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Anisotropic Broadening of Linewidth in the Paramagnetic Resonance Spectra
of Magnetically Dilute Crystals
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The eGects of mosaic structure on the anisotropic broadening of the linewidth in paramagnetic resonance
spectra of dilute crystals is investigated. A general formula for the line shape and the linewidth at half
maximum is derived,

The half-width of the spectrum of Gd'+ in the single crystal of Th02 is measured as a function of the angle
of the magnetic Geld with respect to the cubic axes. Good agreement is found with the above theory. The
average deviation of the crystallites from the symmetry axis is found to be about 0.12'. Small deviations from
the agreement indicate a compensating defect approximately along the L100j direction which gives rise to a
small axial distortion.

INTRODUCTION

HE linewidth in paramagnetic resonance spectra
in single crystals is caused by a number of differ-

ent mechanisms. It is customary to classify these into
two groups, homogeneously and inhomogeneously
broadened lines. In homogeneously broadened lines the
absorbed energy is distributed over all the spins within
the envelope of the linewidth. Examples of such broad-
ening are dipole-dipole interactions between like spins,
and spin-lattice interactions. Examples of inhomogene-
ous broadening are hyperfine interactions, impurities
and defects near the paramagnetic ion, and mosaic
structure in nearly perfect crystals.

In the description of paramagnetic resonance one
employs a spin Hamiltonian which describes the ob-
served resonance spectrum, in a shorthand notation, by
means of a few experimentally determined parameters.
It is usually assumed that these parameters have sharp
values. These parameters are related to other parame-
ters such as a static crystal field potential, to the spin-
orbit coupling, and to the Coulomb interaction integrals.
The presence of various impurities, dislocations, and
other defects may cause stresses in the crystals. In
general these stresses will change the point symmetry.
In some cases these stresses may preserve the point
symmetry about the paramagnetic ion but may change
slightly the energy level spacings between the ground
state and higher excited states. The changes in energy
level spacing can be traced to variations in the crystal
field potential, and to a minor degree in the magnitudes
of the spin-orbit coupling of the Coulomb energy, and in
changes in the amount of covalent bonding. The effect
of all this is to give rise to a distribution of values of the
various parameters in the spin Hamiltonian. In some
cases, the point symmetry is changed only very slightly
so that the different lines cannot be resolved. If the
linewidth is measured when the spectrum is observed

along the direction of the deviation from the dominant
point symmetry, it will be found to be broadened. In all
of the above mechanisms the linewidth is essentially
independent of whether one observes the spectrum at
zero magnetic field or at strong magnetic fields. They
are also a contributory factor in the linewidths observed
in the optical spectra in paramagnetic crystals.

Another type of broadening is caused by the presence
of mosaic structure in a nearly perfect crystal. In such a
crystal the various crystallites make slightly diferent
angles with respect to a fixed direction such as an ex-
ternally applied magnetic field. These discrete and finite
changes in the direction of the crystal axes cause a
broadening in an anisotropic paramagnetic resonance
spectra where the position of the absorption line is a
function of the angle of the magnetic field with respect
to the local crystal field axes. The linewidth at zero
magnetic field divers from that measured at strong
magnetic fields.

In this paper, we present evidence for the existence of
mosaic structure in one particular crystal and discuss, in
general, a method of determining aspects of the mosaic
structure by means of paramagnetic resonance. In the
cases where this method can be used, it has certain
advantages from those employed in x rays or in optical
spectroscopy. Using x rays one encounters difhculties in
that the penetration depth of x rays in a crystal is
small. One can, therefore, only explore a small fraction
of a large single crystal. In highly dilute paramagnetic
samples, it is exceedingly dificult to 6nd changes in
lattice distances, since x rays measure the average
lattice distance in the crystals, and may only indirectly
give information regarding changes in point symmetry
near the paramagnetic ion. Optical methods seem to be
limited to polished transparent doubly refracting crys-
tals and, when used with paramagnetic substances, to
highly concentrated samples. ' Measurement of the

*Presently at the Bell Telephone Laboratories, Murray Hill,
New Jersey.

