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Dynamical Behavior of Dislocations in Anisotroyic Media*

L. I. TZU TONIC 0

(Received May 3, 1961)

The dynamical behavior of uniformly moving dislocations in anisotropic media is discussed for those
crystal systems for which the edge and screw components can be considered separately. Expressions are
obtained for the kinetic and potential energies of both edge and screw dislocations. It is found that screw
dislocations behave normally at all velocities up to the limiting velocity. Edge dislocations, however, display
an anomalous dynamical behavior. It appears that in general there is a range of velocities for which the shear
stress on the slip plane is negative and edge dislocations of like sign attract rather than repel one another.
In an isotropic material the upper limit of this velocity range is the velocity of shear sound; the lower limit
is the Rayleigh wave velocity which can never be less than 0.69 the velocity of shear sound. In the anisotropic
case it is possible for the hmiting velocity (for a given orientation) to be less than the corresponding shear
wave velocity; also the threshold velocity for the anomalous dynamical behavior can be any velocity from
zero up to the shear wave velocity, depending on the elastic constants of the material and the orientation
considered. An example of an edge dislocation in a hexagonal material is discussed in some detail.

I. INTRODUCTION

'll)( EERTMANt has shown that in an isotsopic
elastic solid there is a range of velocities for

which two like edge dislocations on the same slip plane
will attract rather than repel. The upper limit of this
velocity range is c„ the velocity of transverse sound;
this velocity also represents the limiting velocity of the
dislocation since its energy tends to infinity as c, is
approached. The lower limit of velocity c is given by
c„, the Rayleigh wave velocity. At c=c„ the shear
stress component of the field of the moving edge
dislocation becomes zero, i.e., the repulsive force
between two like edge dislocations vanishes. For further
increase in velocity the shear stress is negative and the
force between two like edges is then an attractive one.

A physical explanation for this anomalous behavior
has been given by Keertman. ' He concludes that dis-
locations of like sign will attract (and unlike repel) if
the kinetic energy in the displacement 6eld of an
isolated dislocation is greater than the potential energy.
Now the kinetic energy of a screw dislocation can never
be greater than its potential energy; hence screw dis-
locations always behave normally. For edge dislocations
the kinetic energy is greater than the potential energy
for velocities above the Rayleigh wave velocity.

This paper sets out to answer two questions: (i) Does
the same general result hold for an anisotropic medium;
i.e., is there a range of velocities for which two like edge
dislocations will attract) (ii) If such a range does exist,
what is the lowest velocity at which the attraction will
occurs It is hoped that for a certain crystal type and
orientation this threshold velocity will be a small
fraction of the limiting velocity for that direction; this
would then represent the optimum situation for an
experimental verification of this phenomenon.

*This work was supported by the Physics Research Division,
Air Force Special Weapons Center, Kirtland Air Force Base, New
Mexico.' J. Weertman, Response of 3tretats to High Velocity Deforrna-tion,
edited by P. G. Shewmon and V. F. Zackay (Interscience Pub-
lishers, Inc. , New York, 1961).

2 J. Weertman, Phys. Rev. 119, 1871 (1960).

II. UNIFORMLY MOVING DISLOCATIONS

To answer these questions we consider a uniformly
moving dislocation in an anisotropic medium. The
problem has been treated by Bullough and Bilby' and
this paper is based on their analysis. The equations of
equilibrium for an anisotropic elastic medium are

~ijklNIg jl PNi)

where u; is the displacement referred to Cartesian
coordinates x;, p is the density, Ii;,&& the elastic constant
tensor, and all subscripts to the right of the dot repre-
sent differentiation with respect to the appropriate
space coordinate. Assume the dislocation line is parallel
to x3 and moving in the x& direction with velocity c.
Eshelby's method4 of solution is applied, i.e., the
material is imagined cut along the xi@3 plane, moving
tractions applied to the cut surfaces so that on re-
welding a moving dislocation is obtained with no
external forces or couples acting on it. The appropriate
solution of (1) will correspond to a surface disturbance
propagating in the x2 ——0 plane, vanishing as

