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Selection Rules Connecting Different Points in the Brillouin Zone
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Selection rules for indirect radiative transitions and for intervalley scattering are investigated for Ge and
Si. Comparison with experimental results of Haynes and of Benoit a la Guillaume supports (1) the present
picture of the band structure of Ge with a conduction band minimum at the zone boundary, (2) the assign-
ment of L2 as the symmetry of the LA phonon at the zone boundary in the L1117 direction. The absence
of the LA phonon in the Haynes radiative emission experiment still requires explanation. To obtain the
required selection rules we take the product of two irreducible representations i and j that belong to different
wave vectors k and k'. The resulting character product is expressed in a form appropriate to a third group
Gg at k"=k+k'. If the elements of Gk are applied to k to generate a star and iV(C) is the number of points
of the star invariant (or equivalent) under any element R in the class C (of Gk-) then the character product
is N(C)(x'(R)x'(R)) i.e., N (C) times the product of the characters averaged over those R in C which belong
to Gk and Gk" (i.e. , those whose characters can be found in the tables at ir' and lr").

THE PROBLEM
' 'NTKRVALLKY scattering of electrons and indirect
~ - transitions of electrons from the top of the valence
band to the bottom of the conduction band, as seen in
Ge and Si, are examples of processes in which diferent
points of the Brillouin zone are connected by a per-
turbation —in this case due to phonons. Selection rules
concern the vanishing or nonvanishing of an integral
of the form

P '(k, r)P„(k',r)P„(k",r)*dr,

where f&,'(k, r) is a "Bloch wave" which belongs to the
) th row of the ith irreducible representation of the
group G» of the wave vector k, etc.

In Eq. (1) we can choose ltk'(k, r) to represent an
initial electron state, lt„(k",r) a final electron state
and g „&'(k',r) as that portion of the perturbation
Hamiltonian due to light, phonons, etc., which trans-
forms according to the pth portion of irreducible
representation j with propagation constant k'.

In an experiment we are not concerned with an
individual matrix element (1), but with transition
probabilities which involve the absolute square of
matrix element (1) summed over all final states of the
same energy (i.e., over v and over the star of k") and
averaged with equal weight over the initial state (i.e.,
aside from a constant factor, one also sums over ) and
the star of k). This complete sum can be shown to be
independent of p, and of which point of the star of k'
is used. In other words, the experimentally observable
results involve selection rules connecting comp/etc

represeutatsoes, and not the more stringent rules which
connect particular members of representations.

Character tables are available for the factor groups
Gk/Tk, Gk/Tk, and Gk"/Tk . LHere Tk is that in-
variant subgroup of the pure translations (e~t) such
that exp(sk t)=1.7 Conventional methods for deter-
mining selection rules by taking products of characters
depend on the three wave functions transforming

according to irreducible representations of the same
group. Since it is inconvenient to work with the com-
plete space group, Elliott and Loudon' have suggested
that one consider the group of elements G, common to
Gl„G1, , and Gl,".If T, is the corresponding intersection
of T~, Tl, , T1, , Elliott and Loudon suggest that
conventional group theory may then be applied using
the irreducible representations of the (generally) new
factor group G,/T, . This procedure, while correct, may
require the construction of a new group and a new
character table. Indeed, Elliott in constructing such
character tables indicates that it is convenient for these
computations to construct a complete character table
including those in which the character of an element

(e ~
t'), say, of Gk, is the dimension of the representation

times exp(smk t') with integers n other than unity.
The purpose of this note is to show that the selection

rules may be derived using owly exisHwg character
tables, and only the representations already found in
those tables.

THE NEW' METHOD

YVe take for granted the selection rule

k+k'=k",

which follows from the translations, where = implies
that the two sides of the equation are equal, or equiva-
lent (differ by a reciprocal lattice vector).

The conventional method of obtaining selection rules
for (1) is to use any two factors say Pz'(k, r)P„'(k', r')
as a basis for constructing a product representation
F(' ~&. One then decomposes the product representation
to see if it contains F . This procedure is predicted on
the assumption that ~, j, and m constitute represen-
tations of the same group, whereas we prefer to regard
them as belonging to three groups,

Gk/ Tk Gk'/Tk' and Gk"/Tk"

The inadequacy of the usual procedure, in our

'R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 146
(1960).
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SP&,'(k, r)P„&(k',r'), (3)

present situation, may be summarized by the statement
that the set of wave functions Pq'(k, r)P„&'(k', r') for all

and p, may not span a complete representation of
Gq"/Tj, ~ in the sense that an element 5 of the latter
group may take one outside our starting set of wave
functions. We must therefore augment our original
product functions by using as a basis, the set

then the same relation is obeyed for k' by subtraction.
Thus in practice, we need only use J(U) to "project"
into the groups at k or k' but not both.

