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Electron Spin Resonance Experiments on Donors in Silicon. III. Investigation
of Excited States by the Application of Uniaxial Stress and Their

Importance in Relaxation Processes
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The excited states of the antimony, phosphorus, and arsenic impurities in silicon have been investigated
by subjecting samples to a uniaxial stress and observing the change in the electron spin resonance spectrum.
The experiments were performed at 1.25'K and ~9000 Mc/sec on silicon samples subjected to strains up
to 10 '. From the reduction in the hyperfine splitting and the observed g anisotropy under strain the follow-

ing results were deduced: For a deformation potential of 11 ev, the valley-orbit splitting (i.e. , singlet-doublet

spacing) for phosphorus was found to be 0.015 ev, for arsenic 0.023 ev, and for antimony 0.013 ev. For the
difference in g values with H parallel (g~~) and H perpendicular (gr) to the valley axis we obtained for phos-
phorus-doped silicon, gll —gq= (1.04&0.04)&(10 '.

The observed g shifts with strains along different crystallographic directions revealed the presence of two
distinct spin-lattice relaxation (1;)mechanisms. These were verified and compared with the theory of Roth
and Hasegawa. The effect of applied strains on the mutual electron-nuclear spin flip rate (1;) has been
demonstrated. The importance of strain experiments in unravelling relaxation mechanisms is discussed.

I. INTRODUCTION of silicon. In particular, as we shall see later, they play
a dominant role in the interaction of lattice phonons
with the donor electron spin system.

Since the optical transitions from the ground state
to these excited states is forbidden, it is difficult to
obtain their position directly from optical spectra.
However, it is possible to determine the position of the
excited states by subjecting the silicon lattice to a shear
strain which destroys the equivalence of the six con-
duction-band valleys. ' ' This has the effect of admixing
the doublet state into the singlet ground state. The
magnitude of the admixture introduced by the strain
was measured in our experiments by observing the cor-
responding changes in the resonance spectrum.

Experimentally we have observed changes both in
the hyperfine splitting and also in the center of gravity
of the lines; the latter we term a g shift. From these
changes we have determined the splitting of the excited
states (i.e. , the singlet-doublet separation), the rnag-
nitude of the deformation potential for shear, and the
nature of the g tensor for an electron in a single valley.

The g shifts due to the applied strain were correlated
with the observed spin-lattice relaxation times and
compared with the theory of Roth' and Hasegawa. '
Good agreement was obtained between the observed
relaxation rate and their theoretical prediction. " The
presence of an additional relaxation mechanism was
revealed by the strain experiments and compared with

HE substitutional donors phosphorus, arsenic,
and antimony in silicon have one extra unpaired

electron which at low temperatures is bound to the
donor nucleus. The paramagnetic resonance spectrum
of this bound electron has been the subject of several
previous investigations' ' which helped to elucidate the
ground-state electronic structure of these so-called
"shallow donors. "

The present work is concerned with the excited states
of the localized donor electrons and the effect of ad-
mixing these excited states into the ground state by
applying a uniaxial stress.

The excited states in question arise in the following

way. In the effective mass approximation the donor
ground state in silicon is sixfold degenerate —a con-
sequence of the multivalley nature of the conduction
band. ' This degeneracy is lifted by the valley-orbit
interaction which splits the six levels into a singlet
ground state and a doubly- and triply-degenerate set
of excited states. These excited states are important in
determining many of the low-temperature properties

*This work was performed in partial fulfillment of the require-
ments for a Ph. D. degree from Rutgers University, New
Brunswick, New Jersey.
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the theory of Roth. "It should be noted that this general
approach of correlating strain experiments with relaxa-
tion times should be applicable to other paramagnetic
systems" since in essence one simulates the time-
varying effects of a phonon by statically straining the
lattice.

II. NATURE OF THE DONOR STATES

A. In the Absence of Strain

The theory of shallow donors has been developed by
Kohn and Luttinger. '' They considered the donor
electron as moving with an appropriate effective mass
m* in the Coulombic potential of the donor atom im-
bedded in a dielectric medium. The result of this treat-
ment shows that the Bloch functions, which describe
the conduction electrons, are modulated by an envelope
function which is the solution of the associated hydro-
gen-like Schrodinger equation. (The amplitudes for
these modulated Bloch functions in a [110$ direction
are shown in Fig. 6 of reference 3.) Since the appro-
priate Bloch functions can be taken from any one of
the conduction-band minima, the complete wave
function must consist of an algebraic sum of Bloch
functions from the different minima. Thus they arrive
at the following wave function for the donor states:

@(r)= Q n&»F&&'&(r)uo&(r) exp(ikoo& r),

where u&&'&(r) e xp(i k&o' &r) is the Bloch function at the
jth minimum and F(r) is the effective-mass envelope
function. The n'j) are numerical coefFicients which
describe the relative contribution from each of the dif-
ferent minima or valleys and thereby form different
combinations of the wave functions.

Since the effective mass m* is different for motion of
the electrons parallel or perpendicular to the valley,
the envelope function is not spherically symmetric. In
the case of silicon the wave functions for each of the
valleys resemble pancakes with the axis pointing along
the direction of the appropriate valley. The Kohn-
Luttinger theory of the donor states has essentially
been confirmed by both optical absorption and spin
resonance studies. '

From symmetry considerations the ground state,
which would be sixfold degenerate, splits into a sym-
metric singlet a doublet and a triplet. Only the singlet,
which is composed of equal admixtures from each of the
valleys, gives rise to a 6nite probability for the donor
electron to be at the donor nucleus. In this region, close
to the donor nucleus, the effective-mass approximation
breaks down. We therefore expect the doublet and

"L. Roth, Massachusetts Institute of Technology Lincoln
Laboratory Reports, April, 1960 (unpublished).

~ E. S. Rosenvasser and G. Feher, Columbia Radiation Labo-
ratory Report, August, 1960 (unpublished) describe the effect of
strain on the electron spin resonance pattern of Fe'+ and Mn++
in MgO.

triplet states (whose wave function vanish at the
nucleus) to be approximately degenerate and their
energy to agree with the effective-mass theory. On the
other hand, the simple effective-mass theory will repre-
sent. a rather poor approximation for the singlet state
which has a large probability ~%'(0) ~' at the donor
nucleus. As a consequence of this, the symmetric singlet
will be split off from the asymmetric doublet and triplet
states. This splitting, which will vary with the donor
species is called the "valley-orbit splitting" or the
"chemical shift. "

Since the hyperfine interaction of the bound donor
electron with the donor nucleus depends on ~%(0) ~',
one expects an appreciable hyperfine interaction for the
singlet but none for the doublet and triplet. It is from
the observed hyperfine interaction for phosphorus,
arsenic, and antimony that one concludes that the
ground state in silicon is the singlet for each of these.

B. In the Presence of Strain

If the lattice is now deformed by the application of a
uniaxial compressive or tensile stress, the symmetry of
the crystal is altered and the equivalence of the valleys
is destroyed. Some of the valleys are raised in energy
and others are lowered; the magnitude by which they
are raised or lowered is of the order „s'= T/C',
where

„
is the deformation potential for pure shear,

T is the stress, and the appropriate elastic constants
appear as C'=-', (C»-C»). As a result of the energy dif-
ference between the valleys, the ground state will no
longer be a pure singlet' ~ and the relative valley popu-
lations will no longer be equal. This "valley repopulat-
ing effect" is achieved by admixing some of the excited
states. The degree to which these states are admixed
depends on the ratio „s'/E&2, where E&2 is the splitting
between the singlet and the doublet. The triplet is not
admixed in these static strain experiments because
opposite pairs of valleys will move together. The shift
in energy of the singlet, doublet and triplet for a stress
in a [100$ direction is shown in Fig. 1.