~
x2

~

—h ~,
and independent of x3. Bullough and Bilby write

tt;(x, ',x2) = g C„P;„exp(s(—X.xs+ixl') }, (2)
n=l

where xl' ——xl —ct, the P;„are functions of the elastic
constants and dislocation velocity, and the C„are
arbitrary complex constants. Substitution of (2) into
(1) yields that X„ is a root of the sextic equation

~%2k2)lss 2)tst(+slk2+~lskl) +alki+PC ft kl Os (3')

where 8;J, is the Kronecker delta. X„ is in general com-
plex; however, in order that (2) represent a surface
wave we must restrict the dislocation velocity such
that the real part of X is greater than zero.

In the general anisotropic case both a pure screw and
a pure edge dislocation involve all three components of

' R. Bullough and B. A. Bilby, Proc. Phys. Soc. (London)
B67, 6(S (I954).

4 J. D. Eshelby, Proc. Phys. Soc. (London) A62, 307 (1949).
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Plj Fljkllk 1) (5)

we find that the stresses p», p» depend only on the
derivatives of n3, the other four components of stress
depend only on the derivatives of I& and 02. Hence the
two problems u~ ——u2=0, n3/0 and I~&0, N2&0, N3

——0
can be considered separately. Likewise the sixth-order
equation in X reduces to two equations: a quartic for
the edge dislocation and a quadratic for the screw
dislocation.

Starting with the 44, given by (2) and employing the
method of Fourier transforms one may build up more

general displacements U;; the latter are determined by
boundary conditions along the slip plane, i.e., dis-

continuity in the appropriate displacement as well as
conditions on the stress components to insure that no
external forces or couples are acting on the dislocation.
These displacements V; (developed in reference 3) will

be used in the following discussions. The corresponding
stress components cr;, are given by an expression
analogous to (5), i.e.,

displacement. Rather than treat this general problem
we follow Bullough and Bilby and consider the simpler
one where all F;,I,~ with an odd number of subscripts
equal to 3 are zero. In the contracted notation (ij —+ i,
i=j; ij -+0+3,i') this reads

F14 F15 F24 F25 F46 F56 F64 F65 0 (4)

This has the eGect of separating the equations deter-
mining Ni and 12 from that determining 03. With the
stress components given by

E„, the potential energy per unit length of the moving
screw dislocation, is obtained by integrating over the
crystal the strain energy stored in the stress field of the
dislocation. If A represents some cross section normal
to x3, then

a'bo I' t
s' (F55 sin'8 —F45 sin2g+F44 cos'g)

82r ~ ~ ll L( a +b) sin 8 b sjn28+cos g]

where we have put

drdo
X , (12)

1
E5= p(U6)'—dA

pcobola'2 f2~

t
ll2 sin28

Sm' & p ~ ll, [(a2+b2) sin'8 —b sin28+cos'8]'

r2= Xi'2+X22, tang= X2/Xi'. (13)

The limits on r are those usually employed, i.e., R2
represents a dimension of the crystal, R& a radius of
order bp.

Besides the potential energy there is also a kinetic
energy EI, associated with the moving screw dislocation
since there is motion of the medium about it.

~;,=F'~aiUk. i (6)
drdo

X . (14)
Also the strain components e;, are given by the usual

expression
6'l=2 (~'l+ ~~').