Since the sum over S takes S 'RS through the class
C (an integral number of times), Fq. (6) automatically
yields a result that is independent of which element R
of C is chosen. We can rewrite (6) in the more useful
form:

x"'(C)=(x'(C)x'(C))&,
where X and p, run over their usual values, and S runs
over the factor group G~ /T„".

l The above statement may seem mysterious if we

happen to remember that the elements S of a factor
group G~ /2'~ are cosets. However, these cosets have
the form (nl ~)T& ~ and for any elements of the trans-
lation group Tk" we have 8 in 0

x'(R)x'(R) J(R)/ 2 J(R)
R in 0

where

(x'(C)x'(C))

=Q x'(5 'RS)x&(5 'RS)'J(5 'RS)/Q J(5 'RS)

(10)

T„"lp(k",r) =p(k",r),

as essentially the definition of the group Tk . Hence,
all members of any one coset produce the same action
in P(k",r). For calculational purposes, we then do what
we would have done without thinking, namely use for
S not a coset, but any "representative element" of that
coset. Since |p(k,r)p(k', r') has the same translational
properties as |p(k",r), it is legitimate to regard 5 in

Eq. (3) as such a representative element. ]
Of course, not all the elements 5 in Eq. (3) will

produce new wave functions. Bearing in mind this
possible redundancy, we may calculate the character
of an element R in the class C of the factor group
Gg"/Tg" in the form

x' '(C) = (1/r) 2 LSp, '(k, r)p„'(k', r )]*
S,X,p

XRS|Pg'(k, r)|P„&(k',r')drdr', (4)

where r is an integer we divide by to eliminate the
redundancy. However, a matrix element of the form

is the character product averaged over the elements
R in the class C of k" which belong to the common

group and
Z= (1/r) P, J(S RS)- (11)

has a simple geometric interpretation. If we let lk)
denote the point

l k) in the Brillouin zone, then the set
S

l k) constitutes a set of norseciuimlerlt points
l k,)

repeated with a redundancy r. We may refer to the
nonequivalent set of points

l k,) as the k" star of k (or
substar since it is generated from

l
k) using the elements

of the group at k" rather than the group at k"=0).
We can now write

J(5 'RS) =(kls 'Rslk), (12)

which is one or zero according as 5 'RS belongs to k
or not. Thus, we can rewrite Eq. (11):

&=(1/r) Zs(sklRlsk)=& (k~lRlk) (13)

in the form of the trace or character of E in this substar
representation which is no longer redundant. Equation
(9) can then be written more mnemonically as

' '(C) =(x'(C)x'(C))alt'" -.(C), (14)

|pg'(k r)"S 'RS&g'(k, r)dr—

If therefore,

5-~RSk"=k".

S iESk= k

(7)

vanishes unless S 'RS leaves k invariant or changes it
by a reciprocal lattice vector, i.e., unless S 'ES belongs
to the group at k. If the sums over X and p in (4) are
performed we obtain

x"~&(c)= (1/r) Qs x'(5—'RS)xs(5—'RS)J(5—'RS), (6)

where J(U) = 1, if U is common to the groups at k, k',
and k" (i.e., belongs to G,/T, ) and zero otherwise.
Note that S 'ES automatically belongs to k" since
each factor does, i.e.,

where E=1Vlt' t,,qg(c) is the number of points lk,)
of the substar which are unchanged by (invariant or
equivalent under) any element R of the class C. This
substar simplifies in several cases. If k"=0 the substar
is identical to the usual star. If k or k'=0, the substar
has only one prong, and E.=1 or 0, so that the last
factor in (14) can be omitted providing the average
over the nonvanishing contributions to the character
product is taken to be zero when there are no such
contributions.

DISCUSSION OF GROUP THEORETICAL RESULTS

If those elements E of the class C in the group at
k" which contribute (i.e., belong to the groups at k
and k') belong to a single class in k, and to a single
class in k', then a typical character product agrees wAh
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the average character product and the averaging process
indicated in (14) may be omitted. This may occur in a
trivial way when only one element R in C contributes.
It will often occur by accident. A nontrivial case, in
which these conditions are automatically sa,tisfied,
occurs when k'=0 since the group at k"=k is then a
subgroup of that at k'=0 and the classes at k are
contained within those at k'=0. For the case k'=0
then one merely takes x'~&(C)=x'(R)x'(R) where R
is any element in C.