The quantitative relation between the energy shifts
at different strains is worked out in Appendices A, 3,
and C. The doublet-triplet degeneracy was lifted in the
figure by a small amount E» which, as explained before,
is expected to be much smaller than E~&.

l. Egect of Strain o&t the Hyperfine Imteractiort

As mentioned in the preceding section the wave
function of the doublet vanishes at the donor nucleus
and consequently does not exhibit a hyperfine inter-
action. Any admixture of this "hyperfineless" state into
the singlet ground state will therefore reduce the ob-
served hyperfine splitting. If one assumes that the only
effect of the strain is to alter the valley populations,
one can solve the associated Hamiltonian exactly. This
has been done in Appendix D for an arbitrary stress in
the [100j direction. The result for the ratio of the
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direction. This also depresses four of the valleys and
raises the other two. Our largest [100] compressions,
with strains of the order of 10 ', correspond to the
electrons spending 60/o of their time in the two de-
pressed valleys.
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2. Effect of Strairi oii the g Shift

In addition to the hyperfine splitting, the electron
spin-resonance spectrum is also characterized by the
position of its center of gravity which is determined by
the g value of the electron. The field at resonance is
given by

hv= genoa~

—8 3

COMPRESSION TE NSION

I I

-p tL 0
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EXPER I MENTAL
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FiG. 1. Energy of the various 1s-like donor levels in silicon
(with respect to the energy center of gravity) versus the "valley
strain" "„s'/E~s with an uniaxial stress applied in the L100$
direction. Energies are expressed in units of 6,=-, the singlet-
doublet splitting E12. The doublet triplet splitting E23 is assumed
small in comparison to E12. The numbers in parenthesis indicate
the degeneracy of the level. The analytical expression of the energy
levels versus strain are derived in Appendix C.

where x is called the "valley strain" and is given by

x= -„/sE .rs (3)

At very small strains (x((1) this result shows the
change in hyperfine splitting with strain to be quad-
ratic. This is easily seen from perturbation theory since
the doublet state which is admixed by the strain
vanishes at the donor nucleus and therefore, one would
not expect a 6rst-order change in the ground-state wave
functions at the origin. ' (The hfs with the Si" nuclei
would of course exhibit a first order change with strain. )
In our experiments the strains are rather large and the
observed changes in the hyperfine splitting are appre-
ciable. For extremely large strains one can define two
limiting cases': Under uniaxial compression, the strain
is negative and since

„
is a positive quantity, expres-

sion (2) will reach a limiting value of s; this corresponds
to the donor electrons spending all of their time in the
two depressed valleys as compared to the six original
ones. Under uniaxial extension, the strain is positive
and a limiting value of 3 is reached; i.e., only four of
the six valleys are occupied. Although we did no actual
experiments of the second type, they were in essence
simulated by compressive stresses applied in the [110]

hyper6ne splitting with strain (hfs), to the unstrained
value (hfs)s is given by

(hfs)./(hfs)s ——-', (1+(1+x/6) (1+x/3+x'/4) —
&}, (2)

gs=s(g )+s(g.). (6)

a. g shift due to valley repopulation Under the a. ppli-
cation of a uniaxial stress the six valleys will not be
equally populated and averaging expression (5) over
all the valleys will not result in an isotropic g value.
This is just a consequence of the fact that the doublet
state which the strain admixes into the ground state is
not isotropic. In Appendix F we derive the expression
for the g shift due to this valley repopulation effect with
the stress applied along the [100]direction.

g
—gs= s(gt~ —g~)(1—s sinse)

X [1—(1+3x/2) (1+x/3+x'/4) i], (7)

where g is the observed g value under strain, go is the
unstrained value, 0 is the angle between the stress axis
and the magnetic field, and x is the "valley strain" as
defined before. Thus by 6tting the experimentally ob-

'3 See for instance: W. Low, I'aramagnetic Resonance in Solids
(Academic Press, inc. , New York, 1960), p. 53.

where p, o is the magnetic moment of the electron, H is
the magnetic 6eld, v is the applied microwave frequency,
and g is the electronic g factor which in general may
depend on the orientation of the magnetic field H.

In order to understand the effect of strain on the ob-
served g value, let us consider the hypothetical case of
having all the electrons in one valley. Since the g is a
measure of the spin-orbit interaction and the orbit of
an electron in a valley is different whether it moves
parallel or perpendicular to the valley axis one would
expect to observe an anisotropic g value. It can be easily
shown" that for this case the electronic g value is given
by the relation

g'=g 'cos'8+g 's)n'0,

where 0 is the angle between the applied 6eld and the
valley axis and gii and g& are the g values with the mag-
netic field pointing parallel and perpendicular to the
valley axes.

If one wants to calculate the g value for a real case,
i.e., for an electron in a given donor state, one has to
take a suitable average of the above expression over
the different valleys. For the singlet, one 6nds that the
average g is isotropic and is given by' (see Appendix E)
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In general both g shifts will be observed simultane-
ously. However, by choosing a particular stress axis,
the two effects can be separated out (see Sec. IV, 8).
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FIG. 2. Microwave cavity assembly with silicon sample. The
load is applied to the hemispheres lsee Fig. 3) and is shared by
the sample and the TeQon strip which surrounds the coupling
hole. The silicon samples are slightly longer than the inside di-
mension of the cavity. The quartz light pipe provides illumination
for the sample which reduces the relaxation times.

served g values at different strains with expression (7)
one obtains the parameters g„and g, . (See IV, 8).

b gshsjt uri. thits ore valley. The values of g, &
and g&

can be calculated from the momentum matrix elements
and spin-orbit splittings of the nearby energy bands.
The nearest band to the conduction-band minima is the
A2' band; however its matrix elements vanish in the
absence of strain. In the presence of strain, this band
will admix and give rise to a g shift which would be ob-
served even if all the electrons were con6ned to one
valley.

Roth" has shown that such a g shift can arise from an
interaction B2 which has the form

H&= ', Atis(e, „(S,H„+S„H,—)+cycl.perm. ), (8)

where e,
„

is the xy component of the strain tensor and
A involves the relevant matrix elements as given by
Roth."

The interaction B~ gives rise to an anisotropic g shift
which can be expressed by the relation"

g gs ,A (—T/C——44—)(1——', sin'8),

where g is the observed g value, gp is the unstrained
value, T is the stress applied in the $111j direction,
C44 is the elastic constant (for silicon, " C44=8X10"
dynes/cms), and 8 is the angle between the stress axis
and the magnetic field H which is rotated in the (110)
plane.

'4 Y. Yafet (private communication).
"H. J. McSkimin, J. Appl. Phys. 24, 988 (1953).

III. EXPERIMENTAL DETAILS

A. Experimental Equipment

The electron spin-resonance spectrometer used in
these experiments is a balanced bridge type and employs
a superheterodyne detector. " The experiments were
performed at 9000 Mc/sec and a temperature of
1.25'K. At these low temperatures and the low donor
concentrations used, " the spin-lattice relaxation times
become prohibitively long. In order to relax the spin
system more rapidly, free carriers were introduced by
wooding the sample with light' guided down the wave-
guide by means of a quartz rod. All observations were
made under adiabatic fast passage conditions" with the
bridge tuned to the dispersion mode. A 100-cps field
modulation was used.

The rectangular microwave cavity operates in the
Tippy mode mode and is shown in Fig. 2. It consists of
two quarter-wave sections molded from Pyrex glass and
coated with silver paint. Hemispheres are ground on
the outside faces of the split sections. The silicon
samples are slightly longer than the inside dimensions
of the cavity so that a force applied to the hemispheres
is transferred to the sample. Cardboard or TeQon is
placed between the sample and the cavity. The card-
board plastically deforms under the applied stresses and
distributes the stress uniformly over the cross-section
of the sample. The spacing between the halves of the
cavity when the sample is loaded is of the order of 0.5
mm. Since the slit is parallel to the microwave current
lines, the Q of the cavity is not affected adversely by
this spacing.

The mechanical arrangement for transmitting the
forces down the Dewar to the cavity is shown in Fig. 3.
A large adjustable calibrated spring exerts a maximum
tensile force of 25 kg on a fiexible copper wire, which
is coupled through a vacuum bellows to a pivoted lever
arm which applies the force to the cavity. The jaws of
the lever have hemispherical holes slightly larger in
diameter than the hemispheres on the cavity walls so
that when the system is assembled, the cavity centers
itself. This assures that the forces on the cavity and
hence on the sample are uniaxial. In this arrangement
the dc magnet 6eld may be rotated to have its direction
parallel to the applied stress. We call this device the
"parallel squeezor. " A similar arrangement rotated
through 90' is used for applying forces perpendicular
to the magnetic field (the "perpendicular squeezor").
It is shown on the right side of Fig. 3.

