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The expressions of the relativistic L shell photoeffect differential and total cross sections, for the case of
light elements, are established. Coulomb wave functions are used for the description of the electron states
in the calculation of the matrix eleznents, but it is shown how the results should be corrected so as to take
screening effects into consideration. For the final continuum state wave function of the ejected electron,
whose exact analytic form is not known, the Born approximation is used. In the case of Lz subshell the cal-
culation runs similarly to the one performed previously by the author for the K shell. For the other two
subshells new tedious trace evaluations have to be carried out. Thus, for the Lz subshell, cross sections
correct to first order in o.Z (inclusive) are determined, whereas in the case of the Lzz and Lzzz subshells, only
their zero-order approximation is calculated. The cross sections are discussed and compared. It is shown that
they reduce in the nonrelativistic and extreme relativistic limits to results established by other means.

1. INTRODUCTION

'HE nonrelativistic aspect of the photoeffect from
the L shell was successfully studied a long time

ago. ' Thus, by means of a method devised together with
Sommerfeld, Schur' has calculated the differential cross
sections of the Lz and I.zz+Lzzz subshells, including
retardation approximately. Equivalent results were
obtained by another method for the total cross sections
by Stobbe. ' The exact integration of the nonrelativistic
matrix elements was carried out separately by Fischer,
Sauter, and Sommerfeld. 4 In these works Coulomb
wave functions were used to describe the initial and
final states of the electron; screening eGects were taken
into account by appropriately modifying the nuclear
charge. The formulas obtained for the cross sections
are in rather good agreement with the (not very
accurate) experiments performed so far at low energies. '

However, concerning the relativistic aspect of the
problem only a few remarks have been made. ' This has
been largely due to the lack of precision of the experi-
mental results at high energies, qualitative estimates
being sufhcient for their interpretation. Recently, owing
to the continuous advances in beta spectrometry,
important progress has been made also in the study of
the high-energy photoeffect from the L shell. Interest
has been thus stimulated for a more detailed theo-
retical analysis. As for the E shell, the relativistic study
is extremely involved, because no analytic expression
in closed form can be given for the final-state spinor of
the ejected electron and because of difficulties en-

' See H. Bethe and E. Salpeter, Encyclopedia of Physics
(Springer-Verlag, Berlin, 1957), Vol. 35, Part I; and H. Hall,
Revs. Modern Phys. 8, 358 (1936).

s G. Schur, Ann. Physik 4, 433 (1930).
3 M. Stobbe, Ann. Physik 7, 661 (1930).' J. Fischer, Ann. Physik 8, 821 (1931);F. Sauter, Ann. Physik

9, 217 (1931), and A. Sommerfeld, Atorrtbatt Nrtd SPektrallt'ntort
(Friedrich Vieweg und Sohn, Braunschweig, 1939), Chap. 6,
Sec. 6.

~ M. Phillips, Phys. Rev. 45, 132 (1934); H. Hall and W.
Rarita, Phys. Rev. 46, 143 (1934).

s S. Hultberg, Arkiv Fysik 15, 307 (1959).E. P. Grigoryev and
A. V. Zolotavin, J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 393
(1959) Ltranslation: Soviet Phys. —JETP 9, 272 (1959)7. Z. Suj-
kowski (private communication).

countered in the integration of the matrix elements.
This prevents an exact analytic evaluation of the cross
sections, in their dependence on energy and Z.

In the following, we set out to determine the approxi-
mate forms of the differential and total cross sections
for the limiting case of light elements. The 6nal state
of the photoelectron will be described by means of the
Born approximation. ' This method was used previously
by the author in the case of the E shell. ' For the LI
subshell, cross sections correct to first order in nZ
(inclusive) will be established. For the Lzz and Lzzz

subshells, whose contributions to absorption are of
order (nZ)' smaller in the high-energy region, only the
zero-order approximation will be determined. The
polarization of the ejected photoelectrons will not be
discussed here.

Concomitantly with the present work, Pratt' has
approached the same problem from a diferent point
of view. He has succeeded in calculating the exact o.Z
dependence of the extreme relativistic form of the total
cross sections. The results presented here on the energy
dependence of the cross sections, combined with those
of Pratt on their Z dependence, should lead to a better
understanding of the high-energy photoe8ect from the
L shell.

The ejection of a photoelectron from an atom is in
principle an involved problem of a many-electron
system. However, a very good degree of accuracy could
be attained under the assumption of the atom consisting
of independent electrons under the inhuence of a central
self-consistent Geld. In this case the differential cross
section of one of the L subshells can be written

where the summation is to be carried out over all the
7 Similar results could be obtained by describing the final state

in terms of the Sommerfeld-Maue wave function or by using an
expansion in partial waves.' M. Gavrila, Phys. Rev. 113, 514 (1959);hereafter referred to
as (K).' R. H. Pratt, Phys. Rev. 119, 1619 (1960).
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electrons of the considered subshell (index 212) and the
two spin directions of the final state (index a). The
matrix element 3f, pertaining to a de6nite transition,
performed under the inQuence of linearly polarized
radiation, is given in momentum space by

3II=
~

242(p)Su, (p 2—4)d'P, (2)

the notations used being the same as in (K)."Here Ni
and N2 should represent the initial and final wave
functions of the electron in the self-consistent field of
the atom. However, such a procedure would lead to the
necessity of evaluating the matrix element numerically.
Instead of this, we will use in the following calculations
unscreened Coulomb spinors N1 and u2, for which an
analytic (approximate) evaluation is possible. The
screening corrections to be expected will be examined
in Sec. 5C.