The anal formula (14),that we use in our applications,
is independent of the redundancy r. However, this
redundancy is known. If S~k)=R~k), then S 'R=U
is a member of the common group G,/T, of order h, .
Thus the h, members of the coset SU (where U runs
over the common group) produce the same point S~k)
of the star, and the redundancy factor is

(15)

the order of the common group. In order to keep the
number of translational elements the same, let us use
the factor groups Gi/T. , Gi, /T„Gi, /T„and G,/T, .
The distinct elements of the k" star of k are then pro-
duced by the elements of the factor group

where ui, "(C) is the number of elements in the class C
of (Gi, /T, ) and r4(C) is the number of these elements
which belong to the common group (G,/T, ). They
need not all fall in the same class in the latter group.

Combining (11), (14), and (20), we obtain

&~-.i- ~(C) = (h~-/h. )E~.(C)/u' (C)j (21)

rt, (C) is most readily determined by taking the char-
acter table at k and counting the number of elements
which are also in k". Equation (21), which provides a
check on direct calculations in the star representation,
requires a knowledge of the elements of the common
group, but not their arrangement into classes or their
character table.

REDUNDANCY AND RELATION TO
ELLIOTT AND LOUDON

An assumption has been tacitly made in the analysis
of this paper: The redundancy which enters the set of
wave functions (3) is identical to the redundancy in
producing the star representation (13).If this were not
the case, our characters would be incorrect by a con-
stant factor, which would not affect selection rules-
but we might not know how many times c;;, the rep-
resentation x is repeated in the product representation:

(G~-/& )/(G. /2'. )= (G~-/G. ), (16) x' &(C)=P c,; x (C). (22)
if G, is an invariant subgroup of G~". In any case, the
use of the left cosets SU tells us that the number of
elements in the star is:

This anal result of our analysis:

c,,„=(1/h. -) Po x'~'(C)e, -(C)x-(C)* (23)

&i,".g., g((e
~
0))=hg-/h„ (17)

can also be computed using the nonredundant set of
functions

where h~" and h~ are the orders of the factor groups at
k" and k with the same number of translational ele-
rnents removed from each and (e~0) is the identity
element. Since k"=0 yields the complete star of k,
we have the inequality

hi, -/h, (hp/hi„

or

h,)hi, hi, "/hp,

where hp is the order of the factor group at k"=0. This
inequality is useful in checking whether one has found
all of the h, elements of the "common group. "

We have chosen to express our results (13) in terms
of a geometric representation, the k" star of k whose
properties are readily visualized, and whose characters
can be calculated mentally. This is just a device,
however, to avoid using the common group G,/T, . If
we have this group available, then we could evaluate
(11) in a diferent way using the class rearrangement
theorem:

(24)

as a basis for a representation of the common group
G,/T, . No operators S need be applied since the
elements U of the common group do not change k, k',
or k". We then need to know how many times this
triple product representation contains the identity
representation. Standard group theory takes the
product of the characters and leads to the result

c*t-= (1/h. ) 2 x'(U)x'(U)x" (U)* (25)

which is also a fairly convenient formula in practice.
The equivalence of this procedure with our previous
result (14) may be obtained by extending the sum over
all the elements R of k" but inserting the projection
J (R) that selects the U among the R:

,; = (1/h, ) P '(R) '(R)J(R) (R)*. (26)

Perform 6rst sum over elements in a class, and then the
sum over classes:

Q J(S-'RS)= hg»
J(R),

6„, (C) zinc

he'll

1 1
c;; = x'(R)x'(R)~(R)

hgii o hg Ni ri(C) z in c

Pz J(S RS)= hiiiieii(C)/uiiii(C) (2o) X -(C)x"(C). (27)
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I'xG. 1. The band structure of germanium near the energy gap,
as computed by J. C. Phillips, Phys. Rev. 112, 685 (1958).

Z x'(&)x'(&)~(~) hs- 2 J(&)
xixj(C)— (»)

Q J(R) h, ng- (c)
In view of (10) and

J(E)= rs, (C),
R in 0

we see that (28) is identical with our previous result
(14) combined with (21).

Comparison with (23) suggests that we interpret the
quantity in brackets as the character in the i&&j
representation.

r„+xr„-=r;+ r„-+r„-+r„-
contains F~, and

(3o)

I-s Xrrs =I.r++I-s++21-s+ (31)

contains I.~+. These character products were computed
directly from Tables II and III. The symme'ry opera-
tions are given for reference in Table I.

We must, therefore, discuss the phonon part of the
transition. In the conduction band, we have

1.&+XF;=I.~-=I.A, (32)

INDIRECT OPTICAL TRANSITIONS IN Ge

The band structure of Ge near the energy gap is
shown in Fig. 1. The minimum in the conduction band
occurs at the point I.= (a/a) (1,1,1) on the zone bound-
ary with symmetry I-&+ whereas the maximum in
valence band occurs at 1'= (0,0,0), with symmetry
F2~+. Thus, a direct optical transition which preserves
k vector, (vertical on the diagram) does not connect
the desired states. An electron could drop radiatively
from 1.&+ to I.3 and then be scattered by a phonon
from 1.3 to F25+ or it could be scattered first from I.j+
to F2 and thence drop radiatively to F&5+.