'X. Yu. Ikornikova, Doklady Acad. Nauk SSSR 801, 403
(1951).
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linewidth of the optical absorption or Quorescence spec-
tra of very sharp lines which are split into a number of
Zeeman levels in an external magnetic Geld could pos-
sibly be used for the observation of the anisotropy in
linewidth. This method is very similar, in principle, to
that to be discussed in this paper but is, however, limited
to those ions showing the very sharp optical absorption
lines.

The crystal chosen for this investigation was a single
crystal of ThOs, containing a small amount (less than
0.01%) of Gd'+. The spectrum of Gd'+ in this crystal
has been previously investigated. ' The point symmetry
about the Gd'+ ion is cubic. It has the advantage that
the lines are among the narrowest known in paramag-
netic resonance of transition ions in single crystals. In
addition, the Th'" nucleus and the dominant oxygen
isotope have no nuclear magnetic moments. Therefore,
the spin-spin interactions do not contribute appreciably
to the linewidth. The spectrum of gadolinium is com-
plicated in that each electronic line is split into a number
of hyperfine lines, since the two isotopes 155 and 157
each have a sPin of ss and an abundance of about 15%
each. '4 The hyperfine interaction constants A of the
gadolinium isotopes in Th02 are 4.5 and 5.7 gauss, re-
spectively. The contributions of the hyperfine lines to
the linewidth make it difficult to measure accurately the
half-width at certain angles in which the linewidth be-
comes an appreciable fraction of this separation. On the
other hand, since A is isotropic to a high accuracy, the
hyperfine lines could be used as internal calibration for
measuring the linewidth. As will be shown below, we
have good evidence that mosaic structure can explain
the angular variation of the linewidth.

THEORY

Let us assume that the nearly perfect crystal consists
of a large number of perfect crystallites which differ only
in that the crystal axes point in slightly difkrent direc-
tions. Consider that a coordinate system is attached to
each crystallite, in which the coordinate axes coincide
with the crystal axes. Let 8, y denote the coordinates in
such a system, and 80, po the coordinates in a fixed
system. I.et G(0o, pp,

' 8, pp) describe the rotation distribu-
tion function. Then G(0p, pp 0, y)d8dop sin8 is the number
of crystallites in which the crystallite coordinates lying
within the solid angle 8 and 8+d8 and op and op+de,
coincide with the direction 60, q 0 in the fixed coordinate
system. The choice of such a distribution function re-
ferred to a fixed direction has advantages over the
choice of a distribution function using Eulerian angles.
The fixed direction in our experiment is the direction of
the magnetic 6eld. %e are interested in the number of
those crystallites for which the crystal axes will coincide
with this direction of the magnetic field. Obviously, a

' W. Low and D. Shaltiel, J. Phys. Chem. Solids 6, 315 (1958).' W. Low, Phys. Rev. 103, 1309 (1956).' W. Low and D. Shaltiel, Phys. Rev. 115, 424 (1959).

Let vo be the frequency for a given crystallite whose
symmetry axis coincides with the direction of the mag-
netic field. Then, since

Av=vo v=t—'(H, 8o, q o) Il(H—,8, q), (2)

the line shape of the disoriented crystal can be ex-
pressed as

g(hv)dv= G(8p, q p,'8, p)d8dy sin8, (3)

where 0 is the solid angle confined between the spheres
tv=const and dv+dv=const. It has been assumed
here that the transition probability is equal in all
directions, an adequate assumption for AN =~1 transi-
tions when hv is bigger than the initial splitting.

