo'

a

I0
I

20
ec.m.

30
I

40 50 60

FIG. 5. The differential cross-section of the 3 state of Fe',
E of Fig. 2, multiplied by (qRp)' and compared with the 4+ state,
8, with a normalization at the 25' maximum.

qRp dr r s(vrr) jr, r(qr), (12)

if we assume that v~ is peaked around some radius r =Eo,
and that qRp is a large number. Then Eq. (12) relates
the two-phonon angular distributions to the one-phonon
angular distributions of odd parity by

d~(2ph) do.&'p")
(even) (qR )3 (odd)

dQ dQ

in a relatively model-independent way. This relation
seems to be approximately true for the 4+ and 3 states
in Fe56, as Fig, 5 shows.

to get

8
dr r'vs(r) jr, (qr) =— dr V' f~'j r.(qr) —j

gy

8 f'
= ———q' dr r' (vrr)j r, (qr) (10)

recalling the definitions of v& and v2. This means that
the two-phonon and one-phonon scattering amplitudes
are related, apart from constants, by

8
(2Ph) —

q
3 [q4 2' (1—Ph) j
Bg

8
(11)

Bg

quite independent of the exact shape of V (r) in Eq. (2).
The last step in (11), which is a good approximation
when the momentum transfer is large, clearly shows
the out-of-phase relationship that holds between the
one- and two-phonon transitions in this limit. Further-
more, since, in the Born approximation at any rate,
the q dependence of the scattering amplitude only enters
through aj r, (qr), the last step in (11)can also be written
approximately as

8—
q
—T(p r)('p")= —

q dr r' (vrt) j& r(qr)
Bq
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As pointed out in the Introduction, the 4+ state can
naturally also be reached by a single-phonon inter-
action with X=4. A lower limit for the C4 parameter
which will appear in such an interaction can be esti-
mated for I'e" by equating the cross section at the 32'
minimum with the cross section given by Eq. (4) for
) =L=4. The result is C4& 2X10' Mev.

A further approximation made in the nuclear part
of the wave function in calculating the two-phonon
transition amplitudes has been to work entirely in the
harmonic oscillator approximation. This neglects any
mixing between different states of the same spin. The
inclusion of such mixing removes the high degeneracy
present in the harmonic oscillator model for vibrational
states. "For instance a component of the single-phonon
2+ state in the second 2+ state arising from a removal
of the degeneracy of the 0, 2, 4 two-phonon states
introduces a part of the single-phonon transition
amplitude of the opposite phase into the transition
amplitude to the second 2+, which then becomes

(kois) *

(2 I
T

I
o)-

I I (Ps) ji(q&o)+~j (q&o),
&2C,&

rl =mixing amplitude. (14)

using the well-known expansion for a product of
spherical harmonics. "The matrix element of Eq. (15)
with respect to the initial and Anal plane waves kp and
kf only, is

T= Q ni, ~ni. , (i)"(2l"+1)I (2l+1)(2l'+1)]'
lml'l"

( l l' l"
p (l l' l"

q

Em —m 0) EO 0 0)

X dr r'v&(r)j i. (qr), (16)

taking the momentum transfer direction q=k, —kp as
s axis; then only the m"=0 term in the sum (15) is
picked up and so m'= —m. This means that the operator
T in (16) cannot change the s projection, M, of the
angular momentum of the nucleus along the momentum
transfer direction. Thus we only require the nuclear
matrix element:

(LO; 2Ini ni ~IOO; 0)=eiei ( 1)~—
I 2(2L+1)7'

Thus the admixed one-phonon amplitude will tend to
fill in the minima of the two-phonon amplitude, and
pull the scattering cross section out of phase again with
the elastic angular distribution especially at small
angles. Clearly the extent of such an eGect is dictated
by the degree of admixture of the one-phonon level; at
moderate momentum transfers a rather large value of

p would be necessary to compensate for the rapid
drop-oG of the one-phonon amplitude in comparison
with the two-phonon component.

APPENDIX

1. Two-Phonon Cross Section

The inelastic scattering cross section to a two-phonon
state of angular momentum L is determined by the
matrix element of the last term in Eq. (2) between
initial and final nuclear states

I
i)=

I
00,0) and

I
f)= ILM, 2) labeled by quantum numbers giving the

angular momentum, its s projection, and the number of
phonons (0 and 2 in this case) present in the initial and
final states.