In both cases, the radiative part of the transition is
allowed. Light has the symmetry rrs Lwhich trans-
forms like an ordinary vector (x,y,s)j. Thus

TAnLE I. Symmetry operations of factor group of space group Osr (diamond). '

Class
Simple

operation Class
Compound
operation Comments

6JC4

6JC2

62

Ggy

62,
0'4z

(g4 )-1
EF4y

(rrsg) '
+4z

(rrs) '

/zan

Pyz

/zan

guy

63,y,
63 y,-

~3*-ya

&3Sy.

(&sestz)

(~s*g.-) '
(flssss) '
(fissg. ) '

XFZ
XFZ
XFZ
XYZ
XZY
XZF
ZFX
ZYX
FXZ
YXZ
XZF
ZFX
FXZ
XZF
ZFX
YXZ
FZX
FZX
FZX
FZX
ZXF
ZXF
ZXF
ZXF

J
3JC4'

6C4

6Cg

9'y

gz
64

(&4~) '
54y

(54) '

54,
(fis) '
&2yz

&~a~

Sg;y
$2yz

52,y
+6xyz

+6xyz

&6$yz

+6nyz

(~'sagl)
(rrs.gs)

'
(&sess) '
(rrssgz)

XFZ
XFZ
XFZ
XYZ
XZY
XZY
ZFX
ZFX
FXZ
FXZ
XZY
ZYX
FXZ
XZF
ZFX
FXZ
YZX
YZX
FZX
YZX
ZXY
ZXY
ZXF
ZXY

i= inversion
62~=180' rotation about x axis;
fs,= iSs,= (100) reHection plane.

64 ——90' counterclockwise rotation
about x axis. a4 =i84~

62y, = 180' rotations about axis
which bisects g and s axes.

pg, = ifisg, ——(011) reHection plane;

fs„,=issg, =(011) reHection

plane

63,y;=120 counterclockwise rotation
about $1j1$ direction
=Sg,53,y,SP

~ Q
6syz = 103zyz

' «&gin at an atom. Simple operation C is (El!)0). Compound operation is (0,') g), where g =(a/4, a/4, a/4) connects the atom to its nearest neighbor
in the first octant.
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TABLE II. Group characters at P—= (0,0,0).'

Class

E
3C42

6C4
6C2
SCB

J
3JC4'
6JC4
6JC2
8JCB

Typical
element

(BIO)
(Ss.I0)
(s4*I ~)
(Ss*s I ~)
(~szszl0)
(il ~)
(9*1~)
(~ .10)

(p„zlo)
(4razszl &)

1
1

1

1

&1
~1

~i

1

—1
—1

1
&1
&1

r12+

2

2
0
0

—1

&2
&2

0
0

%1

3
—1

1

0
&3
%1
&1
%1

0

3
—1

1
0

&3
%1
%1

0

Star X Star A

8
0
0
0
2

0
0
0

0

Star L

0
0
2
1

0
0
2
1

' &o«: r I+ =j'I. r&+ =»»2+ =&», ~is+ =»sr, &ms+ =&2sr. Star b, is the number of points in the star of b, left invariant (or equipment) by the group
element.

whereas in the valence band

Ls Xl'ss+=Ii +Is +2Ls =none+IA+2TO, (33)

where IA = longitudinal acoustic phonon, and
TO=transverse optical phonon. (See Fig. 2 for the
phonon spectrum and its symmetry classification. )
Thus only two phonons I.A and TO are allowed. The
Haynes' experimental data clearly show three peaks,
which by comparison with the vibration spectrum
determined by Brockhouse, B Fig. 2, can definitely
be assigned to be TA, I.A, and TO. Thus the forbid-
den TA is observed. Kane4 has suggested that the
reason for this is that the conduction-band. minimum
is not right at the zone boundary. The selection rule

(33) using Tables II and IV is replaced by

As XI"ss+=Ai+As+ 2As,

TABLE III. Group characters at L= (zr/u) (1,1,1).'

L3=L3I Xg

L2 = Lpi
Xi

which seems to have the identical structure. But as
we can see from Fig. 2 both TA and TO phonons have
symmetry As. (In other words, they are coupled
together for finite k but decoupled at the zone bound-
ary. ) Thus both TA and TO would be allowed.