In the equations which connect the parameters of
the initial and final states of the electron we can neglect
the binding energy of the L shell. Indeed, this con-
tributes to the matrix elements and to the cross sections
with terms of order (nZ)2 which we do not take into
consideration. Hence, in our approximation we have,
as in (K),

8=214+11,

)'s2+ 4242 +2 p z2 —
221211, k2+ K2 =28k. (4)

»(p)=, G(p)+2J7(p) V4V Xi, —
(42r) l (5)

where Xi is one of the constant spinors (1,0,0,0) or
(0,1,0,0) according to whether we consider the state of
magnetic quantum number m= —,

' or m= —~-. The form
of the functions G(p) and F(p), correct to first order in
12Z (whatever the ratio p/rf), is"

2. Lz SUBSHELL

The calculations for the LI subshell are to a great
extent similar to those for the E shell, since the same
spectral type (Si) is involved. As in (K), we want to
determine here the LJ matrix elements and cross sections
correct to first order in o.Z.

The two bound-state spinors of the Lz subshell (of
quantum numbers 24=2, l=0, j=2, tr4=&2') may be
written as

where

prQZ p p
F12——E1' Xz~

8 212 (ps+1)2)2

(2n)'*
+1

2 2

For the description of the final state of the electron
the second-order Born approximation will be used.
This may be put into the form

242 (P) 2420 (P)+2421(P) +2422 (P) y (9)

where the three terms N2, , corresponding to the suc-
cessive Born approximations, are given by (K.15).

The matrix element of Eq. (2) may thus be itself
split into three terms 3E,, representing the contribution
of the successive Born approximations 82,".

3II =3IIp+3II1+3II2. (10)

The integration in Mo is immediate. Taking into account
the fact that at relativistic velocities P the ratio
2)2/(lz —24)2 is of order (nZ)2 and hence negligible, M'0

becomes

1
3IIp ——3I'1'E2* Xss 1+ y4y (lr —24)

(lr —24)4 2422

~nz ih —24i

Xi. (11)

This expression has the same form as the one given in
Eq. (K.17), but with a different value of the coefficient
Xz'."Kith a view toward analyzing the other terms of
Eq. (10) we will introduce the notation

3I4 = I 242, (p)s241, (p —24)d'p. (12)

where we have put 1i=trZ224/2. It is convenient to
introduce the following notation

241 (P) 2410(P) + Ill (P) +2412 (P)

p'
N1P

——E1 X1
(p2+ ~2)3

i p' —'
N11—+1 74+ ' PXlp

2214 (ps+ ti2)'

2 ( 2rnZP) 1
G(p)= —,(»)' p'I 1+

8 424) (p2+rp)'
(6)

-p p' "'
~(p) =—(2.)-:

2m (p2+rp)2
I Thus, x and k denote the photon and electron momenta,

respectively, s the polarization vector (24 s=0, as=i). Natural
units are used.

"The functions G(p) and F(p) have been obtained by calcu-

The form of the matrix elements M10, %11, and M20 is
given by Eqs. (K.19), (K.20), and (K.23), with the
integrals I(X), J()1), and E()t) of Eqs. (K.21), (K.22),
(K.24), replaced by I', J', E', respectively, and the

lating the exact Fourier transform of the position space spinor
and by subsequently retaining only the indicated order of
magnitude.

n &n Eq. (K.17), z.IrZ~ k—24~/8m should correctly stand in the
place of aZp (k —24)/224.
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n ~I(n), n ~J(n)I'=I(n)+-, J'= J(n)+-
2 Bg 2 ling2P —

2&2

coeKcient S& replaced by X&'. The expressions for I', Indeed, we have
J', E' are

(19)

[(y—lr)'+& '] (p' —&'— )

(y —3()'—rj
X d'p, (13)

L(y —)'+n']'

L(y —Ir)'+& '] (p' 1' —)—
(y —~)'—n'

X (y —~)d'p, (14)
L(y —)'+~'1'

1 $(I—2&3

[(q—k)'+ p,'] ((t' —k' —se)

2P —2&3

X
[(q—y)'+&u'] (O' Ip 2 )

(y —x)'—~'
X d'pdsq. (15)

L(y )2+—n2]3

The matrix element (2), correct to first order in (rZ

is given by
M =Mp+M r(&+M tr+M2(&. (16)

The justification of this fact and the analysis of the
order of magnitude of the matrix elements M;, is
similar to that made in (K). This time we will use,
however, the following analytic form of the ()(p—r)
function

p2 ~2

b(p —x) =—limr&
~2 3—&0 (p2+~2)3

do'i =fsdo re. (20)

Here dare is given by Eqs. (K.92), (K.93), (K.94), and
i is a constant introduced to take account of screening
(see Sec. 5C).&3'4 The result (20) has been obtained
meanwhile also by Pratt. "

In the usually adopted coordinate system in which
x points in the positive s direction, s in the positive x
direction, the polar angles of k being 0 and p, by intro-
ducing the abbreviations

e= E/2&3= 1/(1 —P2)'*, 0'= 1—P cos9, (21)

dgz may be given the somewhat more convenient form

(e' —1)' ( 2ruZ y
d~ =4o.sZ'X, 2

e~ 1— ~+2rnZ() do&, (22)
»4(e —1)' ( P

One can see that in the preceding equations the terms
containing the derivatives give no zero-order contri-
bution in 2&. Equations (19) then state the equality of
the zero order terms in 2& of I'(3) and I(s)

(2&) on one hand,
and of J'(" and J()()&) on the other; Eqs. (18) are thus
proved. Hence, in our approximation, the matrix
element M of the I.z subshell differs from that of the
E shell only by the value of the normalization co-
eflicient 1Vr'. Mi ——(1Vt'/1Vr)M)r, its explicit calculation
reduces entirely to the one reported in (K).