In order to evaluate the line shape it is convenient to
transform the old coordinate system 8, y, r = const to a
different coordinate system Dv(0, q ), u (8, q ), and r = const.
In this new coordinate system u(8, q) is chosen so that
the integral can be easily evaluated. In this new
coordinate system, Eq. (3) is given by

~
5 v+ d v

~
'vm tLx

g(hv)dv=,
Jg„ 'tom in

G(0o, po; 8, p)

B(0,o )
Xsin0 duds, (4)

B(u,hv)

where B(8,Ip)/B(u, hv) is the Jacobian. Similarly, the
line shape can be found for the case when the frequency
is kept constant and the magnetic field is varied. In this
case

H= f(v,8, p),
and

BII+dII t0m ax

g(DH) =
~

~ nII
G(0p) ppoi 0) p)

B(0,o )
)& sin8 dtv, (6)

B(tv,hH)

where /H= f(v, 8p, &po) f(v,8, &p) and —tv is chosen in a
similar manner to N.

Anisotropic Broadening in Nearly
Perfect Crystals

In the preceeding section no restrictive assumptions
have been made regarding the choice of the distribution
function. In well-annealed crystals one may assume that
the misorientation of the various crystallites is small, so
that the axes of rotation will dier only by a small angle

rotation of the crystal about the axis along this pre-
ferred direction does not cause any change in the
spectrum.

The frequency of the transition between any two
paramagnetic levels in an external field H can be
described by

v=t" (H,0, q).
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n. We shall also assume that this angle o. is distributed
isotropically about the average value of the direction of
the crystal axis which should coincide with the direction
of this axis in a perfect crystal. This last assumption is
plausible for cubic crystals. For noncubic crystals, or
crystals having a defect near a paramagnetic ion along
a preferential direction, n will not be isotropic.

With these assumptions, we derive (see Appendix) an
expression for the distribution function:

5000

4800

~'/p '/z

44oo

4200
8= 9620 MC/gee

P(n)dnp
&max

G(C) =CC
" =e 2n'[1 —(C/n)']'*

(7)

C is the angle between the directions 0o, yo and 0, y, and
C ~&n; P(a) is the probability that the axis of the
crystallite is rotated by the angle n. The integral is cut
off at a maximum angle n . We assume that the P(().)
is so constructed that it falls to zero very fast for all
angles larger than o. , and therefore contributes a
negligible amount to the integral for large o..

Since C is small we can write

C = [Arp' sin'8 +LB']'

where 68= (8p—8) and A(p= ((pp —(p).
Expanding Eq. (2) in a Taylor's series and using the

first term in the expansion, we obtain

Dv=F(H, 8p, q p) F(H,8, q)—

2000

0 10 20 30 40 50 60 70 80 90

100 «1 e «0

FIG. 1.. The paramagnetic resonance spectrum of Gd3+ in the
single crystals of Th02 in strong magnetic field. The solid line is
the calculated spectrum and the various points the measured
spectrum for the AM= &1 transitions.

(9)

We set m=C and evaluate the Jacobian by means of
Eqs. (8) and (9). Substituting the Jacobian as well as
G(C') of Eq. (7) into Eq. (4), we obtain the expression

in a plane where b= 0. Equations (8) and (9) simplify to

(C' —Dv'/a') &

sin0

~

+=climax

g(hv)=C '

C' sin0

b60 —aA p scn'0

/. a mPsx(~) d~
X ' dC, (10)

~ =c n'[1 —(C/n)']-*

8F Jsamsx g)2

g(DH) =-
Q BH ~ 4=(AH/a)(pv/pI() -G[C' (Av) /(Q) ]

P(n)dn
X dC'. (12)

-'(1—~'/ '):

~
&max

g(AH) =C'
42 sing

660—aAq sin'0

m ax P (~)d((
X dC', (11)

& a=c n'[1 —C'/n']i

with C p y) (hH/Dv) (BF/BH). ——
In our experiments we chose the measurements made

with C') =Dv[(b' sin'8+a')/(a'+b')']i and C a normali-
zation factor.

Similarly, when measuring at constant frequency, one
obtains the line shape function

In order to evaluate these integrals we need to know
something about the rotation function P(o.). For com-
putational reasons we shall assume a Gaussian distribu-
tion P(n) = (2/~~np) exp( —n'/npp). For any other dis-
tribution, the integral has similarly to be evaluated
numerically and will give results which diGer only by a
numerical weighting factor from the one presented
below.