A more likely explanation of the data is that the
minimum is at the zone boundary, but if electrons and
holes have some kinetic energy they occupy a region
rear the zone boundary of width Ak determined by
(l)4'/2ns*) (hk)'~14K. The selection rules would then be
governed by Eq. (34) but we would be looking at a

E
2CB

3C2
6

(el0)
(~sziiz&~szsz I0)
(Sss.,ss;„Sss„lr)
(il ~) (~It)

1

1
—1

+x(4rlt)

2
—1

0 Lg =L3+
X3

a Note: LI+=LI, L2+=L9, Is+=Le, LI =LIz, L2 =Lgr, Ls =Lsr.
~15 ~fs k/k Max

300

TABLE IV. Group characters at A—= (k,k,k).

E
2CB

3JC2

(sl0)
(sszsz»szsz I 0)
(pgz, pzz, psz I 0)

1

—1

2
—1

0

' J. R. Haynes, M. Lax, and W. F. Flood, J. Phys. Chem.
Solids 8, 392 (1959).

'B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747
(1958); 113, 1696 (1959).

4 E. Kane (private communication).

FIG. 2. The vibration spectrum of germanium determined by
B.N. Brockhouse and P. K. Iyengar, Phys. Rev. 111,747 (1958).
The symmetry assignment is slightly ambiguous and is to be made
as follows: LO&LA, therefore LI or L2) is LO whichever is higher.
Similarly TO& TA, therefore the higher of L3 and L3 (and of X4
and XI) is to be assigned to TO. On a nearest neighbor model,
with central and noncentral forces zz and P, the frequency (or
rather 3fco~) for each symmetry type is given by: X4=4n+4p,
X] 4A) X3 4Q 4p; LSI =6m+ 2p) LI=2m+ 4p, L2I =6n —4p)
L3=2o.—2p. The above assignment is consistent with p) ~~0.. The
Haynes observation of LA phonons when L2~ are allowed by Eqs.
(32) and (33), clinches the assignment L2r =LA. The remaining
assignments merely require p&0 which is required to obtain a
sensible 6t to the vibration spectrum even when longer range
forces are present. See F. Herman, J. Phys. Chem. Solids 8. 405
(1959).
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TABLE V. Group characters at 6= (k,0,0).'

-0.7
CfJ0
K
g -0.8

& -o.9
Z

Uj -&.0 -L3'

x,
2

1 —2

0
0

—1 0

~ star A

-1.2
k = Wa-'(&1&) k= (000)

—X4

2V a ~(100)

ts Notes: t~tt = (a/2, a/2, 0), where X =exp ( -ika/4). At X, X = —i.
d star h. =number of points of the star of A formed using elements of A
that are invariant under the group element.

FIG. 3. The band structure of silicon near the energy gap as
computed by J. C. Phillips, Phys. Rev. 112, 685 (1958).

first-forbidden transition whose matrix element is
proportional to hk. The ratio of the integrated intensi-
ties of the TA line to either of the allowed lines should
then be proportional to ((Ak)') or T. Recent experi-
ments at the Ecole Normale' below 20'K show just
this behavior. These experiments provide a qlalitaHee
proof that the minimum in Ge is at the zone boundary.
Previous experimental results' attempted quantitative
measurements of the density of states to better than
a factor of two to distinguish between the four minimum
picture at the zone boundary and the eight minimum
picture in the interior.

The results of Macfarlane ef, al.7 that the indirect
optical absorption with TA was ~ (AE)& had pre@i

ously established that TA was forbidden. However, the
above conclusions could only be drawn with the help of the

group theoretical results that TA is forbidden at I- (and
allowed at A) whereas at the time a parity argument' '
seemed to indicate that TA is allowed. (The error in
the parity argument seems to be the assumption that
the parity at L is identical to that at I'.)

INDIRECT OPTICAL TRANSITIONS IN Si

The band structure of Si is shown in Fig. 3. The
minimum in the conduction band occurs in the L100$
direction about 85% of the way to the zone boundary.
The symmetry is 6&. The corresponding point in the
valence band is 65. Using Tables II and V and Eq.
(14) we find,

AiXA»=l"is++I'is++I'is +I"ss (35)

The presence of I'j5 means the radiative transition is
allowed.

s C. Benoit a la Guillaume and O. Parodi, Proceedings of the
International Conference on Semiconductor Physics, Prague, 1960
(Publishing House of the Czechoslovak Academy of Sciences,
Prague, 1961),p. 426.

6 D. K. Stevens, J. W. Cleland, J. H. Crawford, Jr., and H. C.
Schweinler, Phys. Rev. 100, 1084 (1955). E. M. Conwell, ibid
99, 1195 (1955).M. Pollak, ibid 111,798 (1958). .

7 G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and
V. Roberts, Phys. Rev. 108, 1377 (1957).

e R. J. Elliott, Phys. Rev. 108, 1384 (1957).
9 J. R. Haynes, M. Lax, and W. F. Flood, Proceedings of the

Prague Conference on Semiconductors (op. cit.), pp. 423—425.