(12) and (14) can be evaluated to give expressions of
the form

III. SCREW DISLOCATIONS

The displacement field for a screw dislocation moving
in an anisotropic medium for which (4) holds is

bp (xi —bx2 )
Up= ——tan 'f

2~ & ax, i '

(1—c'/2c ')Ep c'
Eo= . (15)

(1—c'/c ')' 2c„' (1—c'/c„')l

El——Eo/(1 —c'/c„') l. (16)

The total energy E,=E~+E5 is given by the rela-
tivistic formula

where

Xo= aa+ib=
+[F44F56 F45' F44pc']' —F45-

+i
F44F44

These are the same formulas that are obtained in the

(9) isotropic case with the appropriate definition of Ep, the
rest energy, and c, the limiting velocity:

abp xI'F4(,—x2F5g
OI3= )

22r a'x2'+ (xi' —bx2)'
(10)

(the positive sign applies for x2)0, the negative sign
for x2(0) and bp is the magnitude of the Burgers vector.

The nonzero stress components are
(bo'

Ep
f

—ln—(

R,i

Isotropic Anisotropic

LF4d'55 —F45']'

(F44F55—F45')/F44

Cbp +& F44 +2F45
&23=

22r a'x '+ (xi' —bx2)'

where p is the (isotropic) shear modulus.
The condition that R(X))0 demands c(c; c is

truly a limiting velocity for the screw dislocation since
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Ei-+ ~ as c-+ c„.Also we see that (as in the isotropic
case) the kinetic energy never exceeds the potential
energy; they become equal (and infinite) at c= c .

Note that the stress field given by (10) and (11) is
well-behaved. Since a approaches zero as the velocity
is increased towards c„, the stresses are contracted in
the direction of motion. The stress components do not
change sign with increasing velocity but tend to zero
as the limiting velocity is approached.

In short there is no unusual dynamical behavior
exhibited by a screw dislocation moving along those
directions in an anisotropic medium for which (4)
applies.

IV. EDGE DISLOCATIONS

A. General Formulas

Here the behavior is more complex and corre-
spondingly the analysis, though straightforward, be-
comes cumbersome. In all that follows, the subscript e
will take on the values 1 and 2; all indicated summations
over e will likewise be for e= 1, 2. Let us start with the
attenuation parameter A„which is a solution of a
quartic equation derived from (3). If we put y= iX„—
we obtain an equation

~nr =F22 (Pn qn )+2qnF36 P66+P& ~

5„;=2p„(F„q„—F„),
+nr F16 F26 (Pn qn ) qn(F12+F66) yt

R„,=p„(F13+F66—2q F86),

(20)

and two sets of variables r„, e„by

rn (+1 qn+2) + (Pn+2) q

tang„= Pnzo/(S,
' —qnX3).

(21)

We can then write the displacement Geld of the moving
edge dislocation as

Ul ——(bo/23r) P (il„ lnr„—P„e„),
U3= (bp/23r) Q (6 lnr„—6„0„).

(22)

The eight constants i3, p, 6„, 6 are given in terms of
the four constants A „„,A i of Bullough and Bilby by

In terms of the solutions of (18) we can define eight
quantities (using the notation of reference 3):

4

Q E y"=0 (18)
&n A nr~nr A ni~niy ~n A nr+nr A ni~niy

(23)
Pn +nr~ni++ ni~nry on +nr~ni++ ni+nr

with all E„re l.aHence X is of the form X =&p„+iq„,
where the positive sign holds for x2)0. We have

+4 ~66~22 ~26 y

+3 2 (P26F12 F16P22) 1

It2 (P11F22 F12 2P12F66+2F16F26)

(F83+F—66)p&' (19)

+1=2(F16F12 P26F11)+2pC (F16+F36))

Eo= (F11 pC') (F66 pC3) F168. — —

Anr and A„i are given by boundary conditions along
the slip plane; these conditions can be written as

P [P66(n.P. P.q.)+F36—(S.P„«„q.)7=F1—6,

Q [P26(Q p p q )+F22(5 p 6 q )5 P12 (24)

Q 6„=0, QP„=—1.