The sum P )M~', occurring in the differential cross
section (1), being performed over the same kind of
transitions as in (K), will lead to the same result as
there. Owing to the fact that IV&'2/IVrs=s, we finally
find for the differential cross section of the photoeffect
from the I.~ subshell, correct to first order in nZ, the
result

where Xo is the Compton wavelength andIn the limit 2&~0 the integrals (13), (14), and (15)
contain the function 2r21&(y —x)/2r1=2r25(p —~)/)( and
one ascertains that the matrix elements M;, are of the
same order of magnitude as in the case of the E shell.
Moreover, one ascertains that the terms in 1/2& of the
integrals I' and E' are equal, respectively, to the corre-
sponding ones of the integrals I(X) and EP.). P may
thus be given the form of Eq. (K.26) (with I'I& to
replace I('&) and X' the form of Eq. (K.27), with essen-
tially the same expression (K.28) for the integral I..

The matrix element M, given by Eq. (16), may be
6nally written

1
5 = sin28 cos'(( —+-,'e(e —1)[—,'(e—1)—cosset]—,(23)

4 3

el(e-1)' 1
8= L-'( —1)—cos' ]

2'(»' —1) Q~r/2

+[——,'e(» —1)(e+2)+3»' COSsp]

+[34»2(4»—3) (e—1)—»'(e+1) COS2p]

e'(e-1)
+ [(e—1)(e+2)—2»' COS2q]—

4(»' —1)& 0~2

(17)M = X2(P+Q)X&,

P and Q being given by Eqs. (K.30) and (K.31), with
I((&), J(()) replaced by I'(", J'('& and the coefficient 1Vt

by E&'. We will now show that in the lowest order
approximation (of the zero order terms in 2& or 1() the
following equations hold:

+[—e (e—1)+2» COS232]—. (24)
0

Il(0) —I(0) J&(0) —J(0)

'3 When working with unscreened Coulomb wave functions as
above, we have evidently &=1.

(18) r4 Equation (20) holds, of course, also when the photoelectron
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A similar equation to (20) holds evidently also for
the total cross sections, o.x being given by Eqs. (K.98),
(K.95), and (K.97). We will discuss the obtained cross
sections in Sec. 5."We remark however here that dgq,

together with do.~, vanish in our approximation for
0—P ~17

3. L11 SUBSHELL

The spinors of the Iiz subshell bound states (of
quantum numbers I=2, l=1, j=is, zzz=&zs) may be
written in split form

where

1Vis = 4(2rf)'/3zr, zf =nZm/2 = )t/2. (29)

M =Mp+Mi,

We will describe the final-state spinor of the electron
zzz(p) by means of the first-order Born approximation,
see Eqs. (K.12) and (K.13).

We now set out to find the expression of the matrix
element (2), correct to lowest order in rrZ U.pon
introducing the first-order Born approximation for the
final state into Eq. (2) we get

p- &~i,:,-(p/p)i
zzt(p) = G(p)+iF(p)v4V ~

~. (25) Mp=&z»sit(k zz)

0
(3o)

We have denoted by 5&; the Pauli eigenfunctions of
the angular momenta P, j', and j„with the indicated
eigenvalues. "To lowest order in nZ, the only one we are
interested in, the functions G(p) and F(p) are given
by11,19

4 ( 3 p'y pzf

G(p) = (2.)-:I 1+-—
I

(3zr)-*' ( 8 zzz') (p' jrfz) p

2 p p"
F(p)=,(2.)-:—

(3zr)' zzz (Pz+zP)'

Expression (25) may be written as

1 P ( pl
~ (p)=, G(p)+zF(p)v v I

~ —IX—
(4zr) l p-( pj

where X, is one of the spinors (1,0,0,0) or (0,1,0,0)
according to whether we consider the state of magnetic
quantum number m.=—,'or m= ——,'. Using the relation
between the 0- and the y matrices

(with fz ~ 0), we can write further [neglecting
rfz/(k —zz)' j

M =Mp+M ip+Mii.,

1 3 (k—zz)'
3fp —— x,s 1+—

(4zr)f (k—zz)P 8 mz

F1%2*

(31)

2

+ VzV (k—zz) [V (k—zz)]ViVzVpX, , (32)
2m

O,Z E1E2*
M1P ——— (x v»vv v v x ),

2zrz (4zr)f
(33)

ip zl-
Mi ——(—ze) Wz Xz A (k —p) sg, (p —zz) d'p.

pz $2

With formula (28) for the initial-state spinor and the
Coulomb form for the potential

eAp(q) = —(aZ/2zr') (g'+p, ') '

o;= ivpv&, —(j, k, l cycl. 1, 2, 3),

and Eqs. (26), zzi(p) becomes further

(27) o.Z T1%2* i
Mll = (xzv4Hsv4vlvzvzxl).