Using a Gaussian distribution, the half-width at half
intensity is given by a simple expression (which could
have been anticipated)

dkH= (a/2) p/(8F/8H). (13)

We shall use this expression for the particular case of
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TABLE I. Linewidth oi 6%=+1 transition of Gd'+ in the single crystal of Th02 along the t 100), L111j,and t 110$ directions. '

Direction

L100j
L111)
Lt toj

5 V
2 2

4.8+0.25
5.8&0.25
5.2&0.25

4.4+0.2
4.8%0.2
4.5+0.2

3.6&0.2
4.0&0.2
3.8+0.2

——~ +-2 2

2.6~0.15
2.7~0.15
2.9+0.15

3.3~0.2
4.4%0.2
3.5&0.2

2 2

3.8&0.2
4.2~0.2
3.9&0.2

5
2 2

5.3%0.25
5.9w0.25
5.8~0.25

a Linewidths measured in gauss.

Gd3+ in ThO~. The ground state of this ion is '57~2. In the
cubic field of Th02 the angular behavior for all strong-
field 6&=&1 transitions can be expressed by

hv/gP=H+A, +B;/H, +C,/HP. (14)

The constants A;, 8;, and C, have been evaluated by
de Boer and Van Lieshout' and by Lacroix. ' 'these
constants are functions of the invariants p and q of the
three direction cosines l, m, and n which the magnetic
field makes with the cubic axes. p and q are given
explicitly by

p [22222+ zzzszz2+ 12zz2

q=Pm'n'.

The general form of the linewidth at half intensity is
given in terms of the constants A, B, C and p, q as

pro BA' Bp BA' Bq 1 (BB' Bp BB,Bq&
~H, =— —+ —+—

I
—+

2 Bp B8 Bq B8 H, E Bp B8 Bq B8)

1 (BC, Bp BC; Bq) ( B, 2C;)
+ I

—+ —
I I1— + I (16)

HP ( BP B8 Bq B8) ( HP H, z)

EXPERIMENTAL PROCEDURE

The paramagnetic resonance spectrometer was a con-
ventional 3-cm wavelength spectrometer using a simple

5 7 CALCULATED

MEASURED

magic T, rectangular cavity, and video detection. The
single crystal of Th02, with less than 10 4 mole fraction
of gadolinium, was mounted on the broad side of the
H&0& cavity. The crystal could be rotated about a hori-
zontal axis and the magnet about a vertical axis. By
rotating both the crystal and the magnet, the crystal
was adjusted so that the [100$ direction was contained
in a plane perpendicular to the vertical axis. The mag-
netic field could be rotated in the (110) plane.

The video detection used a wide-band amplifier with
pass band of 8—10 000 cycles in order to prevent dis-
tortion of the line shape. A fixed magnitude of magnetic
field modulation was used. The peak-to-peak modula-
tion was about 10 times the linewidth. Care was taken
that the center of the lines should appear at zero
magnetic field modulation. All this eliminated, to a
large extent, the effects of nonlinearity of the field
modulation.

EXPERIMENTAL RESULTS

The measured and calculated paramagnetic resonance
spectrum for the transitions 635=~1 is shown in Fig. 1.
The magnetic field was rotated in the (110) plane.
Table I gives the measured linewidths at half intensity
at the three directions [100j, [111j,and [110].

The anisotropic line broadening was obtained from
the total linewidths as follows:

1. It is assumed that the anisotropic broadening gives
a negligible contribution to the total linewidth along the
[100j direction (this is justified below).

/2- '2 CALCULATED

MEASURED
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I
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FIG. 2. The variation of the half-width hH as a function of the
angle which the magnetic field makes with the cubic axis for the
indicated one of the seven AM = &1 transitions. The solid lines are
the calculated variations using Eq. (16) in the text. The dashed
lines give the experimental anisotropy of AH.