"G. Feher, Bell System Tech. J. 26, 449 (1957).
r& Donor concentrations of ~10 s/cms were used. For phos-

phorus-doped silicon at j..25oK this results in a spin-lattice re-
laxation time of about an hour. (See reference 4.)"See Appendix of reference 3.
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trapolated from the low-temperature measurements of
McSkimin. " The resultant value for C' is 0.522)&10
kg/mm'.

The silicon samples were cut from Czochralski-grown
crystals of approximately 10" Nz/cm' and oriented
with an x-ray goniometer to within 20' of the appro-
priate axis. They were cut to dimensions of 0.75
mm)(9 mm)&22 mm and lightly etched. "The etching
reduces the surface recombination and thereby increases
the effectiveness of the light in relaxing the spins. After
etching, the cross-sectional area was accurately
measured.

The main error in the determination of the strain
arises from strain gradients within the sample due to a
nonuniform stress distribution at the ends. We have
estimated these strain gradients in the following way:
We have shown that uniaxial compression produces a
g shift proportional to strain (provided g„Qg,). If the
strain varies across the sample, the resonance condition
will vary from region to region resulting in a broadening
of the resonance line. The strain gradient can then be
estimated from the ratio of the strain-broadening of the
line to the strain shift of the same line. Since these
quantities are extremely small for silicon, the estimates
were made using arsenic-doped germanium for which
the g shifts are three orders of magnitude larger. ""For

FIG. 3. Mechanical assembly used to apply stress to silicon
samples at liquid helium temperatures. The assembly shown
within the Dewar is called the "parallel squeezor" since the stress
can be applied in the direction of the magnetic field. The alternate
arrangement for compression perpendicular to the field is called
the "perpendicular squeezor" and is illustrated in the lower right-
hand corner.

B. Determination of Strain
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The force on the cavity may be obtained by measur-
ing the exact dimensions of the lever arms and cali-
brating the spring with known weights. A more direct
method which we used for our final stress determination
was to measure the deformation of calibrated hardened
steel rings inserted in place of the cavities. In this way
the two lever arms of the squeezing arrangements were
found to have mechanical advantages of 4.40 and 2.10,
respectively. The load necessary to overcome vacuum
loading of the bellows, binding, and other nonlinear
effects in the mechanical system introduces an error of

3% into the calculation of strain in the sample.
Within the microwave cavity the load is equally

shared by the sample and the Teflon spacer at the oppo-
site end of the cavity. Since the maximum load applied
by the calibrated spring is 25 kg, the maximum load on
the sample is 62.5 kg for the "parallel squeezor" and
26 kg for the "perpendicular squeezor. " The elastic
constants C~~ and C~~ for silicon at 1.25'K were ex-

(b)
Cd

0 CJ

o
0g co

Magnetic field ~
FIG. 4. Hlustration of the method used for the accurate deter-

mination of the hfs and the electronic g value. (a) Hyperfine
spectrum of phosphorus donors in silicon; Nd = 10'6/cm',
T=1.25'K v.—9 kMc/sec. (b) Portion of the mr=+ —, line which
is shown encircled in (a). The field marker shown is derived from
a proton sample. The centers of the lines were determined with
an accuracy of ~10 rnillioersteds.

"The etch consisted of three parts (by volume) of nitric and
one part of hydrofluoric acid. The samples were etched at room
temperature for about one minute.' D. K. Wilson and G. Feher, Bull, Am. Phys. Soc. 5, 60 (1960).

2' D. K. Wilson and G. Feher (to be published); G. Feher in Pro-
ceedings of the International Conference on Semiconductor Physics,
Prague, 1060 (Publishing House of the Czechoslovak Academy of
Sciences, Prague, 1961},p. 579.
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most of our runs we found strain gradients of the order
of 5%. We estimate the over-all error in the determina-
tion of the strain to be approximately 6%.
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Fro. 5. Ratio of the hyperfine splitting with strain to the un-
strained value as a function of "valley strain" ™„s'/E&zfor uniaxial
compression in a L100$ direction. The sample is phosphorus-doped
silicon at 1.25'K and v,—9 kMc/sec. At the largest valley strains,
the donor electrons are spending approximately 60% of the time
in the depressed valleys. The solid curve represents the 6t with
Eq. (2), assuming Err/" ~=1.32X10 '.

C. Experimental Procedure

The basic quantity which had to be measured was
the shift of the center of the electron spin resonance line
at different stresses and angles. In order to achieve this,
a linear magnetic field sweep extending over only a
small portion of the linewidth was used. (see Fig. 4).
Superimposed on the linear sweep was the usual 100
cps field modulation with a peak-to-peak value not
exceeding 0.1 oe. The centers of the lines were made to
coincide with magnetic field markers derived from a
nuclear resonance probe. The dc magnetic field and the
NMR. frequency were kept constant throughout an
experimental run so that changes in the spin spectrum
were observed as displacements of the peaks from the
NMR marker. The accuracy of the measurement was
of the order of 10 millioersteds. Since the hyperfine
splittings at maximum strains were reduced by several
oersteds, the accuracy with which changes in the hfs
could be measured was less than 1%.The displacement
of the lines due to the strain-induced g shifts never
exceeded a fraction of an oersted, which reduced the
accuracy of the g-shift determination to about 3%.

In measuring the g shifts as a function of angle, a
correction for the changing demagnetization of the
cavity walls had to be applied. These demagnetization
values varied by about 30 millioersteds and were ob-
tained by measuring the apparent g shifts in an un-
strained sample.
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1.4 1.6 1.8
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Fro. 6. "Valley strain" "„s'/E&rdetermined by means of Eq. (2)
from the changes in the hfs versus elastic strain s'=2(srr —srs)2'
for a uniaxial compression in the L100) direction. Temperature
=1.25'K, v. =9 kMc/sec, ftrs=10' /cm~. The lines are drawn for
the values of E&s/. , listed in Table I.

All our measurements were based on the observed
displacements of the mr ————', and srrr ——+-', lines, and
in the case of antimony-doped samples only those of
the Sb'" isotope. The hyperfine splitting is then ob-
tained directly to second order from the separation of
these two lines. (See discussion of the Breit-Rabi
formula in Appendix G.) The g factor is determined
from the center of gravity of the two lines, subject
again to the Breit-Rabi correction.

IV. EXPERIMENTAL RESULTS

A. Determination of E» from the Reduction
in the Hyperfine Splitting

The reduction in the hyperfine splitting at different
valley strains s'/E» is shown in Fig. 5. The results
were obtained on a phosphorus-doped silicon sample
subjected to an uniaxial compression in the [100j
direction. The solid curve represents a fit with the
theoretical expression LEq. (2)j assuming for the ratio
Ers/ „avalue of 1.32X10-s.

An alternate way of presenting the data is to calcu-
late by means of Eq. (2) for each point the appropriate
valley strain x. Figure 6 shows the results of this pro-
cedure for the three donors; antimony, phosphorus,
and arsenic. The experimental results were obtained
with both the parallel and perpendicular squeezor
(see Sec. III, 8). The straight lines indicate the validity
of Eq. (2) and provide a strong evidence that the
changes in ~%(0) ~' are due to the "valley-repopulation
effect. "The values for Ers/ „obtained from the slopes
of the lines are presented in Table I. In order to obtain
the singlet-doublet splitting A~2, the deformation po-
tential „hasto be known. Unfortunately there are no
suitable experimental values available at present"; a
theoretical estimate by Herring" '4 places it in the range

Cyclotron resonance experiments under uniaxial stress are
presently being performed in order to obtain an independent value
of )J. C. Hensel and G. Feher (to be published)g."C. Herring, Bull System Tech. J. 34, 237 (1955).

