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Calculation of the Magnetic Hyperfine Constant of the Nitrogen Atom
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The magnetic hyperfine constant for the S3&2 state of the N' atom has been calculated from a configu-
ration interaction (CI) function built from the usual Hartree-Fock (HF) representation (where the orbitals
are linear combinations of analytic functions) plus all singly-excited and some doubly-excited s ~ s con-
figurations. We have found that the polarization of the s orbitals can be reasonably well represented by a
basis set consisting of two series of Laguerre polynomials each of which is multiplied by an exponential
function. If the energy is minimized with respect to the exponents of all s functions, then the calculated
hyperfine constant appears to be in good agreement with experiment. For six s functions, the magnetic
constant is found to be 13 Mc/sec (experimental 10.45 Mc/sec). Using seven s basis functions, the constant
is 11 Mc/sec. We show in this paper that a configuration interaction function built from the usual HF
representation plus all singly-excited s -+ s configurations is equivalent, to first order, to what Lowdin has
called the extended Hartree-Fock representation. In addition, we show that the magnetic constant calcu-
lated from the spin-polarized (or unrestricted Hartree-Fock) function should be relatively close to that
calculated from the CI function of HF plus singly excited configurations.

I. INTRODUCTION of being practicable even for large systems but appears
to have the disadvantage of not being an eigenfunction
of S'.

(C) The projection of this spin-polarized function
can be carried out to obtain the desired spectroscopic
state. This has been done for Li, ' and it has been found
that though the spin-polarized function is almost all
in the doublet state, the value of the magnetic constant
calculated from the projected function is considerably
less than that obtained from the unprojected function.
This large change is due to the fact that now the
orbitals no longer minimize the energy of the function.

(D) It would be better to use orbitals which mini-
mize the energy of the multideterminantal function.
Lowdin' has called this kind of function the extended
Hartree-Fock (EHF) representation. Unfortunately
the difficulties that would be encountered in its calcu-
lation are very considerable and, as far as we know,
such a wave function has never actually been
determined.

In a forthcoming paper by Freeman and Watson'
the interest will be concentrated on the results on the
magnetic hyperfine constant of nitrogen that have been
obtained from spin-polarized functions of types (8)
and (C). In this paper we shall be interested in the
calculation of this constant for the nitrogen atom
using a CI function of type (A) where the SCF orbitals
are linear combinations of analytic functions, following
the method applied by Nesbet' to Li. As it is well known
that the calculated magnetic constant varies very
rapidly as a function of the exponents of the orbitals,
we have been most interested in the magnetic constant
given by the function where all exponents are varied
o give the minimum energy.

We shall show that there is a first-order equivalence
etween the extended Hartree-Fock function and a
I function built from the usual HF representation

HE isotropic magnetic hyperfine constant c of an
atom is given by'

where 4' is the wave function for the electrons, p and
P, the nuclear and electronic magnetic moments, I the
spin of the nucleus, J the total momentum of the
electrons, and r; the distance from electron i to the
nucleus. This expectation value for certain paramag-
netic atoms and ions, such as the nitrogen atom in its
'5 ground state, using the usual Hartree-Fock (HF)
single-determinant representation, is zero in contra-
diction to experiment. ' There are several different
kinds of functions which can adequately take into
account the polarization of the paired orbitals.

(A) A configuration interaction (CI) function built,
from the usual HF function plus excited s~s con-
figurations could be used. ' ' The most important
contribution to the contact operator comes from singly-
excited configurations. This kind of function has the
decided advantage of being an eigenfunction of S',
but in the present state of our computer programs it
also has the decided disadvantage of being rather
tedious to obtain.

(8) A single determinant representation can be used
where different space orbitals are employed for the
paired spin orbitals. This kind of function is called the
unrestricted Hartree-Fock or spin-polarized' (SP)
function. This representation has the great advantage

i L. M. Sachs, Phys. Rev. 117, 1504 (1960).' P. O. Lowdin, Phys. Rev. 97, 1474 (1955).' A. J. Freeman and R. E. Watson (to be published).