' J. de Boer and R. Van Lieshout, Physica 15, 570 (1959).' R. Lacroix, Helv. Physica Acta BO, 374 (1957).
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FIG. 3. The variation of the half-width hH as a function of the
angle which the magnetic field makes with the cubic axis for the
indicated one of the seven 63II= &1 transitions. The solid lines are
the calculated variations using Eq. (16) in the text. The dashed
lines give the experimental anisotropy of hH.
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2. Additivity of linewidths caused by diferent
broadening mechanisms is assumed.

We then subtract the linewidth as observed along the
L100j direction from that observed along other angles
and obtain a residual linewidth. In Figs. 2—8, we have
plotted this residual linewidth for all M ~ M —1 transi-
tions (dashed lines) as a function of the angle 8. The
theoretical anisotropy is cs,lculated in the (110) plane
from Eq. (16) using

p= 1/4(1+2 cos'8 —3 cos'0),

JI= 1/4(cos'8 —2 cos'0+cos'8).

50 3
I

t
100

'l2- ~ 'l2 CAI CULATED

MEASURED

20 30 40 50 60 70 80 90

t t
e 110

It should be noticed that the erst term 2; would give
linewidths of equal magnitudes for the M; —+ M, —1 and
M, —& M i+ 1 transitions. The terms 8;/II; and C;/II, s

have to be added to account for the asymmetry. The
curves are normalized so to give a best fit to the ex-
perimental data by choosing np=0. 12 ~0.02. The good
agreement between the experimental and theoretical
curve shows that the theory as developed above is a good

I
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111 e

FIG. 4. The variation of the half-width AH as a function of the
angle which the magnetic Geld makes with the cubic axis for the
indicated one of the seven 23E=+1 transitions. The solid lines are
the calculated variations using Eq. (16) in the text. The dashed
lines give the experimental anisotropy of AH.

first approximation. The value of o.p= 0.12' is reasonable
for the average misorientation of the various crystallites.
If a distribution other than a Gaussian were used, O, p

would have a different value but probably of the same
order of magnitude.

The small deviations found for the ~ ~ —
~ transi-

tions suggest that there is another mechanism which is
responsible in part for the anisotropic broadening. This
is also seen from the fact that the theoretical anisotropic
broadening should be zero to first order for the I 100],
L111], and L110] directions. Second-order effects con-
tribute only a negligible amount. However, the experi-
mental curves show that there is some residual broaden-
ing along these directions. Spin-lattice relaxation or
cross-relaxation effects seem to be ruled out since the
linewidth for the ~

—& —
~ transition decreases only

slightly (about 0.4 gauss along the $100] direction) as
the temperature is lowered from room to liquid nitrogen
temperature.

FIG. 5. The variation of the half-width d,H as a function of the
angle which the magnetic 6eld makes with the cubic axis for the
indicated one of the seven 5M =~1 transitions. The solid lines are
the calculated variations using Eq. (16) in the text. The dashed
lines give the experimental anisotropy of AH.

Some indication as to the causes of this additional
broadening is found from the ratio of the linewidth of the
various ~M+-+ +M&1 transitions. The observed ratio
of the ~-,'+-+ ~—'„~—', ~ &-,'-, and &-,' ~ &-,'transitions
is 10:7:3.5. If the cause were a random distribution of
the cubic zero field splitting, one would expect a ratio
of 10:5:6.

A partial explanation can be given by assuming an
additional small axial fieM along the principal cubic
axes. An additional parameter to the spin Hamiltonian
of the form DS,' would give rise to line shifts in the ratio
of 10:6.7:3.3. Assuming, therefore, a distribution of
values of D centered around D= 0 one can explain this
residual linewidth. Such an axial Geld can be caused by
some compensating positive ion, or by the absence of
some oxygen ions at large distances. Some support for
this conjecture is found in the fact that well-annealed
crystals show some reduction in linewidth.