24 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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of the singlet and our experimental values of E~s/"„.
The average value of the deformation potential obtained
in this way is ™„=11&1ev. This places the doublet
(30.0+1.0)X10 ' ev below the conduction band, in
very good agreement with the theoretical effective-mass
value' of 29)& 10 ' ev. Table I lists the optical ionization
energies of the singlet level and the singlet-doublet
splittings 8~2. The relative positions of the singlet and
doublet estimated in this way for all three donors is
shown in Fig. 7. The value obtained for the splitting in
phosphorus-doped silicon (15&(10 ' ev) is consistent
with that obtained from Hall measurements by Long
and Myers. "

B. Electronic g Shifts

io' x
~

"l=~.s2
u'

f.98

As

1.10

gb EFF. MASS
THEORY

FIG. 7. Energy level scheme for the donor electron with 1s-like
wave functions in phosphorus-, arsenic-, and antimony-doped
silicon. Scheme is based on the assumption that doublet is inde-
pendent of the donor species. This yields for the deformation po-
tential a value of =11 ev. The separation of the doublet and
triplet is not determined in our experiments and is assumed to be
small compared to the splitting EI2.

between 7 and 11 ev. The positive sign of „wasveriffed
in our experiments by observing a larger change in the
hfs under a compressive stress in the [100] direction
than under a similar extensive stress (simulated by a
compressive stress in the [110]direction).

Lacking a precise value for the deformation potential,
we deduced its value from our experimental data in the
following way: Since the wave function for the doublet
state vanishes the donor nucleus, its energy level should
be determined to a good accuracy by the effective-mass
theory. ' The position of the level will then be inde-
pendent of the donor species. There is evidence from
optical absorption measurements that this is the case
for most of the excited states that similarly vanish at
the donor nucleus. ' On the basis of this assumption one
can calculate

„
from the optical ionization energies' "

TABLE I. The singlet-doublet splitting E» for different donors
obtained from the hyperfine splitting under uniaxial compression.
Note that in order to get EI., the deformation potential „has
to be known. By assuming the validity of the effective mass theory
for the doublet state, a value of ™„=11 ev was deduced.

Donor

Phosphorus
Arsenic
Antimony

Ionization
energy' (ev)

44.6X10 '
52.5X10 '

43X10 '

EIQ/w~g

(1.32&0.08)X10 '
(1.98~0.12)X10 '
(1.10&007) X10 '

EI2(ev)

15X10 '
22X10 3

12X10 '

a See references S and 2S.

ss N. B. Hannay, Seraicolductors (Reinhold Publishing Cor-
poration, New York, 1959), p. 460.

As we have discussed in Sec. II, there are two mecha-
nisms that give rise to a g shift under strain. One is due
to the repopulation of the valleys (caused by the ad-
mixture of the doublet), the other is due to the strain
dependence of g„and g& themselves (caused by the
change in the matrix element which admixes higher
lying bands). The experimental problem is to measure
these shifts independently. This is possible by applying
the stress along two different crystallographic direc-
tions. Roth has shown' that the "one-valley effect"
arising from the admixture of the hs' band (see Sec. IIB,
2b) should be absent when the stress is applied along
the [100] direction. The "repopulation effect, " on the
other hand, disappears with stresses applied in the [111]
direction. This is evident from the fact that for this
stress direction the angles between each of the [100]
valley axis and the stress axis are equal. As a conse-
quence all valleys shift by the same amount and no
repopulation occurs.

1. g shift due to valley repopulation. In Sec. II B we
presented the relation [Eq. (7)] between the g shift
and the applied strain. This expression [Eq. (7)]
suggests two possible experimental procedures to
evaluate g

—go. One can either keep the magnetic field
at a 6xed angle and vary the valley strain or alter-
nately vary the angle 8 for a given value of x. In the
latter procedure one has to make a correction (see
Sec. IV A) due to the varying demagnetization factor
but gains a small convenience by not having to evaluate
the Breit-Rabi correction at each angle. This correction
has to be reevaluated for each strain value since the
hyper6ne splitting is strain dependent. Having deter-
mined this dependence (see previous section), it inci-
dentally provides a convenient strain calibrator.

%e have performed both type of experiments.
Figure 8 shows the experimental results of g—

go vs the
applied valley strain. They were obtained in the
"parallel squeezor" with T along the [100] direction
and H pointing always perpendicular to it. The experi-
mental points represent averages of three different runs
taken with H along the [010]direction, along the [001]

D. I.ong and J. Myers, Phys. Rev. 115, 1119 (1959).
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direction, and at 45' to both the [010$ and $001]
directions. The full line represents a theoretical 6t with

g« —gl=1.1)&10 '. Similar results were obtained on
antimony- and arsenic-doped silicon. Since at large
values 'of strain only the valleys in the direction of the
stress jwill be occupied, we expect that g under strain
will approach g&. From the observed decrease in g under
strain we conclude that g&(glI.

The g shifts at constant strains versus the angle 8

were 'measured in the "parallel squeezor. "The experi-
mental results on arsenic-doped silicon as well as the
crystallographic orientation of the sample are shown in
Fig. 9. As expected from symmetry, the g shifts vanish
in the L111$direction.

8
x1O-5

-2
D

gl
I

100

H~ t[o»j

VALLEY
STRAIN

ARSENIC-DOPED SL
Nd =10"/CM-

O

I -10
0.3 0.4 0.5 0.6 0.7

SIN 8
0.8 0.9 1.0
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0 0.1

g~~- g~ ——1.1x fo

PHOS;DOPED S I.
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0.2 0.3 0.4 0.5
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Fze. 9. g shift vs sin%, where 8 is the angle between the stress
axis and the magnetic Geld for a uniaxial compression in the t 100]
direction for arsenic-doped silicon; 7'=1.25'K, v, =9 kMc/sec.
The measurements were made in the "parallel squeezor. " Since
the microwave magnetic Geld coincides with the stress axis, the
electron spin resonance signal decreases rapidly at small values of
8. Hence observations at angles (45' were not possible. Note that
the g shift vanishes in the $111]direction. A valley strain of 1.0
is produced by a stress of 9.3 kg/mms applied in the L100]
direction.

FxG. 8. g shift vs the valley strain in phosphorus-doped silicon;
T=1.25'K, v. =9 kMc/sec. Uniaxial compression applied in the
"perpendicular squeesor" along the L100] direction. Points are
average shift for magnetic Geld in the L010], t 001], and $011]
crystallographic directions, normal to applied stress, The solid
curve represents the Gt with Eq. (7) assuming a value for
~g=gii —gl=1.1X10 3.

The values for g« —gl obtained from these two sets
of experiments agree with each other and are listed in
Table II.

Roth has calculated the g values for silicon from the
known energy-band parameters using a two-band
model. Her calculations indicate g« —gl to be approxi-
mately —3)&10 s and (g&

—2) to be about s(g« —2).
This is in contradiction with the experimental values,
which, as pointed out by Roth and Liu and Phillips, "
is due to the limitations of the two-band calculation.
More recently, Iiu and Phillips" have calculated all
matrix elements for silicon and their value for g«and
g, agree with experiment to within 10%.

Z. g shift teithim orle ealley. If we apply a stress in the

"L. Liu and J. C. Phillips (private communication); L. Lius
Phys. Rev. Letters 6, 683 (1961).

TABLE II. Values of g& and gII —gl for the three donors, The
error in the go determination is larger than in the (gi& —gz) deter-
mination because of the uncertainty in the Geld difference between
the proton sample and the silicon sample.

Donor

Phosphorus
Arsenic
Antimony

go =rgiI+Zgl

1 98850~1X10 4

1-99837~1X10 4

1.99858~1X10 4

gl I gl

(1.04~0.04)x 10-
(1.10~0.05)X1o-3
(1.13~0-05)X10 '

L111j direction, no repopulation of the valleys takes
place and the observed g shift will be due to the one-
valley effect. The experimental results are shown in
Fig. 10 where g—

go is plotted versus sin'8 for three
different strains.

The g shifts were found to be the same for all three
donors. This indicates that the bands which are mixed
in by the applied strain are displaced in energy by an
amount large in comparison to the singlet doublet
splitting 8~2. This is to be expected from Roth's" theory
which assumes h2' to be responsible for this g shift.