2zrz (4zr)'* 2zzz

1Vt 1 3 p' z

»(p) = 1+-—+ v4(v p)
(4~)l (P'+zfz)' 8 zzzz 2zzz

X (v P)vtvzvpx, , (28)

polarization possibilities are considered. However, this simple
equation (with / =1) no longer holds to order (nZ)s; this can be
seen on the nonrelativistic limit (references 1, 2) and also on the
extreme relativistic one (reference 9).

"Reference 9, Sec. II. Some of the mathematical arguments
produced therein are only outlined, their justification lying, in
fact, in the detailed proof given above.

'P See also the discussion given by B. Nagel PArkiv Fysik 18, 1

(1960), Sec. 6j, for the E shell.
'7 This is contrary to what has been incorrectly stated in (K)

after Eq. (K.94); see M. Gavrila, Nuovo cimento 10, 691 (1960),
and also reference 16.

' The form of the 5 spinors is given, for example, in reference 1
(Eecyclopedic), Eq. (13.19).

'~ It should be noted that the expression of G(p) contains the
term 3p'/Sm', of relativistic origin but independent of o,Z, which
becomes of the order of magnitude 1 for p=m.

In the preceding equations we have introduced the
abbreviations

1( 3rl 'l 3
F=-~ 1—

~
grad„I(&)+ J(&),

4 ( 8'�) 8zzz'
(35)

1 r)I;(rf)
II;,= ,'ogI (zf)+—

4 Off;,

II= 2 II"= 'I(n)+-' divJ(n-),

(36)

(37)

where I()~) and J(X) are given by Eqs. (K.21) and
(K.22).

We must now show that Eq. (31) represents indeed
the correct form of the matrix element, to lowest order
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in nZ. The term Mo is evidently of zero order in nZ.
Contrary to appearances, the terms M&0 and M» are
also of zero order. Indeed, I(4t) is of order of magnitude

1/g, whereas J(zt) is of zero order in 41 T.hus F and II
are of order 1/p and it is only this degree of approxi-
mation we are interested in here. Since, to order 1/zt,

I(g) is given by [see Eq. (K.26))

same as for the I.r case):

(«z—1)l 1
dorr ——f—cz'Zilch p' —,

'
e (3e+ 1)—

24 e'(e —1)' Q4

—
z p c'(9«+30e—7)—+s e'(e'+6e'+11e —2)—

3 2

I(q) =Ap(it —m); Ap ———— , (38)
4Z (O' —14') (k—44)'

1 1——,', e4(e —1)(e+7)—+Sm'0 COS'po 2 (e+1)—

where t is the four-component quantity (zc,iE), we have

F= 4 grad„I (g) = z4 [(it—m) grad„A p+iA p Y], (39)

—2«(e+1)——',«'(3e+1) (e' —1)—d4p. (44)
Q~4 Q~z

II„;=—,'Ap(it —m)8, ;, II= —,'Ao(zt —m). (40)
We have again introduced here a screening factor i.zz

The corresponding total cross section is

ln[e+ (»' —1)&$, (45)
(«' —1)'(41)M = X2PXg,

It is thus seen that Mzp and Mzz are of zero order in nZ. 1 (e' —1)'
It may also be shown that M contains no other terms p'rr=f' czoZ'pp 9c'—Se'+24e —16
of this order of magnitude. 256 (c—1)'

Hence, the matrix element (31) may be put into the e'+3« —8
form

where where yo is the Thomson scattering cross section.

EgE2*
P= y4S

(4zr)'
y (k—zc)

(k—zc)' 2m

3 (k—x)'y-
+v4I 1+-

I h'(k —~)j
S m' )

czZ ( 3z
+ (zt+m)I Ygrad„Ao+ AoY4 I

sn I 2m )

4. LIII SUBSHELL

The four bound-state spinors of the I.zzz subshell (of
quantum numbers zz=2; t= 1; j= zo; m= &—', , &po) may
be given the following form':

p t&,—:,-(p/P)&
Nz(P)= G(p)+zI'(P)Y4Y

I

—
I (46)

p E o

In the lowest order approximation in nZ we are
interested in, the functions G(p) and F(p) are given by"i 0 71Y2Y3

The differential cross section, summed up over the
two electrons of the I-z~ subshell and the two possible
spin orientations of the final state, is given by (1).
Owing to the form (28) adopted for the initial-state
spinor, which permits the matrix element to be written
as in Eq. (41), the sum P I

M
I

' can be performed using
the formula [see (K), Sec. IVj.

g IMI = Sp[P(il—m)P(ik —m)],
om 48m

containing the four-vectors k (k,iE) and t (O,im), P
being given by I'=p4I p4. The calculation of the
traces appearing in Eq. (43) is a very tedious operation
and will not be reproduced here.