Substituting (20) and (23) into (24) and solving for
Anr and A„;, we obtain after considerable reduction

DA1'(Pl P2 ql q2) a~2 (P2 Pl q2 ql)

=2p,p, (q,—ql)((F16P36—F»F66)[F86G3 (F66 pc')G27+(F16F23 P13F36)(F16G3 F12G3)}

+plp3(P»P66 —F36') {(p'+q3')[(p"—pl')+ (3ql —q.) (ql —q3)7(F66G1—F36G8)

+2[qlp2 q2pl +3qlq2(ql q2)5(F12G2 F16G1)+[(pl p2 )+3(q3 ql )5(P13G8 F16G8)},

D~ lr (pit p2)ql)q2) D+ 2r (poi pl) q2) ql)
—p2[(pl p2 ) (ql qo) 5((F16F26 P18P66)[P26G8 (F66 p& )G27+ (P16F22 F12F26)

X:(P16G3 F12G8)}+p2(P22F66 P26 ){[(q2+ql)((pl p2 ) (ql q2) )+ pl (ql qo) 7

X (F13G3 P16G3)+ (p3 +qo )[q,((p,'—p2 ) (ql q2) )+2pl (ql q8)5(F26G2 P66G1)

+[(po +qo +2qlqo)((pl po ) (ql q2) )+4q2pl (ql q2)7(P16G1 P18G2)}

where

plpo(F22P66 F36 )[(pl+p3) + (ql q2) 5[(pl p2) + (ql —qo)'7(G2 G1G3)

Gl F22 (F66+F12) 2F26 y

G2 F22F16+F26(P F666) )

G3= 2P16F26+ (F66+F12)(p6 F66) ~

(25)
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kn=PnPn 62nqnt ln 8nqn+ 6nPnt

&n 4(Pn +qn )t Pn 8n /2nqn PnPnt

Vn= 6nPn 8nqn+&n(Pn +qn ).

These expressions for A; and A, can then be used to where we have made the further reductions,
obtain n„, p„, 8, 6 and hence the displacements Ul
and U2 are determined.

From the displacements we find that the nonzero
stress components are

(27)

bo 1
0 11= g L$1 (P1162n+P16 &Pn+P121n)

2% f2
+$2(Pllkn+P16Vn+P12Mn) jt

~0 1
tr12 Q —LX1 (F16Qn+P66 Pn+F26ln)

21r f 2

+&2(P16kn+P66Vn+P26~n) jt

bo 1
tr22 Q LX1 (F12& +nP2662 +nF22l )n

2x' r 2

+$2(P12kn+F26Vn+F22Mn) jt
bo 1.

~66=—P —L2:1'(F12~.+P66q.+F621.)
2' t' '

+&2(Flak +F266 +F2266 )j,

From (26) we get the important result that the shear
stress on the slip plane vanishes when

(P 1662 +F6662 +F261 ) (28)

If the dislocation velocity which satisfies (28) is less
than the limiting velocity of the dislocation, then it
represents the threshold velocity for the anomalous
dynamical behavior of edge dislocations.

Using the stresses given by (26) and the strains
obtained by differentiation of the displacements (22),
we can obtain the strain energy per unit volume 20-;;e;;,
integration over the crystal yields E„, the potential
energy per unit length of the dislocation:

where

b62 Eg 2

I

2 (L„c so2+8M„si n2+811„1c so8sin8)d8
E„= ln-

82r2 El n, m=»6 Lcos28+(P„'+q ') sin'8 —q„sin28jLcos28+(P '+q ') sin'8 —
q sin28]

(29)

Lnm= P1162n62m+P221n1m+P6662n62m+F12(&n1m+62m4)+F16(&n&pm+&m62n)+F26(46tm+1m62n)t

~nm=Fllknkm+F2262n&m+F66VnVm+F12(kn&m+km66n)+F16(knVm+kmVn)+F26(&n Vm+&mVn) t

Enm =F11(Gnkm+Qmk n) +P22 (1n66m+ lm60n) +F66 (PnV m+ gmV n) +P12L (62nlttm+ &m1ttn) + (k num+ km@)]
+Pl L( -v-+~-")+ (k.6-+k-6-) j+F 6L(4v-+4 -)+ (~-6-+~-6 -)j.