By comparing the experimental results of Fig. 10
with expression (9) of Sec. IIB we obtain for the
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X&0-5
$0

O
CD

I

0

[&To]

the small value of g» —
g& that the resonance is not

washed out completely in these alloys. For germanium

g» —
g~ is three orders of magnitudes larger"" and there

is very little hope of investigating the alloys from the
germanium-rich end. This is also exemplified by the
observation that dislocations in germanium have a
much more pronounced effect, 's (i.e., line broadening)
than in silicon.

Another consequence of the smallness of g» —
g& is the

very long spin-lattice relaxation time observed in silicon
at low temperature. This topic is dealt with in the next
section.

V. SPIN-LATTICE RELAXATION TIMES

-8
0.3 OA 0.5 0.6 0.7

Siv~8
0,8 0.9 1.0

Fn. 10. g shift vs sin'8, where 8 is the angle between the mag-
netic Geld and the stress axis for a uniaxial compression in the
[111)crystallographic direction. The measurements were made
on arsenic-doped silicon at 1.25'K, 9 kMc/sec in the "parallel
squeezor. " This shift is evidence of a change in the one-valley
parameters gtl and gz since no changes in valley populations occur.
Notice that the shift vanishes in a L100)crystallographic direction.

matrix element A the value

A =0.44&0.04. (10)

It may seem surprising that the one-valley effect
should be roughly as large as the valley repopulation
effect. The two main reasons for this are that the A~'

band which is admixed by strain lies quite close to the
conduction band ( 0.5 ev) and that the value of g» —g„
which is responsible for the g shift in the valley re-
population e6ect, is very small in silicon.

Before leaving this section a few remarks about some
other consequences of the g anisotropy under strain
may be in place. In Part I of this work, ' we presented
experimental data on the substitutional germanium-
silicon alloys which at the time were not understood.
We had found that a small amount of germanium in
silicon ( 1% Ge) produced profound effect on the hf
interaction, linewidth, and shape and g value. The
explanation seems now obvious: Because of the differ-
ence in size between the germanium and silicon atoms,
a strain Geld is produced in the vicinity of the ger-
manium atoms. Donors exposed to these strains will
then exhibit the effects discussed in the previous
sections, i.e., a g shift and a reduction in the hyperfine
splitting, Since the strains are not uniform, a distortion
of the line shape is to be expected. It is only because of

The spin-lattice relaxation time characterizes the
rate at which the electronic spin system comes to
thermal equilibrium with the lattice. The results of an
experimental investigation of several relaxation proc-
esses in silicon were presented in a previous publication. 4

At that time the details of the spin-lattice interaction
for most of these processes were not understood. In
this section we wish to discuss how the static strain
experiments are able to shed light on some of the re-
laxation mechanisms involved. The connection between
these two types of experiments is in essence the follow-
ing: The lattice vibrations represent a time-varying
strain which produce an e6ective interaction. By
measuring the change in the paramagnetic resonance
spectrum under static strain, one gets a measure of the
magnitude of these effective Gelds which cause the elec-
trons to relax. A detailed analysis of this problem has
been carried out by Roth' and Hasegawa' and will be
compared with our experimental results in a subsequent
section.

A. The One-Phonon T, Process

In this section we wish to conisder a relaxation process
in which the electron spin flips (Am, = &1) without an
accompanying nuclear flip (Amr ——0). This process is
commonly designated by T, and at low temperatures
(T(2'K) has been found to be proportional'" to
11—'T '. By a one-phonon process we mean that each
spin Qip is accompanied by the emission or absorption
of a single phonon.

1. Experimental Procedure artd Results

The experiments were performed on a silicon sample
with 10's phosphorus donors/cm' at a temperature of
1.25'K. The sample was cut and placed into the cavity
in such a manner that the magnetic field could be ro-
tated in the (110) plane. Since T, at 3000 oe is of the
order of hours, we found it more convenient to measure
it, at 8000 oe. The experimental procedure adopted in
all our measurements was as follows. The system was

'8 This may prove to be a convenient tool in studying
dislocations.

"A. Honig and E. Stupp, Phys. Rev. Letters 1, 275 (1958).
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first saturated (i.e., the electron spin-resonance signal
was "erased") at 3000 oe by numerous passages through
the resonance lines. The field was then rotated to the
appropriate crystallographic direction and raised to
8000 oe at which value the magnetization was left to
grow for 5 min. The field was subsequently reduced to
3000 oe, rotated to coincide with the [100] direction,
and then swept to observe the amplitude of the reso-
nance signal. Because of the long relaxation times, the
time consumed in the intermediate steps did not intro-
duce a significant error in the measurement. At 8000 oe
the relaxation time was of the order of 15 min, so that
after 5 min the observed magnetization M, given by

M=Mo(1 —e "r'),

depended almost linearly on 1/T, . The value of Mo
was accurately determined for the [100], [110], and

[111]directions by equilibrating the spin system at
8000 oe for a time which was long compared to 15 min.
Special precautions were taken to shield the samples
from incident light. This was accomplished by wrapping
the cavity with alternate layers of carbon paper and
aluminum foil, thus avoiding the introduction of free
carriers which could relax the spin systems.

The experimental results are presented in Fig. 11
(see circles) where the relaxation rate 1/T, is plotted
against the angle that H makes with the [100]direc-
tion. A marked anisotropy is observed which will be
compared with the Roth and Hasegawa theories in the
next section.

Z. Comparisort with the Theories of Roth and Hasegawa

An explanation of the T, relaxation mechanism was
given by Roth' and Hasegawa. ' They considered the
modulation of the singlet-doublet splitting 8» by the
lattice vibrations. This represents essentially a time-
dependent valley repopulation effect (see Sec. II B)
and therefore results in a modulation of the g tensor.
The expression for the relaxation rate 1/T, that they
obtain for this mechanism with H in the [110]plane is
given [see Eqs. (4.17) and (5.4) of reference 9] by

1 t'gII —gi'1 ' t' Zu )—(valley rep. )=
T. 90~ E g, ) l,Z„J

( 1 2 ) (got4oH )
XI +

& ptIs' 3paioi k h )
X (kT) sin'8(1+3 cos'8), (11)

where p is the density of Si (2.33 g cm ), 11s is the ve-
locity of the transverse mode (5 42X10' cm sec '), 114 is
the velocity of the longitudinal mode" (9.33X10' cm
sec '), and 8 is the angle that the magnetic field makes
with the [100] direction. Putting in the experimental
values for (g„—g,) and „/Ers (see Table I and II),
one obtains for phosphorus-doped silicon at 1.25'K and

1.4 X10 3

1.2

1.0

p VALLEY REPOPULATINGo.e I CONTRIBUTION
O
(D
~ 0.6
~O

SINGLE VALLEY
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FIG. 11. Relaxation rate 1/T, vs angle between magnetic 6eld
and L100j crystallographic direction for phosphorus-doped silicon;
T=1.25'K, v, =9 kMc/sec. The theoretical fit was obtained by
normalizing the theoretical expression for the valley repopulation
effect LEq. (11)j and the one-valley effect (Eq. (13)j in such a
way that their sum 6ts the experimental points.

1 1 )Aq'—(one valley) =
T. 20~ E go&

+
1 2 ) (got4oH&

4

(pfIss 3ptIis) 0 h

Xx(k T) (cos48+ —', sin48), (13)

where A =0.44 and is the matrix element which we de-
termined previously from the one-valley g shift [see
Section IV B2, Eq. (10)]. The rest of the symbols
are defined in Eq. (11). Putting in numerical values,
we obtain for H along the [111]direction

1/T, (one valley-theory) [iiiJ 0.16X10 ' sec '. (14)

We are now finally in a position to compare theory
with experiment. In Fig. 11 we have plotted separately
the valley repopulation and one-valley contribution to
the relaxation rate (see dotted lines) with the angular

8000 oe with H along the [111]direction

1/T, (valley rep. -theory)l»ii=0. 45X10 ' sec '. (12)

Before making a quantitative comparison of Eqs. (11)
and (12) with experiment, we note that this relaxation
mechanism alone cannot explain the experimental
results since it predicts a zero relaxation rate for H
along the [100]direction.