We find the following formula for the differential
cross section of the photoeBect from the Liz subshell,
correct to lowest order in czZ (the notations being the

4 pqG(P)=,(2n)*', I" (P)= G(P) (47)
(3zr) k (Pi+~i) z

It is convenient to transform expression (46). To
this end we use the equality, which can be easily
checked by direct calculation,

) ~ —:.-(p/P) i
, I

——~4-—~z+2—~z Ixz=
I(8)& p p p ) & o )'

m= a-,', (48)

where X, is the spinor (1,0,0,0) or (0,1,0,0) according
to whether we have m= —', or m= ——'„respectively.
Similarly, we have also

)»'~P P. & ~t,—:,-(p/P)&

(8) &p p ) ( o

m= &—', (49)
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where

pi'2= 1@p +1"2=2g'p gp= 4(2g) &/32r, (52)

For the description of the final state of the electron,
the first-order Born approximation Lsee Eqs. (K.12)
and (K.13)j will again be used. Hence the matrix
element (2), which describes an individual transition,
takes the form (30). Upon introducing into Eq. (30)
the expressions (50) and (51) for the initial-state
spinors, two types of matrix elements appear, according
to whether we consider the case m=&2 or m= &~3. In
the case of m= ~—,', the matrix element correct to lowest
order in nZ (the only one we are interested in) is given

by

where

M'= MP'+Mio'+Mii',

1 i
g2s 1+ - y4y (k- 24)

(42r)'* (Ir—24)' 2m

Ql+g

(53)

Xt y (Ir-.)]y,y2v2x„(54)
~z x&'@2*

M10 (x274FSQ Y17273xl)
22r2 (42r)'*

(55)

where X, is the spinor (1,0,0,0) or (0,1,0,0) according
to whether we have m= ——,

' or m= ~, respectively.
We now introduce the following notation: given a

vector q(qi, q2, q2) we shall denote by q' the vector of
components (—qi, —

q2, 2q2) and by q" the vector of
components (qi, —

q2, 0). We will distinguish with
similar superscripts the (nonvector) quantities per-
taining to the case m=~ —,', from those pertaining to
m~f03

Taking advantage of this notation and using Eqs.
(27), (47), and (49), the initial-state spinors (46) may
be given the form

1 ) iI (p) = , I 1+ ~4m p l(v' p)
(42r) l (p2+q2)2 0 2m

Xviv2v2xi, m= ~2', (50)

1 p iI (p)= I
1+ &4' p l(v" p)

(42r) & (P2+g2)2 ( 2m

Further, because y' y= —yp —y2'+2y22=0, we may
write

/g
Q= y4s

(42r) l
y. (k—24)+y4

(k—24)' 2m

QZ
Xl y (k' —24')j+ l (it+m)(y grad„Ap)

8x'

—22Aps(y s')j y172y2. (59)

The close similarity of the expressions (50) and (51)
for the initial-state spinors permits a completely
analogous treatment for the m=&~3 case. Thus, the
matrix element M" will be given by equations similar
to Eqs. (53)-(56).Also here, on account of the equation
corresponding to (57) (since again y" y=yP —y22=0),
the term M~~" is of first order in nZ and thus negligible.
Hence, the matrix element M" may be expressed as in
Eqs. (58) and (59), where now any quantity q' has to
be replaced by q".

The sum Q lMl' occurring in the formula for dorrr
of Eq. (1) may be split into two parts, one containing
the terms with m=~ —,', the other containing the terms
with m=&~3:

Z IMI'= Z lM'I'+ Z IM"I' (60)
a, m 0,m=+~s r, m=+$

Given the form (58) in which we have written the
matrix elements in both cases, as well as the definition
of the spinors X~ and X2, each of the two sums of Kq.
(60) may be performed using formula (43). The traces
which appear in both cases are of the same kind as
those for the Lzz subshell.

The formula we find for the differential cross section
of the photoeffect from the Lziz subshell, correct to
lowest order in nZ, is"

FSy'=4C —S(it+m)(y' grad„A2+2iA2(y' a)j.

With this the matrix element (53) can be put into the
form

M'= X2QX1,
where Q stands for

&Zr, 'r, + i (22—1)&
l

1
M11'= — (x274H "S747A'2' 717272xi) ~ (56)

22r2 (42r)& 2m 2'(4 1)' — Q~4

F and H,; being defined as in Eqs. (39) and (36). The
analysis of the order of magnitude of the terms con-
tained in Eq. (53) is carried out similarly as for the Lrr
subshell. In the present case, however, the term M~~'

of Eq. (56) is of first order in 42Z and hence negligible.
Indeed, from Eq. (40) we have to order 1/17

H s'r 4"r r =4A p (i t m) sr 4' '(8,,'r;"r,'') =0,—(57)

which shows that M~z' has no zero-order term in nZ.

1 1
+-2'42(342 —1)—+-', 42(e2 —342+24+1)—

3 2

1——,'44(e —2) (e—1)—+sin20 cos2y 2(4+1)—

1 1
6(6+1)(36 1) +E. (6 1)—d~. (61)

Q~4 Q~2
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We get for the total cross section can approximate

(e' —1)'*
krzzz=f zskr Z ps 4e' —6e'+5 a+3

( -1)' 0 1+e'8'

Introducing this into Eqs. (20), (44), (61), taping Into
e' —3e 4

l ~ +(, 1)ij (62)
account th«0 " =8(s) 0 v, andretainingonly thep —y—1 2 . e —y

(2 1), highest powers of e, we obtain"

S. DISCUSSION

A. Differential Cross Sections

We will discuss in the following the differential cross
sections (20), (44), (61), and their energy dependence.
To obtain their form in the low-energy limit we will

expand these formulas in powers of P, neglecting order

P . Since in this approximation e —+ 1, we find for the
I-I subshell

t' Ze') /mc'~ ""
a.zNR=i. a2~sZ'Xs'~ 1—~

lst ) & hv)

&&sin'8 cos'&p(1+4P cosg)Cke. (63)