The maximum in the valence band occurs at k=0
with symmetry I'ss+. Equation (30) shows that the
transition to the conduction band state I'~~ via a I'~5

photon is allowed.
The silicon phonon spectrum is shown in Fig. 4.
The phonon transition in the valence band from

Fg5+ to A5

I'ss+X&s= (&s)+ (&i+&s )+&v+&s
= (TO+ TA)+ (LA+LO), (36)

i.e., all phonons are permitted. These transitions may
be weak, however, since the energy denominator in
the intermediate state is fairly large in this case, where
the radiative transition occurs first.

The more important phonon transition in the con-
duction band from 6» to F~5

I'is X&i=At+&s=LA+(TO+TA), (37)

so that via the conduction band, only I.O is forbidden

by group theory. On the other hand, the Haynes
experimental results exhibit peaks associated only
with the two transverse phonons. The I.A phonon
contribution is weak for reasons that do not seem to be
group theoretical. The possible inQuence of time re-
versal will be discussed in a subsequent paper.

POSSIBLE PITFALLS: INTERVALLEY
SCATTERING IN Ge

In order to illustrate the possible pitfalls which can
occur in both intuitive and formal arguments, we shall
discuss intervalley scattering in Ge. Here the minimum
in the conduction band ks occurs at the zone boundary
in the t 111jdirection and at three other nonequivalent
points: ks ——(1,1,1); (1, —1, —1); (—1, 1, —1) and

(—1, —1, 1). The points —ko are equivalent to ko.
The conduction band state at ko is I,~=I-~+, i.e., the

state is even under inversion, and belongs to the non-

degenerate identity representation whose characters
are all plus one.

We now make the following intuitive argument: To
scatter an electron from an even I.i state at (1,1,1) to
an even Li state at (1, —1, —1), we need an even

(2,0,0) phon on. However, an examination of the
character table at X shows four irreducible represen-
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e„(r)=S„e,(r) (39)

between corresponding wave functions at the two
symmetry points. Thus the character at I.t may be
expressed in terms of characters at I by

I ~C(nit)7= IC(t',.
I
o) (nl t) (s„lo)7

=LC(~"-~.*l ~.*t)7 (40)

when we abbreviate xr, ,C(nl t)7 by I.&C(n l t)7.
The relations

Ss,t,„=O; 5s,~= Ss,(~+t,„)= ~+t,„(41)
facilitate evaluating the desired characters, and lead to
the relationship

I., (nl t+t.„)=I.,(nit), (42)

tations, X~, X2, X3, and X4 all of which are two-
dimensional, and all of which have character zero for
inversion. Thus these representations can be taken to
be half-even and half-odd. This might be interpreted
to mean that one of the two Xs(TA) phonons is allowed,
one of the two X4(TO) phonons is allowed, and one of
the two Xt(I.0+IA) phonons is allowed and the other
is forbidden. This conclusion, however, contradicts our
statement following Eq. (1), that selection rules must
involve entire representations. Perhaps, then, X~, X3,
and X4 are all allowed —or all forbidden.

Elliott and Loudon, using Eq. (25), have found that
X~ and X4 are allowed, whereas our calculation leads to

+1X+1t XI+Xs

where I~~ is the I.~ representation transformed from
the (1,1,1) point to the (1, —1, —1) point. Since we
have established that our group theoretical procedure
is equivalent to the Elliott-Loudon one, ' the discrepancy
must lie in how they were applied. A conversation with
Elliott has revealed the source of the discrepancy. He
has taken 1.&& to be the identity representation at
(1, —1, —1) with characters all plus one, whereas we
have used the characters shown in Table VI. These
characters have been obtained using the relation

70

I I
25

60
X4

V)

-1 SO0

X

0Z 40
I-0

2 30

CS
lX

zoo0
.z.'0

X)

Xg

10

0.2 0.4
~sax

0.6 0.8 1.0

whereas the corresponding relations at I and X are

I.(nlt+t, „)= —I.(nit),

X(nl t+t,„)= —X(nl t).

(43)

(44)

The fact that I-~ is even under (sit,„) ensures that
J.&(1.& is odd, so that only the odd representations at
X are used. These are the four physically allowed
representations, X~, X2, X3, and X4, since their trans-
lational properties are determined by exp(sk. r) for
k= (2s-)u) (1,0,0), whereas the remaining 10 repre-
sentations (discussed by Elliott) which are even under
(sit,„) are forbidden.

FIG. 4. The vibration spectrum of silicon, is determined by
B. N. Brockhouse, Phys. Rev. Letters 2, 256 (1959). See legend
for Fig. 2.

TABLE VI. Characters for intervalley scattering in Ge.