The two-phonon part of the interaction (2) may be
written as

(2l+1) (2l'+1) (2l"+1)
&lmo'l m

lm, l'm', l"m"

2' C. S. Shakin and A. Kerman (to be published). The thesis of
the first of these authors LHarvard University, Cambridge,
Massachusetts, 1960 (unpublished)g lists many references to
other authors who have studied this problem.

which can be easily obtained from the matrices of O. l ."
After forming the expression (fI TIi) from (16) and
inserting (17), the sum over m just expresses the
orthogonality condition for the vector addition co-
eKcients, and vanishes unless t"=L. Hence,

(L I
T IO)

= (—i)~ P &2eiei L(2L+1)(2l+1) (2l'+1)]'*

(l l'
dr r'ti&(r)j I.(qr), (18)

LO 0 0) &

and only one Bessel function j I, (qr) appears in the
angular distribution, as for the one-phonon excitations.
The sums on t and 1' are over all values consistent with
the conditions that l and l' can be combined vectorially
to give L, and that L+l+l'=even. The two-phonon
cross section given in Eq. (7) in the text follows from
(18) with l=l'=X and a square-well shape for V(r),
after the appropriate phase space factors are included.

2. Second Born Approximation

The contribution of the single-phonon part of the
interaction given in Eq. (2) of the text to the two-
phonon cross section can be evaluated in a second Born
approximation calculation. We only give the most
important details since the computation is rather long.
The matrix element we are interested in has the
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approximate form

2Mp
&flTI')= „, 2 2

(k,,LM:2I v, lk, L'M'; 1){k,L'M';1l v, lko, oo,o)
X

P—&o'

Vi=vi(r) Q n), Vi,

if one can neglect the excitation energy of the nucleus,
as can usually be done for medium bombarding ener-
gies. Hence the sum goes over all intermediate one-
phonon nuclear states IL'M'; 1) and alpha-particle
momentum states Ak. Let us assume that the final
state has zero spin also and that only the A,th multipole
in V~ is important. Then just L =X contributes and
the sum in (19) is over M' and k only. Putting in plane
waves for the alpha particle wave function (19)becomes

2Mp
(0I T

I
0)= — Q (00; 2

x(m';1ln, ~, loo; o&

1
]
t e g~I 'vi (r) Fzir (r)dr4JJ

~idol r—r'l

X vi(r') Vi ir (r')e'"'"dr',
lr —r'I

since the sum over k is then just the Green's function
Ir —r'I 'e'"o~' "g for a free particle, with an outgoing-
wave boundary condition. "Now the two radial integrals
can be obtained by expanding the Green's function and
the initial and Anal plane-wave states in spherical
harmonics. Taking vi= VpRo5(r —Rp), the result of this
integration is

(—1)~'(VpRp')'(2K+1)iko Pgg g (2l+1)i' jg(kpRp)

Pl X l'q
f l l~ l'

xl
&0 o o) &0 M' —M')

Xhg ' (koRo) (2l'+1) jg'(koRo)

l'q tl" X l'
xl io 0 o) &0 M' —M')

X (2l"+1)(—i)"jg"(krRo)P "(cos8), (21)

where 8 is the angle between kp and kr, i.e., the angle of
scattering, and h~&" is a spherical Hankel function of

2'I.. I. Schi8, QNamtlm Mechanics {McGraw-Hill Book Com-
pany, Inc. , New York, 1959).

the first kind. "inserting the matrix elements

(liM'; 1
I
ng, gag~

I
00; 0)= (—1)~'e)„

(00; 2lniggr llgM'; 1)= (—1)"eiL2/(2K+1) j'*, (22)

and the expression (21) in (20), the sum over M' again
becomes the orthogonality relation for the vector
addition coeKcients, so that l=l" and one finds;

(0 I
T

I 0)= ikoRo(Vo/Ep) VoRo'( —1)"eioL2(2li+1)]'

XP (2l+1)jg(koRo) jg(krRo)Pg(cos8)

t'1 X l'y '
X

I I
(2l'+1)hg &" (kpRo) jg (koRo). (23)

(0 o o)

Actually this sum can be evaluated when kpRp&)1 using
an easily proven addition theorem for spherical Bessel
functions:

tl
i"jz(giRo) =P jg(koRp)(2l+1)i'I I (—i)'

&0 o o)

X(2l'+1)jg (krRp)Pg (cos8), (24)

where gi=
I
kp —kr I

and 8 is the angle between ko and kr.
The asymPtotic exPressions for jg(kpRp) and

hg &" (kpRp) when kpRp is large provide the necessary
phase factors in (23) for it to be broken up into two
sums having the form of Eq. (24) and Eq. (24) with 8
replaced by or —8. The final result is

(0 I
T

I 0)= -',
I

2 (2li+1)Q'i"+'eg'VpRp'(Vo/Eo) (1/koRo)

X Ljz(giRp) —e""p~pjg, (pRp)], (25)
with

v= Iko —kr I, p= lko+kr I,

as given in Eq. (9b) of the text. The expression
analogous to (23) for a final state