In the case of the Lqy and Lqqz subshells we get

kgo Iz = s kfkrzz+III q kfkrzzz = s kgkrzz+I II q (64)

where we have put

K2 ~77IC'q "'
NR —

g kzsZ7) s
~

8 (hv)

&& (1+2P cosg+4P cosg sin'8 cos'q)dke. (65)

Equations (63) and (65) contain, apart from seco7sd-

order terms in (Ze'/Av), just the angular distributions

Schur determined by a direct, nonrelativistic calcu-
lation" (from the nonrelativistic point of view the I.zz

and Lzzz subshells cannot be distinguished). It should

be noted that the ratio (dkrzzNR/kgkrzzzNR) = s is equal to
the ratio of the number of electrons in the subshells

considered. "
In the extreme relativistic limit P —& 1 (e ~ ~), the

negative powers of 0' are rapidly decreasing functions

of the angle 0 and this determines a similar behavior for
the differential cross sections. Thus, at very high

energies of the incident photons, practically all the
photoelectrons are ejected in forward directions. The
range in which the differential cross sections are

appreciably diRerent from zero is more concentrated
around 0=0, the larger the value of e. In this range one

I Reference 2, Eq. (17).The exact consideration of retardation
in the calculation of the moerelutivistic matrix elements (reference
4) is, in fact, meaningless. Indeed, the corrective terms to the
Schur angular distributions thus found, being of order P2 (or
hv/7acsl, lie beyond the limits of validity of the calculation and are
physically incorrect."See also M. Phillips, reference 5.

1
d~ ER f 1k'~ ER i

1 6Zsy 2

~6

)&(F'(1—7rkrZ)+7rkrZg)do7, (66)

P=2c~ g — e7

(1+s282) 8 (1+e282) 7/2

1 16—7esgs+ e484

do Iz = t —kr'Z'lz 'e dco j
4g (1+esgs)4

1+gesgs+e484
ER f I~SZ7l 2e de.

(1+s282)4

(67)

22 Concerning g see also the discussion of reference 17, Sec. 2;
the expression given there in Eq. (7) is equivalent to the one
given above.

2' Considering only F one finds 8~ = 1/cV2. See also reference 16,
Sec. 6.

24 AVhen also the binding energy II, of the electron in the I. shell
is taken into account, the formula of Schur t reference 2, Eq. (17lj
yields a 8 lying between 36' and m/2, depending on the value of
the ratio II,/hv.

Remark that in this limit all three cross sections are
independent of the polarization of the absorbed photon.

We will now discuss the angular dependence of the
cross sections for the case of unpolarized incident
radiation. Given the cross section for linearly polarized
radiation in the form do-= LJI(8)+2Js(8) cos'yfkgke, the
cross section for the unpolarized case may be written
da =J(8)dko, Where J=JI+Js.

In our approximation the angular distribution J(8)
of the I.z subshell is the same as for the E shell, van-
ishing for 0=0, z and presenting a maximum at an
angle smaller than 7r/2. In the nonrelativistic limit,
Eq. (63) shows that the maximum occurs for
8„=(7r/2) —2p. As the photon energy increases, the
maximum moves towards smaller angles. At very high
energies it is seen from formulas (66) that 8„ is pro-
portional to 1/e"

In the nonrelativistic limit the Lqz and I.yqz subshells
have the same angular distribution J(8), yielded by
Eq. (65):

J(8)~1+2P cosg+2P cosg sin'8.

This is nearly isotropic; it presents a slight maximum
for the P-independent angle of 8 ~36', for which
J(8 )/J(0) = 1+0.16P (and a minimum symmetrically
situated with respect to 7r/2). '4

At the intermediate energy of hv/77sc' =0.4, the
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TABLE I. Energy dependence of the relativistic
I. shell total cross sections. ' TABLE II. Energy dependence of ratios of relativistic

and nonrelativistic total cross sections. '

hv/ZZ4C' hI /mC' NR -,'- —,
'

—,
' 1 4 ER

az/f v oa.4Z'

&II/$4fz70O. ~
at z z/f' v'ezz'&'

393.3
409.1
763.8

99.2
78.75

144

10.1
5.62

10.1

1.30 0.078
0.56 0.020
1.05 0.055

azz/azzi 0.500 0 535 0.546 0 558 0.531 0 366 0 281
/az 1 0 95 0.91 0 79 0.54 0 07 0

azz+zzzNa/(ozz+ozzz) 1 0.72 0.61 0.38 0.16 0.007 0

a See references 29 and 31.
' See references 30 and 31.

numerical evaluation of J(0), based on the complete
formulas (44) and (61), reveals the following situation.
For both the Lzz and Lzzz subshells the J1 functions
present a monotonic decrease in the angle 0 from their
maximum for 0=0, whereas the J~ functions increase
from zero for 8=0 to a maximum for 8 of about 20',
decreasing afterwards. In the case of the Lzz subshell,
J=Ji+Js results as a monotonically decreasing
function of 0, beginning from a maximum for 0=0. In
the case of the Lzzz subshell, the increase of J~ com-
pensates the decrease of J1, so that J increases from a
minimum for 0=0 to a maximum for 0 ~20', decreasing
afterwards; one finds J(8 )/J(0)=1.27, 0 being much
smaller than the corresponding angle for the E and Lz
shells (in Suter's approximation).