(s[0)
(St*[0)
(»s*l ~)
(ggz[0)
(il ~)
(il s+t,„)

X star L

1
1

—1

L +

—1
1

—1
—1

Ly+XL&g+

0
—2

2
0

Xg

2
2

0
—2

0

2
—2
—2

0
0

X4

2
—2

2
0
0

x(nl tyt.„)= —x(nl t) +r,~(r) = os*+I.(r)
I.(nlt+t, „)= —L(nit) Lg(n[t) =L((5s [0)(nit) (&„[0)l

I.g(n[t+t „)=Lg(n[t) = I.(5&.ebs. l Ss.t)
Sg,.t,y

——0 &2m&=&2x(&+t y) = &+t'.y
Lq+XLpg+=X~+Xa. X3 forbidden by time reversal
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TABLE VII. Characters at X= (24r/44) (1,0,0).' TABrE Ix. Characters at Z= (24r/44) (l,o,g).

Classes Xy X2 X3 X4 Classes

(Bio)
(4.1 o)
(4y. l ~+4y), (ass*1 &)

(gu, gu~lo)
(e14y)
(5s*14u)
(4u*l ~), (4y*l ~+4 )
(eu*,ey. lt.u)

(il s, s+t,y)

(Gs„,6„I o,t.„)
(84 ,54, 'I ~, |:+t,y)

(gy~t4zl S~ S+tzy)
(t4zl && 's+4y)
{4r4„4r4 '

I o,t y)

2

2

0
2

—2
—2

0
—2

0
0
0
0
0
0

2

2
0

—2
—2
—2

0
2

0
0
0
0
0
0

2
—2
—2

0
—2

2

2

0
0
0
0
0
0
0

2
—2

2

0
—2

2
—2

0
0
0
0
0
0
0

ts 4 =$(t»+t&e+tes) is the vector from the origin atom to its nearest
neighbor in the first octant.

The above Eqs. (42)—(44) in fact exhaust the
information provided by the translational element
(s~t,y). All additional information on selection rules
can be obtained from elements without translation.
We have therefore in Table VI rearranged Herring's"
character Table VII at X, so that the erst four classes
will provide all of the remaining symmetry information.
If a typical element in one of these classes contains
(4r ~t) then another class contains (n~t+t, „) and has
the opposite character, and so adds no new information.
We have so far accounted for eight classes. The re-
maining six classes contain element pairs (4r~t) and
(tr~t+t, y) which have the same character, yet by Eq.
(44) must have opposite character. Hence all such
characters vanish for the physically allowed repre-
sentations X~, X2, X3 X4.

Ke shall show that these classes provide no new
symmetry information by discussing in detail the class

(elo)
(alt, y)

{Ss,l o,t,y)

(t4zl &, &+tzy)
(14y I

'S, %+t u)

2
—2

0
0
0

(il~), (i~ ~+t,y). Equations (42) and (43) guarantee
that the character product L&(I ~ have opposite sign for
these elements. Hence the character product averaged
as in Eq. (10) over the elements of the class vanishes.
This agrees with the character of all four translationally
allowed states X~, X2, X3, and X4. Hence inversiosz
provides no selection rgles. And neither will any of the
other five classes that contain such paired elements.

It is no accident then, that the fostr physically
admissible representatsons have properties determined
by the fot4r relevant classes Our ab. breviated Table VI
then provides all the necessary information to yield
the selection rule:

I.r+XI r 4+ =Xx+Xs. (45)

One of us (M.L.) will show later that Xs is in fact
forbidden by time reversal.

For completeness, Tables VIII and IX show the
characters at W= (2s/a) (1,0, sr) and Z= (2s /a) (1,0,q).
In the former, only the top two lines contain information
other than translational. In the latter, only the top
line, the identity element is significant. Hence there are
two permissible representations at 8' and one at Z.
The table at W is based on Herring's correction" of an
error in his earlier work. "The table at Z is taken from
Herring. The existence of a two-dimensional repre-
sentation at Z was known to Hund. "

TABIE VIII. Characters at W= (24r/a) (1,0,—,'). INTERVALLEY SCATTERING IN SILICON

Classes

(elo)
2 (4r4, 1 0), (4r, 'lt„)

(alt .)
1 (alt, y)

(el 4.)
(4y4. 1ty.),(4r4. 'I o)

2 (4r4, t y), (tr4z-'It„.)
(4u4 14 ) (4r4* 14y)

2 (8&, O,t.„)
2 (62, t„„t, )
4 (hazy I &+tyz, ~+tzz), (@sy I &~ &+4y)
4 (Ss „Is, c+t „),(Sssyl ~+ty., s+t. )

(t4zl s, 'y+tzu), (t4y I &+tyz, s+t %)

4 (pzl s+tuz~ s+tzz))(tuy I si s+tzy)

2
1+i
—22
—2
2i

1—2

—1—z

—1+1
0
0
0
0
0
0

2
—1—$
—2$
—2
2i

—1+1
1+i
1—$

0
0
0
0
0
0

There are two types of intervalley scattering in
silicon. The first carries an electron from momentum
k to —k using a phonon of momentum —2k. This
involves the matrix element

4P „*V(—2k)gsdr= fs4PsV*(2k)dr.