The second relaxation mechanism was explained by
Roth. "It arises from a modulation of the g shift within
one valley, i.e., from the interaction given in Eq. (8).
By comparing this interaction with Eq. (30) of refer-
ence (8), it can be easily shown [see also Eqs. (4.15) and
(5.4) of reference 9] that the resulting relaxation rate
is given by
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dependences given by Eqs. (13) and (15).The normal-
ization of these curves were performed in such a way
that the sum of these two rates fits the observed re-
laxation rate. (see full line). Thus for H along the [111]
direction, we obtain the following values for the two
relaxation rates:

(1/T, ) (valley rep. —exp)iiiii=1. 1X10 ' sec ', (15)

(1/T, ) (one valley —exp)[rrr]=0. 3X10 ' sec '. (16)

A comparison of Eqs. (15) and (16) with Eqs. (12)
and (14) shows that the predicted relaxation rates are
too slow by about a factor of two. In the field of electron-
spin relaxations this would generally be considered a
"good" agrement. However, in view of the detailed
knowledge of the donor states one may still wonder
about the origin of this discrepancy. In this case it may
be due to the assumption of an isotropic frequency
spectrum of the lattice vibrations and the way the
effective transverse acoustical velocity was de6ned. '
This would be consistent with the fact that the rat~0 of
the valley repopulation to the single-valley rate is in
much better agreement with the -predicted ratio than
the absot'use value of the individual relaxation rates.

An additional proof of the correctness of the Roth-
Hasegawa mechanism is furnished by the experiments
on germanium. "In this case (g~~

—g,) is three orders of
magnitude" larger and the relaxation rate was found
to be correspondingly shorter in agreement with
Eq. (11).By strairiing the sample, the spacing between
the ground state and excited state could be altered,
thereby enabling us to change the relaxation rate by an
order of magnitude.

B. Other Relaxation Processes

1. CommeeIs oe the Ore-Phomoe T Process

The relaxation process which involves the simul-
taneous electron nuclear spin Hip (Am, =&1, Dmr =~1)
is designated by T,. It has been studied experimentally
by several groups'" " and has been treated theo-
retically by Pines, Bardeen, and Slichter" and
Has egawa. '4

In principle, one should again be able to derive the
relaxation rate from the observed change in the hf inter-
action with applied stress. In Sec. IV A we have found
that the observed change in I+(0) I' is quadratic in the
deformation under the application of uniaxial stress
[see Eq. (2)j. It can be shown'4 that such a quadratic
dependence cannot lead to a one-phonon relaxation
process. However, under the application of an applied
uniaxial "biasing" stress (or built-in stress due to im-
perfections), the change in IV(0) I' would be first order

"A.Abragam and J. Combrisson, Compt. rend. 245, 576 (1956)."J.W. Culvahouse and F. M. Pippin, Phys. Rev. 109, 319
(&958).

"A. Honig and E. Stupp, Phys. Rev. 117, 69 (1960).
» D. Pines, Bardeen, and Slichter, Phys. Rev. 106, 489 {195'T).
'4 H. Hasegawa (to be published).

in strain and hence capable of producing a one-phonon
T process. The effectiveness of this T mechanism will
thus depend on the magnitude of the applied strain.

In order to prove the correctness of the above ideas,
T was measured in an arsenic-doped sample ( 10"
As/cm') subjected to varying amounts of strain. At
zero applied strain, T at 1.2'K and 3000 oe was found
to be 3X10s sec. By applying a uniaxial stress (in the
[100j direction) corresponding to a valley strain of
@=0.8, the magnitude of T dropped to 10' sec.

As a consequence of the strain dependence of T,
care has to be taken to avoid built-in strains when in-
vestigating these processes. The disagreement in the
literature between the various values"~" of T may
be the result of varying amounts of built-in strains. The
ability to increase the effectiveness of T by applying
a uniaxial strain should prove important in nuclear
orientation schemes in which T, plays a dominant
ro]e 30,33

In order to understand the T process at zero strain,
Pines, Bardeen, and Slichter" calculated a one-phonon
process by assuming a linear change in IV(0) I' under

reform dilation given by the expression

(17)

where s is the strain and p was estimated by PBS to
have a value of 50. Their theory proved to be in fair
agreement with the experimental values. 4'~32 More
recently Paup' has measured the change in the ioniza-
tion energy and dielectric constant with hydrostatic
pressure and found dE;/dI' = —10 "ev dyne ' cm' and
dK/dI'= —7X10—"dyne ' cm'. From these values it
can be shown that the above estimate of y is about two
orders of magnitude too large. It seems therefore that
the agreement of the experimentally measured
values4'~32 of T with the theoretical estimate of
PBS is fortuitious. An additional experimental check
of the value of p was obtained by applying a uniaxial
stress in the [111jdirection (thereby eliminating the
valley repopulation effect) and looking for the change
in the hyper6ne splitting. From these experiments we
conclude that y(2 which is consistent with the meas-
urements of Paul. "

The donor electron interacts also with the Si" nuclei.
The hfs with these nuclei is Swear in strain. ' We have
measured the hfs of the Si" nuclei in the (440) lattice
positions"' in a sample subjected to a uniaxial stress in
the [100j direction. The value of 7 obtained for this
site was 60%5. It can be shown" that because of the
smallness of the hyperfine interaction, its modulation

by lattice vibrations also does not result in a significant
relaxation rate.

IW. Paul, J. Phys. Chem. Solids 8, 196 (1959).
'6 In reference 3 we presented a detailed analysis of the hf inter-

action with the diferent Si"nuclei and pointed out the dif6culties
encountered in assigning the correct lattice positions to the nuclei.
The application of a uniaxial stress would have made the identi-
Ration procedure much easier.
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It seems, therefore, that at zero external strain, one-
phonon processes are not effective in determining T
at the temperatures and fields under consideration.

Z. Roman Typ-e Processes

By a Raman-type process we mean a two-step
process in which a phonon of frequency ~' is absorbed
and a phonon of frequency ~" is emitted, such that
h(~' —cv") = h&o, where cs is the Larmor frequency of the
electron spin.

In the preceding section we pointed out that the
quadratic dependence of ~M (0) ~' precludes a single-
phonon T process. However, Raman processes are
allowed and, as shown by Honig and Stupp, " pre-
dominate above 2.2'K. Below this temperature their
results are inconclusive. Hasegawa'4 has calculated the
Raman-type T, process and obtains a good agreement
with the experimental results down to 1.2'K.

From the temperature dependence of the T, process
above 2.5'K (i.e. , T, T ') one also concludes that
Raman processes must be responsible for the observed
relaxation rate in this temperature region. Roth' has
calculated this process and predicts, besides the T '
dependence, an anisotropy in T, similar to that for the
one-phonon process (see Sec. V) and a quadratic field

dependence. We have checked the field and angular
dependence of T, in this temperature range and found
it to be isotropic and independent of H between 3000
and 8000 oe. This discrepancy between the theory and
experiment is not understood at present.
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APPENDIX

A. Donor Electron Wave Functions in Silicon
and the Valley-Orbit Matrix

The general form of the wave function %(r) for the
bound donor electrons is of the form,"

4'(r) = P n&'&F('&(r)u&'&(r) exp(iko&'& r), (A1)

where I'»' (r)

exp�(iko&&

&.r)'is the conduction-band
Bloch function at the jth valley, P '»'& (r) is the hydrogen-
like modulating function, and ~u"&j' determines the
probability of ending the electron in the jth valley.
Because there are six valleys, there are correspondingly
six different valley arrangements for any given solution
of the modulation envelope F(r) including the 1s-like
ground state. From group theory one finds that the six
states can be split in a cubic crystal into a singlet,
doublet, and triplet.