' E. Fermi and E. Segre, Rend. reale accad. nazi. Lincei 4, 18
(1933);Z. Physik 82, 729 (1933).

2 L. W. Anderson, F. M. Pipl. in, and J. C. Baird, Phys. Rev.
116, 87 (1959).

3A. Abragam, J. Horowitz, and M. H. L. Pryce, Proc. Roy.
Soc. (London) A230, 169 (1955).' G. F. Koster, Phys. Rev. 86, 148 (1952).' R. K. Nesbet, Phys. Rev. 118, 681 (1960).' R. E. Watson and A. J.Freeman, Phys. Rev. 120, 1125 (1960).
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plus all the singly-excited functions which are eigen-
functions of 5'. Also we show that the SP function is
equivalent to first order, to a CI function built from
the usual HF representation plus all the single-excited
functions, but these are not eigenfunctions of S'. With
these equivalences, the magnetic constant calculated
from the SP function is approximately equal to that
calculated from the EHF function if (a) first-order
perturbation theory is used to calculate the wave
function and (b) certain exchange integrals are neg-
lected in calculating the energy terms. After this work
was completed, we were informed of an unpublished
paper by Marshall" along similar lines although our
formulation is rather different from his.

As far as we know, the only previous work on the
calculation of the magnetic constant of nitrogen has
been (a) that using the formalism of the SP repre-
sentation"; (b) the work of Das and Mukherjee" in
which they have used a special variational procedure
which is not directly comparable to the results presented
here.

II. RELATION BETWEEN DIFFERENT
REPRESENTATIONS

In order to simplify the demonstration, we will

assume that the HF function contains doubly-occupied
orbitals y& q„all of the same symmetry species
(say s) and singly-occupied orbitals fi . P of another
symmetry species, say p. Then the HF determinant
has the form:

PHF —detl q i@i q s ps4'i peal

The corresponding spin-polarized function is

+sr =det.
~

ijii$i'

(2)

(3)

We assume that the orbitals which minimize the usual
HF representation are not much different in form from
those that minimize the SP representation. Thus X;~

is small, X;k' can be neglected and the orbitals (4) are
normalized to first order. Substituting (4) in (3), then

'0 W. Marshall, Proc. Phys. Soc. (London) A78, 113 (1961)."S. M. Blinder, Bull. Am. Phys. Soc. 5, 14 (1960).
ls T. P. Das and A. Muhherjee, J. Chem. Phys. 33, 1808 (1960)."R. Lefebvre, Cahiers phys. 581, 1 (1959).

It can be shown that to first order the orbitals Pi
are the same in both functions. &'

The p s are completed by a set of orbitals y~&,
q ~2 ~ to give a complete set of orthonormal orbitals.
We can then expand the orbitals on which the spin-
polarized function is built in terms of the complete set
as follows:

Qi gi+ Q )haik'Pkp
Is&i

4i = Pi+ E )gaia gk
kgi

where

and
O l~;a ——det)

gaia

i w; va lf'i 0'~l ~

Ha =detl pi@i ' I'a@~" ' '6 '4'

We shall neglect the terms in A,'. With a change of
variable, (5) can be rewritten as

1
+sp=+HP+Q ~,a—(8;k—O;k')

1
+P,a

—(O,k+ 0;a')

=+Hp+Q k (oi'a~a+I'a&, a)

It is easy to show that, as the orbitals p, are solutions
of the Hartree-Fock equations, then from first-order
perturbation theory P;a ——0." In any case, considering
the form of the Fermi contact operator (1) the con-
tributions to the magnetic constant from O,a and O~, a'

will cancel one another and thus the contribution from
8;I, will be zero.