Thus we can take k—:(k,0,0), k'=k and k"=2k. Since
k and k" are in the same direction, k" star k is simply
the one vector k. Thus no factor is added by the star,
and we may simply use the group 6& taking character
products in the usual way! The important selection
rule is

(47)

'4 C. Herring, J. Franklin Institute 253, 525 (1942).
"C. Herring (private communication)."P.Hund, Z. Physik 99, 119 (1936).
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TAnrE X. Characters at Z= (k,k,o).' TAnLE XI.Summary of results: (Representations not appearing
on the right-hand side are forbidden. Some which do appear may
be forbidden by time reversal. )

(alO)
(ysslo)
(g*l ~)
(&s*ttl &)

1

)2
'A2

1

+1
g2

1
—1

X2

2
0

2A,2

0

a X2 =exp ( —zk g)

=exp�

( -zka/2), where k = (k,k,0).

i.e., the longitudinal acoustic phonon is the only one
which carries a Si band edge electron from one valley
to an opposite valley. (The same statement would be
true if the electronic wave function at the band edge
were 62, 61, or 62, i.e., any nondegenerate state. )

The second type of intervalley scattering carries an
electron to a nearby valley. Let us take k=(k,0,0);
k'= (O,k,0); ir"= (k,k,O). The point (k, k,O) is the point
2 whose character table is given in Table X.

The wave functions at the transformed 6 point
Af= (O,k,0) are obtained from those at the original
point by means of

lt, A t —
t1

Thus the character at At of an arbitrary operator
(trIt) can be written:

~1X~l =&2X&2*=~1X~1 =~2 X~2 =~1+~12+~15
+1X (+2') =asX (rll. ') =f 2'+f 12'++26'

61Xtts =+1'X(t~s') =rs+rls+pss
+1X(a1') =tt2X(tt2') =r1'++12'+f ls'

~1X~5*=~2X~5 =~2'X~s*=~lr X~s*=~ls+~25
+~15'+~25'

~ X~ *=I'15+~25+~15 +I'25'+I'1+1'1'+~2+~2'
+21 12+21'12

~1X~lt ~1+~4=~2X~2t ~1'X~ lt' 4-t2' X~2t'
~5X~st =&1+&3+&2+&4
L1XI'2 =L2

L3 X~25 =Ll +L2+2L ~

~1Xj.'2 =~1
~3Xj.'25 =~1+~2+2~3
L1XLlt=Xl+X3
Algal t =. 51+6,2r+65
+].XX].=+2X+2=~1+~12+~25'+I 2'+~12'+~15
X1XX3=X1X+4=X2X+3=+2XX4=~15'1~25'+I'15+~25
X3XX =X4XX4=11+r12+'F25 +F1.+r» +r25
X1X+2=~2+~12+~15'+~1'+~12'+I 25

X3XX4=I'2+I'2 +~12+~12 +I'15+1'15
Cross checks:
I 25' X~1=4-~5+~2' =~15X 1-"t2' =~15' X~2 =~25 X~1'

j'25 X&2 =&5+~1=1'25X~2=~15X~1=~15'X~1
~25' X~5=1-F5+~1+~2+~2'+~1'=~25X~5=+15X~s

=~15'X~5
I'25 X&1 =&5+~2=~25X~l+I'15'X~2 =I'15 X&2
~25'X~2=~5+~1'=+25Xt-t2 =I 15'X~1=+15X~1

Only the operations (eIO) and (y, I ~), however, leave
points of the Z star of 6 invariant, and for these
particular operators, we 6nd that the character at ht
is identical to its value at D. The decomposition of the
character product, according to Table X yields

&1X&1t =&1+&4, (50)

where Z4 is a transverse acoustic (TA) mode polarized
perpendicular to the 2' axis, i.e., TA&„and Zl is a phonon
which is a mixture LA+ TO«„ i.e., longitudinal acoustic
plus a transverse optical part polarized in the s di-
rection. The forbidden phonons are Z2 ——TO&, and Z3 ——a

mixture of LO and 1"A,«. In a succeeding paper we
shall And that Z4 is destroyed by time reversal.

ADDITIONAL RESULTS

A summary of some of the more important selection
rules for the diamond structure, obtained with the help
of Eq. (14), are given in Table XI.
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