As seen from Table I the linewidth of the M, —+ M;—1
and 3f;~M,+1 transitions in the three principal
directions, contrary to expectation, are not equal. Al-

though this may be attributed to the errors in measure-
ment which are close to the differences, we nevertheless

5
CALCULATED
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FIG. 6. The variation of the half-width AjV as a function of the
angle which the magnetic 6eld makes with the cubic axis for the
indicated one of the seven 63EI=~j.transitions. The solid lines are
the calculated variations using Eq. (16) in the text. The dashed
lines give the experimental anisotropy of QH.



AN ISOTROPI C BROAD EN I NG OF LI NEWI DTH

-3/ -5/

I

CALCULATED

MEASURED

3

Pn 2
X

Vi'
10 20 30 BIO 50 60 70 80

f t
100 111 e

think that the differences are real but their origins have
not yet been clearly understood.

/i
l'~

I I
/ /

I

90

110

FIG. 7. The variation of the half-width AH as a function of the
angle which the magnetic 6eld makes with the cubic axis for the
indicated one of the seven AM = &1 transitions. The solid lines are
the calculated variations using Eq. (16) in the text. The dashed
lines give the experimental anisotropy of 5H.

would, therefore, be used for the investigation of how
perfectly the C axis in ruby is orientated.

APPENDIX

Calculation of the Rotation Distribution Function

We shall assume that the various crystallites are
disoriented with respect to a given axis in an isotropic
manner. We mean by this that the axes of rotation,
through which the crystallites are rotated, are iso-
tropically distributed. In Fig. 9 the s axis was chosen for
convenience as the direction in which the distribution
function is calculated. I.et a crystallite be rotated about
an axis making an angle 0 with the s axis of the crystal.

DISCUSSION

In the preceding, we have shown that the a,ngular
dependence of the linewidth can be explained by
crystallites having slightly different orientation. The
analysis in this particular case gave the average angle
which the crystallites make with the symmetry a,xes. If
the line shape were carefully measured as a function of
the angle one could possibly get some information re-
garding the distribution function.

The anisotropic linewidth is probably present in most
crystals. In some crystals, the symmetry axis changes
the direction in some manner along the crystal. Ruby is
well known to show such an effect. The crystal axis may
show a curvature along the boule; the deviation across a
crystal of about one inch may be several degrees. The
angular behavior of the ~23 —& &~~transition of Cr'+ in
Alsos is given by hs =gPII+D (3 cos'0 —1). Then,
&&= (D/gP)s sin2868 which would show a maximum
linewidth for 0=45 . At this angle, and for an angular
spread of iV=0.5', we find 8H 50 gauss. This is larger
than the spin-spin interactions for all Cr'+ with concen-
tration less than 0.2 mole percent of Cr'+. The misalign-
ment of the axial symmetry axis in ruby is probably one
of the causes of the wide lines in the paramagnetic
resonance spectra, and one of the main contributing
effects to the linewidths if the spectrum is observed
along a direction other than the C axis. This method

I
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& 2
MEASURED

, ~
~ --'--~-,

P
1 1

20 30 40 50 60 70 80 90

t t
111 = 8 110

FIG. 8. The variation of the half-width AH as a function of the
angle which the magnetic 6eld makes with the cubic axis for the
indicated one of the seven DM =&1 transitions. The solid lines are
the calculated variations using Eq. (16) in the text. The dashed
lines give the experimental anisotropy of hH.
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I

I

I
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FIG. 9. Calculation of the rotation distribution function.

The angle between the new s' axis and the old axis will
be C. For small angles of rotation

C =n sin9. (A1)

4 dC
sin8d8=-

n' (1—C'/n') l
(A2)

If P (n) is the distribution function for rotating the angle
by n, we get the rotation distribution function

P(n)dn
G(C) =CC

=c n'(1 —4'/n') &

(A3)

where C has the restriction that C ~&0..

The number of crystallites whose s axis is rotated be-
tween C and C+dC, because of a rotation by n, is
proportional to sined8. Therefore (see Fig. 9)