I f)=
I L), LAO is

(I.
l rlo)

= ikoRp (Vp/Ep) VoRp'ei'I 2 (2I+1)Q&(2K+1)

X Q (2l+1)jg(kpRo) jg" (kIRo)Pg (cos8)

L l l" I. l l"
xi&g "&(2l"/1)

I

&0 O 0) l'X
l X l'y l' X l"

y

xl II I(-1)'(»'+1)
&0 0 0)E0 o o)

xh &" (koRo) jg (koRo), (2&)

where as before, X is the multipole in the interaction
causing the transition. The curly bracket denotes a
Racah coeKcient in Wigner's notation. " Again, re-
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Placing jr (kpRp) and hr &'& (koRs) in (26) by their
asymptotic forms for large koRO one finds, after some
algebra, that

(L I
T

I o)= —
s L2 (2L+ &)l'( —s)"'(2)t+ &)

)L X X) (hco), i (Uo) (UoRos)

& 0 0 03 (2Cg) (Es) E koRo )
Xp jL(qRs) —(—1)"j L(pRo)e""OEoj (.27)
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Approximation Methods in Nuclear Intermediate Coupling Applied to the 1p Shell*f
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The intermediate-coupling shell model for nuclei is considered in terms of the classification of states in a
harmonic oscillator according to the irreducible representations of the unitary unimodular group in three
dimensions, SU3, introduced by Elliott. The properties of this group are used to produce the approximate
spectrum of a quadrupole force, acting within an oscillator shell. When specialized to the 1p shell, a more
general interaction, including exchange forces, is shown to be approximately diagonal in the chosen repre-
sentation, and its approximate spectrum is computed. A method is developed for calculating the matrix
elements of interactions not diagonal in the representation, in particular the single-particle spin-orbit po-
tential, using the generating functions of the group, SU3. The intermediate-coupling energy spectra of the
nuclei of the ip shell are then calculated to the 6rst or second order in perturbation theory. The results are
compared with experimental spectra, and with calculations of Kurath.

I. INTRODUCTION

'HIS paper is an investigation of new methods of
calculation of energy spectra in the nuclear shell

model, with particular application to the 1p shell. The
energy levels in this model are the eigenvalues of an
interaction matrix in the space defined by restricting
the particles outside the closed shells (the core) to the
lowest available unfilled shell. The interactions con-
sidered usually contain a two-particle central potential
and a single-particle spin-orbit potential. The competi-
tion of the two potentials produces "intermediate
coupling" eigenfunctions, which are pure in neither L-5
nor j-j coupling.

The calculation of the matrix elements of the inter-
action is central to the problem. This is usually done by
factoring the many-particle basis functions into prod-
ucts of functions of smaller numbers of particles, so
that the many-particle matrix elements required can be
expressed in terms of those for fewer particles, and
ultimately in terms of single- or two-particle matrix

*This work was supported in part by the U. S. Atomic Energy
Commission and the Higgins Scientific Trust Fund. Further de-
tails may be found in Atomic Energy Commission Technical
Report NYO —2960 by Daniel S. Koltun, 1960 (unpublished).

f Based in part on a thesis submitted in 1960 to the faculty of
Princeton University in partial ful6llment of the requirements for
the degree of Doctor of Philosophy.

f. Present address: Department of Physics, Weizmann Institute
of Science, Rehovoth, Israel.

elements of the single- or two-particle potentials which
are calculated directly. The fractional parentage
methods of Racah' are useful for this reduction. How-
ever, for many particles, or for particles with high
angular momentum, this may be a di%cult program.

Ke have investigated a diferent method of obtaining
the matrix elements, based on Elliott's group-theoretic
classification of states for a harmonic oscillator shell
model. ' In Sec. II, we review some of Elliott's results,
in a slightly different presentation. In Sec. III, we
show that Elliott's classification scheme approximately
diagonalizes a two-particle quadrupole interaction.

In Sec. IV we specialize to the 1P shell, where Elliott's
classification scheme is related to the supermultiplet
scheme of signer. ' Here the group theory of the Klliott
scheme provides a direct way to calculate the spectrum
of a central, spin-independent potential. Even for the
spin-dependent potentials used in intermediate-coupling
calculations, we may use the group theory to obtain
approximate spectra, with a small correction term which
is not diagonal.

The remaining problem is the calculation of the spin-
orbit matrix elements, and those of the nondiagonal

' G. Racah, Phys. Rev. 63, 367 (1943), and further references
therein.' J. P. Elliott, Proc. Roy. Soc. (London) 245A, 128 and 562
(1958).' E. P. Wigner, Phys. Rev. 51, 106 (1937).