Passing on to higher energies the general aspect of
the angular distributions remains unchanged, for the
Lzz as well as for the Lzzz subshell. Thus, in the extreme
relativistic limit Eq. (67) yields for the Lzz case a J(0)
which is a rapidly decreasing function of 0, beginning
from its maximum for 0=0; indeed J(1/e)/J'(0) =0.04.
In the Lzzz case Eq. (6B) yields a J(8) which increases,
from a minimum for 8=0 to a maximum'5 for
0 =0.42/e, to decrease afterwards; one finds J(8,)/J(0)
=1.28, 8 being smaller than the corresponding angle
for the E and Lz shells (equal to 1/eV2 in the same
approximation).

B. Total Cross Sections

In the nonrelativistic limit our total cross sections
become, if use is made also of Eq. (64),

1 ( Ze') (mc'
o Nzz —|. ~4Zs

)
1

v2 0 Att) E hv

3v2 (mc') @'
o zz zzzNzz i czsZ Tea

16 L hv )

These formulas agree to 6rst and zero order, respec-
tively, with the ones found by Stobbe."In the extreme
relativistic limit, by keeping only the lowest order in

"In contrast to the case of the lower energies, the maximum is
no longer due to J2, but to J1 (now J=JI).

"See reference 1 (KmcycloPeChzz), Kqs. (71.14) snd (71.15).

1/e (or mc'/hv) one finds'

1( 19
~Pa=i=) 1 ~« ~o„

BE 15 )

where

3
ozzEa ——| («)'~s ozzz = t ', («—)'os,

128

o s zscz4Z——s p—smc'/hv

(7o)

(71)

Equations (70) agree, to the corresponding degree of
approximation, with the ones obtained by Pratt, by
another method "

Table I contains the numerical results calculated for
the total relativistic cross sections, correct to lowest
order in nZ," for different values of the energy of the
incident photon. In comparison to the nonrelativistic
formulas (69), the relativistic ones yield a more gradual
decrease with increasing photon energy. LAs seen from
Eq. (70), in contradistinction to Eq. (69), for very high
energies the decline is proportional to mc'/hv. f The
comparison of the nonrelativistic and relativistic
formulas, in the zero-order approximation, can be
followed in Table II," at the same time with the
variation of the ratio of the relativistic cross sections
Ozz and &zzz.

C. Extrajpolation to Large Z and Screening

The results presented so far should be discussed and
corrected in two respects. First, since the cross sections
have been evaluated with Coulomb wave functions
approximate in « their validity should be delimited
in this direction and the possibility of extrapolation to
large Z considered. Next, the corrections should be
examined which stem from the departure (owing to
screening) of the self-consistent wave functions of the
photoelectron from the Coulomb form.

Concerning the nsageitude of our cross sections, this
is correct only for light elements. This can be under-
stood by noting that the nonrelativistic formulas of
Stobbe for the total cross sections, ' as well as the

27 Formulas {70)can be obtained also by direct integration of
the differential cross sections (66), (67), (68), and by retaining
again only the lowest order terms in 1/e.

2 Reference 9, Sec. IV.
4'a z is calculated with the zero order approximation Lputting

ac4Z= 0 in Kq. (22)j and a zz, o»z with Kqs. (45), (62).
3 Table II is based on the data of Table I and using the non-

relativistic formulas (69). For the sake of simplicity we have put/=1.
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extreme relativistic ones of Pratt, " contain the
("Coulomb" ) exponential factor expI nZ(7r+2r)/P)
where —a.~&r=—arctanI 2ktt/(k' —tt' —tl')j~&0. Since the
coefficient ( tr+2r)/P of ctZ is generally large, the nZ
expansion of the exponential converges slowly and its
6rst terms represent a good approximation only for low

Z. (In the case of the Lz subshell we have taken into
account the first two terms, whereas for the Lzz and
Lzzz cases only the zero-order term. )

Nevertheless, it may be expected that the aegnl'a~

depertdertce of our differential cross sections as well as
the ertergy dependence of our total ones yield good
approximations even for medium Z." If so, one could
obtain adequate expressions for the cross sections for
larger Z, by multiplying them with convenient factors
f(ctZ), ss which depend on the subshell considered. Thus
Pratt' has proposed interpolation formulas for the
cross sections of the Jz subshell, by combining our
result Eqs. (20)—(24) with a function f(otZ) which he
obtained from the study of the extreme relativistic
limit. In the case of the Lzz and Lzzz subshells (for which

the present work has not determined the o.Z corrective
terms to the cross sections), at sufficientl high energies,
interpolation formulas of the type o,'=C,f;(nZ)o, (e)
could tentatively be used; here f;(trZ) should be given

by Table II of Pratt, "ss o;(e) by formula (45) or (62)
Lwith f=1j, and C =zz128/3( Ztr)', Czzz=12/(nZ)s. It
should be noted however that in the case of the J shell

the ef6ciency of any interpolation formulas cannot be
checked, because there exist no exact numerical com-
putations for comparison (such as those of Hulme et al.s4

for the E shell).
We will now examine the screening corrections to the

matrix elements. Pratt'8 has suggested that these could
be obtained multiplying the Coulomb matrix elements

by a certain constant. We will show in the following

that this is indeed true for the lowest order approxi-
mations in nZ. In this case the matrix elements of all

three subshells are of the form (30), where ttz, (p) now

represents the initial-state spinor of the electron in the
central self-consistent Geld of the atom (subscript s has
been introduced to emphasize this), for which the
Fourier transform of the potential is denoted by A p(p).ss

The term Ms of Eq. (30) contains Nz, (k—tt). For
functions such as lt z, (r), the value of the Fourier trans-
form Ni, (p) at point p is determined by the form of

fz, (r) over a radial distance in the neighborhood of the
origin 0(r(3/

I p I.'s Since zn the present case p= k—tt,

"The results of Tables I and II should then be applicable also
to medium Z.