If the coefficients xi~ are calculated from first-order
perturbation theory, then the magnetic constant which
is obtained from the SP function is given by the
formula:

(+Hp~+ ik)
Gsp 2 Q (0 HF~ Q l5(r;)s.,

~
A,k), (8)

ik ~ik ~H jl' 'b

where X is the Hamiltonian consisting only of kinetic
and electrostatic interaction terms

E,a ——(A,kKA; ), EHP ——(+HPBC%'HP).

It should be noted that the functions A;~ are not
eigenfunctions of S'.

The coefFicients X;k in Eq. (4), obtained from the
formula

)l.,a= —X,a'=42n;a,

can be considered as giving the corrections of the first
iteration to the HF orbitals q; which make it possible
to calculate the SP orbitals @,."Later on we shall give
a numerical example to show that this has a rather
important infIuence on the calculation of the magnetic
constant.

A similar treatment can be made for the extended
Hartree-Fock function:

PEHF —& det
~
i'll, it i ' ' 'lj ijl lp], ' ' 'lp

~
(10)

where 0 is the projection operator of Lowdin' and
where the superscript e emphasizes the fact that the
minimization has been done after the projection. In a
similar way, the orbitals ijl,' can be expanded in the set

'i P. O. Lowdin, Phys. Rev. 97, 1509 (1955).

we can express +sp as

+sp +HF+Q ()i ko k+)i k O k )+term»»', (5)
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where Projd;;=A'QA;;, k being a normalization con-
stant. Note that the projection of 8;, is 8,; and con-
sequently P, =0. Thus, within the present approxi-
mation, the EHF function is the same as a configuration
interaction function between O'HF and all singly-excited
functions. Then if, as above, the o.,l, ''s are calculated
by first-order perturbation theory the magnetic con-
stant that would be calculated from NEHp is given by
the expression:

(@HFX Pro)A, s)
aEHF= 2 g-

+Proj zk +HP

Ep„;,s=(ProjA;sR ProjA;&).

If we assume that Ep„;;y 8;A,, i.e., certain exchange
integrals are neglected, then to first order

GEHp Cgp (13)

(see Appendix I). Evidently, the equivalence of spin
density calculated by the two types of functions is
valid for all points in space. We shall give some nu-
merical examples of this equivalence for the nitrogen
atom in Sec. IV.

III. CALCULATIONS

%e have used a program written by Nesbet and
Watson for the IBM-704 computer to calculate SCF
orbitals for atoms where the radial parts are linear
combinations of analytic functions of the type
x~&——r"e ". In this program, m can be any integer
and n can have any value. In choosing the values of the
exponents, considerable care must be taken to avoid
the maxima of different functions coming too close
together; otherwise the SCF orbitals have a tendency
not to be linearly independent. "

From these calculations a configuration interaction
function was built either (a) by using first-order
perturbation theory (FOP) or (b) by diagonalizing a
matrix (DM). If function was of type (a), only singly
excited s —+s functions were used since the Fermi
contact operator is a sum of one-electron operators.
For functions of type (b), the important doubly-excited
functions were also included. Excited configurations
are of course built using the virtual SCF orbitals. "
"R. E. Watson, Phys. Rev. 119, 170 (1960).
"For the 'S state of nitrogen single s~s excitation gives

a configuration where five electrons are associated with 6ve dif-
ferent orbitals. These give rise to two independent 4S functions
one of which (B;I, function) has zero matrix element with the
ground state but the other function (ProjA;i) has a small but
nonzero matrix element with the ground state.

y„+I . , and after some elementary rear-
rangement one finds:

VEiiF %HF+p (rr;i' ProjA, &+/, i'B„k)+, (11)

The contribution to the magnetic constant of the type
of excitation p2, —& y„, is positive while that of
yi, —+ y, is negative. The resultant constant is the
small difference between two large numbers. It is not
surprising then that the results are somewhat sensitive
to the method used to calculate the CI function.