The valley compositions for the various levels can be
written in the following tensor form':

Singlet (niii'&) = (1/g6)(1, 1, 1, 1, 1, 1),

Doublet (n2&&'&)= (1/&12)(2, 2, —1, —1, —1, —1),

(+22&») = (1/44) (0» 0, 1» 1» —1, —1),

Triplet (n3& ' ()=&(1/ g2)(1, —1, 0, 0, 0, 0),
(n32('&) = (1/ $2) (0» 0» 1» —1» 0» 0)»

(n83('&) = (1/ Q2) (0, 0, 0, 0, 1, —1).
(A2)

The electronic wave function of the singlet state
distinguishes itself from the one associated with the
doublet and triplet states by having a 6nite value at
the donor nucleus. This results in depressing the singlet
state with respect to the others. The interaction term
responsible for this depression is called the valley-orbit
term and appears in the donor electron Hamiltonian in
in a matrix form similar to that for the spin-orbit for a
single electron. If we concern ourselves only with the
splitting of the various levels from the center of gravity,
then the unstrained valley-orbit (vo) matrix is'

0 (1+5)6,

(1+4)A, 0

—HVO

(1+8)h, 0
(A3)

0 (1+5)6,

(1+8)A, 0
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If we operate with this matrix on the various valley
tensors (A2) we find the doublet lies Ei2——6A, above
the singlet. We have also introduced the term 6 to
provide for the fact that the doublet and triplet may be
displaced by an energy difference E». In any case, this
displacement should be very small and amounts to
E»= 266, for the above form of the valley-orbit matrix.

S11 S12 S12 0 0 0

S12 511 S12 0 0 0

S12 S12 S11

0 0 0 ~S44 0 0

0 0 0 0 2544 0

(81)

B. Valley Shifts for Uniaxial Compression

The form for the strain components resulting from a
uniaxial compressive stress T applied in a $1007 direc-
tion in a cubic crystal is

dilation in the two directions normal to the valley axis,
and ™„is the shift due to a uniaxial shear compounded
of a stretch along the valley axis and a contraction in
the two normal directions.

Solving for the shift in energy of the two valleys in the
direction of the applied stress, we have

E'=E'= ( p(Sii+2Si2)+" Sii7T.

The four valleys normal to the stress are shifted

(83)

E"—E, g. = (1/3) „s',
E" "' '—E .= —(1/6) - s'

(86)

(87)

E'= E'=E'= E'= (™p(Sii+2Si2)+.Si27T (8. 4)

We can readily solve for the shift in energy of the
center of gravity of the six valleys:

E, g $3Zp(S„——+2Si2)+~„(Sii+2$i2)7T/3. (85)

Subtracting this from the previous results, one
obtains the energy displacement of the conduction
band valleys from the band edge produced by a L1007
uniaxial compression:

0 0 0 0 0 —,'-S44 where s'= 2 (Sii—Si~)T.

where the S;,'s are the appropriate stiRness coefficients.
If we apply Herring's"'4 deformation potential analysis,
the energy shift of the jth valley is given by

E"'=PZp5~p+Z k "kp~"7N p, (82)

where the k (&) are the components of a unit vector
pointing from the center of the Brillouin zone to the
jth valley, and the deformation potentials ~™zand
are defined as follows: ™dis the valley shift due to a

C. Donor Wave Functions and Valley-Orbit
Matrix Under Strain

The energy-shift terms for the various conduction-
band valleys will appear as diagonal elements of the
valley-orbit matrix (A3). We will henceforth assume
that the only effect of the applied strain is to shift the
valley populations. Then the matrix for the case of a
L1007 uniaxial compression becomes

(—1/3) s' (1+6)A,

(1+8)h. (—1/3) „s'

—HVO

(1/6)=-.s' (1+&)A,

(1+5)h, (1/6) „s'

(1/6)=--" (1+~)~.

(1+6)A, (1/6) s'

—2x 1+5 1 1 1 1

1+5 —2x 1 1 1 1

1 1 x 1+8 1 1

1 1 1+8 x 1 1

1 1 1 1 x 1+8

where x= „s'/6h, is the quantity we have called the
"valley strain. " It is apparent from the form of H,
that the only wave functions intermixed by this strain
are those characterized by the valley populations e»(&)

and u»&» (see Eq. (A2)7. This means that the only two
(C2) levels mixed by strain are the singlet and one component

of the doublet. The two new valley composition arising
from this mixture may be characterized by a,t„,„(&'
which must have the form

1 1 1 1+8 1 &strain k~A7+A7+B&+B7+By+B. (')— (C3)
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where e~ and n~ are numerical coefficients to be de-
termined. For the rest of the levels the valley popula-
tions remain unaltered and are given by equation (A2).
If we substitute o.,~„,„&&)into the Schrodinger equation
H,%'(r) =E,V(r), we get

4(ai))2—2(ng)'= (3m+2)ngai).

The normalization of the valleys requires that

(C4)

4(~~)'+2 (~~)'= 1. (C5)

Solving for the valley populations under a [ 100]
uniaxial compression, we obtain

(ng)'= —,'[ 1w (x+-') (x'+-', x+4)—
&7,

(C6)(-.) =-:[1~(+-:)("+-:*+4)-:]
The upper sign describes the ground state (designated
as e»» in Fig. 1), the lower sign the higher lying state.
From Eq. (C6) it is seen that for large compressive
stresses (—x))1) an electron in its ground state spends
all its time in the two depressed valleys.

Knowing the valley compositions for all the levels
under strain, it is possible to solve for the energy of the
various levels. For the two admixed states we find

ii,»= i1~[ (2+())+-,'x—
2 (x'+-', x+4)'],

(C7)
e+ii pi=6~[ (2+())+~X+ (Y + X+4)~]

where the upper equation refers to the ground state.
The relation between 6, and 8 to the singlet-doublet
and doublet-triplet splitting is indicated in Fig. 1. The
energies of the other excited states depend on the valley
strain as follows:

e22 ——6,[ (1—l)) —x],
.» ——S,[ (1yS)+2x],

e32——e33——6,[ (1+l))—x].

Assuming that the only eRect of the strain is to alter
the valley populations, we obtain for the ratio of the
hyperfine splitting of a sample under strain (hfs), to
the hyperfine splitting in an unstrained sample (hfs)0,

(hfs), /(hfs) o
———,

' [Pn(') ['. (D3)

(hfs), /(hfs) 0= 1—x~/18+ ~ (D5)

as previously discussed by Kohn. ' From this we see
that "valley strains" of the order of unity should result
in changes in the hfs greater than 5%, a readily de-
tectable change.

E. Electronic g Value in the Absence of Strain

The term in the spin Hamiltonian which leads to the
microwave transition energy (i.e. , center of gravity of
the hyperfine spectrum) is of the form

SgH, (E1)

where S is the spin of the electron, H is the applied
magnetic field, and g is the tensor form of the electronic
g. For an electron in a single jth valley we can write it as

For an uniaxial compression in the [ 100] direction, we
can substitute the value for n,&„;„from (C3) for the
ground state and find that

( )./( f )o=k[1+( +3~)(~'+-'~+4) '] ( 4)

The above expression shows that the hfs in the limiting
cases is proportional to the number of occupied valleys,
i.e., the ratio of splitting approaches 2/3 for large
tensile stresses (x&)1) and 1/3 for large compressive
stresses (—x))1). For small stresses the result reduces
to a quadratic expression

These results are plotted in Fig. 1 for the case where 6

is assumed to be small and positive. g(l') = (E2)

D. Hyper6ne Splitting under Strain

There are two terms appearing in the spin Hamil-
tonian for the donor electrons whose change under
strain we will consider. The first of these is the Fermi-
Segre interaction given by

(g/3)~s e-I+(0) I',

which is the dominant contribution to the hyperfine
splitting for the 1s-like states under consideration. p,
is the electron magnetic moment, p„is the magnetic
moment of the impurity nucleus, and [%'(0)[' is the
square of the electronic wave function at the donor
nucleus.