"In the case of the E' shell, the interpolation formulas of this
type proposed by Hall (reference 1) and by R. H. Pratt LPhys.
Rev. 117, 1017 (1960), Sec. VI5 give satisfactory results.

"When taking screening into account, f;(nZ) should be taken
from Table IV of reference 9.

"H. Hulme et at. , Proc. Roy. Soc. (London) A149, 131 (1935).
g' The self-consistent Geld of the initial state is actually slightly

different from that of the Gnal state A0(p).' To lowest order, the function N~, (p) is in fact proportional to
its large components; these are deGned as the product of a spin-
angle dependent factor 5' multiplied by the Fourier-Bessel

the interesting range is 0(r(3Ap. Now, for not too
large values of Z this range lies well inside the first
Bohr orbit; in it, the self-consistent potential As(r)
practically coincides with the unscreened one generated
by the nucleus. Then, near the origin, lfz, (r) is pro-
portional to the Coulomb function P„(r) for unscreened
Z 38

lf .(r) =f 'lf z.(r). (72)

It follows that ttz, (k—zc)=f'&ttz, (k—zt) and that the
term Ms of Eq. (30) should be corrected for screening
by multiplication with f'.

Mi of Eq. (30) may be written as

~(p)N .(p)d'p
J

(73)

As shown in Secs. 2, 3, and 4, in the Coulomb case the
leading term of the integral comes, whatever k and x,
from the contribution of the neighborhood of the origin
p~0, where ttz, (p) is large. The same situation occurs
also in the screened case."Then, to obtain the leading
term of Mi we expand &p(p) near the origin

(~&1
~(0)+2 p I

Pap;3,

(+l 2 p'p I I
+" ».(p)d'p (74)

ap;ap;) p

(—i)' ( 8'sv l (O'Pz &+ ~ I I I
I+".

2 titp, Bp, / s EBx;Bx;3 s
(75)

Because of the behavior of the Coulomb functions at
the origin, only the lowest order terms of expansion (75)
will give a determined contribution to Mi. Indeed, as
we work in the Pauli approximation, the large com-
ponents being of quantum number /, these will yield a

transform G(p) of the nonrelativistic radial function Lsee for
instance Eqs. (46) and (47)5, now of the Hartree type. J. C.
Slater, Phys. Rev. 42, 33 (1932), has shown that the numerical
radial functions of Hartree can be well approximated by analytic
forms R(r) =Z cr"e "".Now, for such functions it may be shown
directly that the value of the Fourier-Bessel transform G(p) at p
is determined by the form of R(r) for 0&r&7r/p (or less).

"Indeed, with Eq. (4),
1/

~
k—st

~ ~& 1/ (it s) =$1+(1+—2m/~) &5/2vz

For relativistic s/m it ensues that 1/~k —zt) &Xs.
~g For all the J subshells the factors g& may be taken from

calculations of M. K, Rose et' al. ; they are given by H. Brysk and
M. E. Rose, Revs. Modern Phys. 30, 1169 (1958), Fig. 10.

g'This may be seen by considering the Fourier transforms
Ni, (p) of the screened Slater functions (see reference 36).

The successive terms of Eq. (74) contain the derivatives
of P„(r) at r=0. Owing to Eq. (72), we can write

('~) ('&z~
M =f'(2~)' ~(0)lf .(0)+(—i) 2 I

(ctp&) p E 8Ãj' ) p
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nonvanishing and determined contribution only to the
term containing the derivatives of order l, whereas the
small components to the term with the (/ 1—) deriva-
tives. The two contributions are of the same order of
magnitude in nZ. The expansion (75) cannot be used
beyond these terms, since derivatives of higher order
than the indicated ones do not exist at r=0."

Further, y (p) and its derivatives at p =0 contain
Ap(lr —x) and its derivatives with respect to s, . Now,
the value of the Fourier transform As(k —x) is deter-
mined by the form of the self-consistent potential
As(r) in the range 0&r&3/)k —v~ 3Xs. As in this
range (for not too big values of Z) screening effects are
negligible, As(k —x) should be taken of Coulomb form.
Then the square bracket of Eq. (75) represents the
Coulomb form for M& and it is seen that this should be
corrected for screening by multiplication with i *'.

It follows that, to lowest order in O.Z, all three L
subshell relativistic cross sections should be corrected

4' In the Coulomb case the square bracket of Eq. (75) repre-
sents an alternative method for calculating 3f&. It may be checked
that it leads to the same results as obtained in Secs. 2, 3, 4.

for screening by introducing the i factors. "4' As
regards the effects of screening on the higher order eZ
approximations of the cross sections (calculated with
Coulomb functions), these are dificult to estimate;
nevertheless it appears that the screening procedure
discussed above should apply to some extent also in
their case.

So far no conclusive comparison of the formulas
obtained in the present work with the existing experi-
mental results' can be made, since experiments have
been performed only for heavy elements and mostly at
low energies; neither have true angular distributions
been determined as yet for the L shell. "
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4'The preceding arguments do not apply at nonrelativistic
energies (see reference 36), where different values must be used
for t.

42 See however the discussion of reference 9, Sec. IV.