IV. RESULTS

The simplest basis set of s functions, which can be
used in the CI method to calculate the magnetic
hyperfine constant. of the nitrogen atom, is that which
consists of one is-like, one 2s-like and one 3s-like
function (and, of course, one 2p function). If Slater's
rules are used for the exponents, then as two of us have
previously shown" the calculated value of a is 7.5
Mc/sec, in good agreement with the experimental
value a=10.45 Mc/sec. ' However these exponents do
not minimize the energy of the 45 ground state of the
atom for this basis set. A triple minimization is too
tedious to carry out exactly. However, among several
trial functions, the one which gives the lowest energy
(—54.296 atomic units) (numerical HF, —54.40s a.u.)"
corresponds to a value of the magnetic constant in
worse agreement with experiment (18 Mc/sec).

We have then considered more elaborate kinds of
functions and, in particular, the fit that Lowdin" has
made to the numerical HF function using analytical
orbitals. For nitrogen he used five s functions (two
1s-like, three 2s-like) and three 2p-like functions.
Using the exponents given, " we have found from our
(FOP) function a=5 Mc/sec. A fivefold minimization
of the corresponding CI function would be extremely
tedious indeed. Thus, even though for nitrogen the fit
of Lowdin gives good results, this could perhaps be a
coincidence. The fit made to the numerical function
by series of analytical expressions is not, unfortunately,
unequivocal. The particular choice will have a larger
eGect on the calculation of the magnetic constant
because the virtual orbitals which determine the
constant are much more sensitive to the choice of
parameters than the occupied orbitals.

We have also used a representation for the s orbitals
which is analogous to that used by Nesbet' for the

magnetic constant of Li, that is, more functions of the
type 1s (three) which do not vanish at the nucleus
than functions of the type 2s (one). Only negative
values of the magnetic constant were found and
variation of the exponents did not seem to improve
the results.

We then turned to the use of two series of Laguerre
polynomials, each series multiplied by rather diferent
exponential function to represent the y, functions.

N. Bessis and H. Lefebvre, Compt. rend. 251, 648 (1960). In
this article the sign of the contribution q I, ~ q, was given
incorrectly.

~g D. Myers (private communication).
"P.O. Lowdin, Phys. Rev. 90, 120 (1953).
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The orbitals have the form:

pns (aln+blnr+clnr + ' ' ')e
+(as„+bs„r+cs„r'+ . )e ~'". (14)

TABLE I. Magnetic hfs constant of N found from CI functions.

Six yr e functionsa
FOP DM

Seven y~e functions'
FOP DM

nl min
cx2 min
B min (a.u.)
q2 -+ q (Mc/sec)
@le -+ ~me (Mc/sec)
a (Mc/sec)b

6.89
1.58—54.4001

54—46
8

6.93
1.62—54.4105

58
-46

13

7.85
2—54.4007

54—49
5

8
1.9—54.4108

58
-47

11

This kind of function has already been used to study
polarization eGects in atoms" and magnetic constants
of atoms, " though a study of the results of a wide
variation of parameters appears not to have been made.
This type of calculation is particularly attractive since
it is relatively easy to carry out a double interpolation.
In addition two 2P functions are used. The results for
both (FOP) and (DM) types of CI function are col-
lected in Table I. The comparison with experiment
seems satisfactory for both six and seven basis functions
and it is better with seven than six. The seven basis
functions are divided, three for the larger parameter
and four for the smaller. In the (DM) calculation not
only are the singly s —+ s configurations included, but
also the double excitations of the type (ys, )' ~ (y„,)'
(which does not have an. entirely negligible effect on
the magnetic constant) and (fs„)'—+ (ifs„)' (which is
added mainly because of its important e6ect in the
energy). It is not possible to consider the small number
of Laguerre functions used here as a complete set.
Each time the number of functions is changed it is
necessary to search again for a minimum.