Using the effective-mass expression for the wave
function Lsee Eq. (A1)], we get for the hyperfine split-
ting (hfs)

hfs= (gm/3)p, .p~[F")(0)['I m(' (0) ['[Pn"' ['. (D2)

g =gll COS t)+gi Sin'() (E3)

where 0 is the angle between the magnetic field and the
major valley axis. Because of the multivalley nature of
silicon we will show that the measured g value is iso-
tropic. Following Hasegawa, ' we rewrite (E2) as

g (i) —
g + (gll —gi)

=gJ+ (g —
gL) &"' (E4)

gif

where the principal axes of this tensor coincide with the
axes of the effective-mass tensor. Expression (E2) leads
to an anisotropic g value given by
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The measured electronic g value is obtained from the
single-valley g tensor by averaging S g H over all the
valleys in accordance with the respective valley popu-
lations as given by (A2).

g S H=(S g&&'i H),
=S fez(~"')'L(gJ+(g~i —g.)II"'1} H (E5)

For the unstrained ground state, all valleys have equal
populations and Eq. (ES) becomes g go=a(g«gi)(1 3»ne) (F7)

Substituting the value for (rr~)3 for the ground state
under a L100] uniaxial compression )Eq. (C6)], we
arrive at the final result

gp= p(g«gi)(1 3»no)
XL1—(3x+2) (x'+-'x+4) —2]. (I:6)

For large compressive stresses (—x))1), Eq. (F6)
becomes

g S H=S [g,+(2/6)(g„—g,]l H
= (sg~~+sgi)S H (E6)

In this case, for H parallel to the applied stress (i.e.,
along the major valley axis) we have

i.e., the measured g is isotropic and is given by

go= ogive+ sgz.=1 2

g= go+ 3 (gii gi) =git i

and for H perpendicular to the stress,

g=go —3(g —
g ) =g' (F9)

F. Electronic g Value in the Presence of Strain

In order to obtain the electronic g value under the
application of a compressive stress along the $100]
direction, we substitute the valley population given by
(C6) into (ES)

gi+2 (gii —g.) (~s)'

This is to be expected since, for large compressive
stresses in the $100] direction, one approaches the
situation in which the electron spends its time in two
opposite valleys.

G. Breit-Rabi Corrections

g(S H)=S gi+ 2 (gii —g.) (~s)'
The magnetic interaction of an electron with spin

(F1) 5= —, and its nucleus with spin I is given by the
Hamiltonian

gl+ 2 (gl I gl) (rrzi) =aI.S+glzpS H —gzppI H, (61)

H. (F2)

Comparing the above expression with the single-valley
result L(E2), (E3)],we obtain for the measured g value
under strain

g = (gii ) cos 9+(gi ) sill 8 (F3)

where gll' and g&' are the "effective" g values whose
magnitude will depend on the valley strain and the
"real" gl& and g&. Substituting the values for ng and 0;~

LEq. (C6)] into (F1) and recalling that P, (rr'&')'=1,
we obtain

Retaining only the first-order terms [since (g« —g,)/
10 3 for donors in silicon) and using the relation

gp 3g[/+3gi we obtain for the shift of the g value from
its unstrained value

g go= (g«gz)(1 —k»n'0)L2(rr~)' —3] (F~)

(gi& gi)
g'=grs 1+

~ ~
$4(rr~)'(1 ——,

' sin'8)+sin'8]
g, )

rrgii —gzl '
+terms in

~ ) . (F4)
E g, )

where a is the hyperGne interaction constant and H the
applied magnetic Geld. Since we are only interested in
chmges in g and a under strain, we can neglect the last
(nuclear) term. The eigenvalues W(F,mo) are given

by the Breit-Rabi37 equation

W(F,nzF) = ——', AE/(2I+1) &srhE

XL1+dm3x/(2I+1)+x']', (62)

where F=I&—',. The positive sign corresponds to I+-',
and the negative to I—2; mp=ml& —,'. The zero-Geld

splitting is DE= a(I+3) and x= gppH/AE. The micro-
wave field of frequency v will induce transitions between
levels EF=&1, Amz: +1 (i.e., Am, =&1;——hzzsz ——0).
From Eq. (62) we find the energy of these transitions
to order (a/gfzH)'

hP =Em p —Em p y
= gp, pH

X(1+', (a/gIzH)'[l(I+1-) zzsz'3) +mza, (—G3)

or for the measured magnetic field H

H= (glzo/hp) f 1 3(a/gy pH)'PI(I+—1) mz'5) zzzza. — —
(64)

Experimentally we measure the two resonance Gelds
corresponding to the zzzz=& —', transitions. From (G4)
we find that the hyperfine interaction in terms of these

"G.Breit and I. I. Rahi, Phys. Rev. 38, 2082 (1931).
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fields is given by

it= gtc—s(Hmz 1 H— m—z i),
g =g-(& s—(algt H)'D (I+1) .'—j)—(G7)

If we subject the sample to a compressive stress chang-
ing the hyperfine splitting a, then the diGerential cor-
rection to g is given by

i.e., no corrections are necessary.
From the average of the two fields Hmg-$ and Hml

we can define a measured g value, g, given by

Comparing this expression with (G3), we obtain for
the true g value

(Gs)

ho=sttog (H z~;+H z=;) (G6) ~g= 2(g-—g) (~~/a). (GS)
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Electron Spin Resonance Studies in SiC
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Electron spin resonance studies have been made on boron and nitrogen as impurities in 6H silicon carbide.
It is concluded that both impurities substitute for carbon and that they occupy the three nonequivalent
carbon sites with equal probability. Hyperfine structure is well resolved for both species. The pattern for
boron occupying one site is unusual in that the hyperfine splitting vanishes when the applied Geld is about
50' from the hexagonal axis of the crystal. The nitrogen hyperfine structure is interpretable in terms of
some s character for the unpaired electron, while the boron hyperfine structure indicates predominantly
p character.

I. IN'mODUCTION

'HE basic arrangement of atoms in Column IV
semiconductors such as Ge, Si, and SiC is tetra-

hedral. An atom of a Column U element normally acts
as a donor in such semiconductors since it has one
valence electron ldt over after completing the normal
tetrahedral bonding. At sufficiently low temperatures
this electron is localized near the donor atom; at high
temperatures it can ionize and give rise to e-type con-
duction. Similarly, an atom of a Column III element
acts as an acceptor and gives rise to p-type conduction.

Most semiconductors, including silicon carbide, are
intrinsically diamagnetic; the perfect crystal has no
unpaired electrons and does not show spin resonance
absorption. However, many impurities introduced into
such semiconductors are paramagnetic and result
in spin resonance absorption. The Column III and
Column V elements act as such impurities in the
Column IV semiconductors. The Column V elements,
P, As, Sb, and Bi, have been extensively studied by
spin resonance in Si.' Resonance of the first three donors
has recently been reported in Ge''; the Column V
element nitrogen has bee». studied in diamond. '

' G. Feher, Phys. Rev. 114, 1219 (1959).' G. Feher, D. K. Wilson, and E. A. Gere, Phys. Rev. Letters
3, 25 (1959).

'R. E. Pontinen and T. M. Sanders, Jr., Phys. Rev. Letters
5, 311 (1960).

4 W. V. Smith, P. P. Sorokin, I. L. Gelles, and G. J. Lasher,
Phys. Rev. 115, 1546 (1959).

Column III elements have recently been observed in
Si subjected to uniaxial stress. '

Spin resonance of Column V and Column III ele-
ments in SiC has been reported by van Wieringen. ' He
attributed a three-line spectrum in e-type material to
nitrogen and a single-line spectrum in p-type material
to Column III acceptors. This was the first report of
resonances due to X and Column III acceptors in a
Column IV semiconductor. In this paper we report on
further studies of N- and 8-doped SiC. A preliminary
account of our experiments has already been given. ~

The spin resonance spectrometer used to study SiC
operates at-a microwave frequency v of about 14
kMc/sec. Thus the magnetic field H for resonance is of
order 5000 gauss for systems (including N and 3 in
SiC) with g factors near that of the free electron. Some
measurements were made at 20 kMc/sec with a corre-
spondingly higher field, The electron-nuclear double
resonance technique' has also been employed. Details
of the experimental equipment have been given
elsewhere.

The SiC crystals studied were small hexagonal single

' G. Feher, J. C. Hensel, and E. A. Gere, Phys. Rev. Letters
5, 309 (1960).

e J. S. van Wieringen, in Semiconductors and PhosPhors, edited
by M. Schon and H. Welker (Interscience Publishers, Inc. , New
York, 1958), p. 367.

7 H. H. Woodbury and G. W. Ludwig, Bull. Am. Phys. Soc. 4,
144 (1959).

G. W. Ludwig and H. H. %'oodbury, Phys. Rev. 113, 1014
(1959);H. H. Woodbury and G. W. Ludwig, ibid 117, 102 (1960.).