In one case I six y, functions Eq. (14) o.i=7, ns=1.5]
the value of the magnetic constant has been calculated
from perturbation equations (8) and (12), (FOP) as
well as from the corresponding complete CI calculation
(DM). Also the values have been calculated for the
same basis directly from the SP function. " Table II
gives the results.

Using the perturbation formulas amounts, as we have
said, to making the first iteration on y, (HF) to calcu-
late either P, (SP) or +,'(EHF). The difference of values
given in column 2 and column 5 of Table II is due to
the fact that the difference between the value at the
nucleus of functions p; and P associated with rr spin
and P spin, respectively, is far greater when the iter-
ations have converged (i.e., SP function calculated by
prograin) than after the first iteration (i.e., perturbation

TABLE II. Comparison of magnetic constants calculated by dif-
ferent methods Lsix p, functions of Eq. (14), ni=7.0, os=1.5).

2s contribution
1s contribution
a (Mc/sec)

Perturbation calculations
+EHF ~HP ~ProjSP

54 61 37—46 —46 —28
8 15 9

Complete
calculations
+D15 ~BP

61 108—45 —75
16 33

a Taken from Eq. (12).
b Taken from Eq. (8).
'Taken from Eq. (21).
d Calculated from SP orbitals obtained from program of Nesbet and

Watson.

equations). In addition we have indicated in Table II
the value of the constants obtained from the projection
of the SP function. It can be shown (cf. Appendix II)
that for 'S3i2 state of nitrogen ap„;gp 5aqp. We should
emphasize that in our view the use of the projected
SP function seems not to be adequate because the
orbitals now no longer are found from a minimization
process. The value of 9 Mc/sec for the magnetic con-
stant can be considered to be fortuitous.
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APPENDIX I

This is to demonstrate that from a first-order
perturbation argument plus some additional restrictions
there shouM be an approximate equality between the
magnetic constants calculated from the SP and the
EHF functions.

There are the relations":

'As given in Eq. (14).
b The numerical constant (87r/3) (p»pe/I J) =215.187a08 Mc/sec.

"E.G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1.957).
2'M. H. Cohen, D. A. Goodings, and W. Heine, Proc. Phys.

Soc. (London) A73, 811 (1959).
'2 The program of Nesbet and Watson can be used to calculate

either the usual HF orbitals or SP orbitals.

(@HF5('. ProjA, ,)= kl(O»3('.A;,).
"R. K. Nesbet, Ann. Phys. (N.Y.) 3, 397 (1958).

(18)

Also as 0 commutes with the Hamiltonian K and as
0% Hi; ——+HF we have the following relation (16):
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-54.408 then has the relation:

~sp—~zHv.

-S4.4 l0—

r

rr
~i

&1-7

APPENDIX II

The projected function of the SP function can be
written as

Q@sp——Q(%Hp+P n,;A;;)
2j

=O'HF+Q G,~QA, ~,

20—
where n;;; is determined from the SP function (7). This
can be written (16):

exp.
l0-

QC sp=@Hp+p cr,,'k '* ProjA;;. (2o)

l.2 1.5 2 l2 l 5
CX2

Then the magnetic constant obtained from the pro-
jected function will be given by the formula:

&p o'sp= 2 Q rr, ,k l(+Hp
i P b(r„)s,„i

Pro jA;;). (21)
Fro. 1. Variation of energy of CI function (upper curves) and

of magnetic hfs constant (lower curves) oi nitrogen as function of
exponents a1 and n2. Six basis functions are used. The arrows
indicate the values of the parameters which give the minimum of
energy.

If we substitute in this formula the value of matrix
elements of the Fermi contact operator given in (17),
it is easy to see that

The numerators in the expressions for asp of Eq. (8) ~projsp —~ +sp.
and azrrp of Eq. (12) are thus the same. As the de-
nominators only differ by a few exchange integrals, one For nitrogen k=5/3; thus ap &sp~srrsp.

(22)