Using the theory of residues we can evaluate (29) to obtain

L-fp-(p-'+q-')+ p-(p-'+q-'))+~-(p-+ p-)+&-(p-q-+ p-q-)E„= ln—P—
g& n, m=1. p-p-L(p-+ p-)'+ (q- q-)'j—

(30)

The kinetic energy per unit volume of the displacement
6eld of the moving edge dislocation is

4/2) L(L'1)'+ (~ )'j.

When written in terms of r and 8 )as given by (13))
this has the same 8 dependence as the integrand of
(29). The kinetic energy (per unit length) E& is then
given by an expression of the form (31) with L, M, 1V

replaced by other constants, i.e.,
E2=Pc2E„)L „&F,M —+ G, X—„„+H„],(32)—
where

Pmn &m&n+8m8nt Gmn kmkn+tPmtPnt

H„„=(/2„k +n„k )+(8„tP+8„$ ),
tPn= 6nPn 8nqn. —

(33)

/// I I // / / I / / / / / I/ / / // II / /// // I I I I // / q/V

FzG. 1. The hashed line is the locus of limiting velocities for a
moving edge dislocation. q and s are functions of the elastic
constants and dislocation velocity deGned in (36). The type of
surface wave corresponding to a moving edge dislocation is
different in each of the three regions shown.

Recall that the dislocation velocity must be restricted
such that R(X„))0, i.e., p„)0. This condition gives
the true limiting velocity of the dislocation since as
P„—t 0, both E„and E2 —+ att. Also note that at veloci-
ties near the limiting velocity the total energy of the
edge dislocation varies as LR(X)j 2; for the screw dis-
location we have from (9) and (16) that the energy
varies as LR(X)j ' at high velocities. These results are
analogous to those obtained by Weertman' for the
isotropic case.
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The condition that the kinetic and potential energies be equal is

(I-- p"—F-)fP-(P-'+q-')+P-(P-'+q-'))+(~- p"—G--) (P-+P-)+(&- p"—II-)(P-q-+P-q-)
=0.

P-P-L(P-+P-)'+ (q- q-—)')
(34)

In the isotropic case the velocity at which EI,=E„ is
the same as that at which 0 12 (2:1',0) =0. It is not obvious
in the anisotropic case that the velocity for which (34)
is satisfied is the same as that for which (28) obtains.

The results of this section have been general for
those cases for which (4) holds. Our main interest in
this problem is to find those velocities for which (28)
and (34) are satisfied and for which p„=0, i.e., the
velocity at which the shear stress on the slip plane
vanishes, the velocity at which the kinetic energy
becomes equal to the potential energy, and the limiting
velocity of the edge dislocation. To do this we require
the roots of the quartic (18). Of course these roots can
be obtained, but the resulting expressions as well as the
solution of (28) and (34) would be rather complicated.
However, if we assume that the constants Fle and F2e
also vanish, then the quartic (18) reduces to a quadratic
in ) „and the analysis is greatly simplified.

&. ~le=~2e=o

With this simplification we find from (18) that

2'= q~ (q' —4s)6= q&&6,
where

(35)

A2;=
pl P22P66+P12(P66 PC )

F22(F12+F66) (P66 pC ) (pl p2 )

In order that the conditions R(X ))0 be satisfied we
must insure ) „'&0; these demand q&0, s&0. c„, the
limiting velocity of the edge dislocation, is given by
)2 ——0, i.e., s=0. In other words, pc„2 is equal to the
lesser of (Fll F66).

(ii) 6(0:In this case X is complex;

l =~-:(L(4~)'+q)'~2L(4~)' —qt') (39)

F22P66'q (F11F22 F12 2F12F66) (F22+F66)PC )
(36)

F22F66S= (Fll —pC') (F66—pC').

There are two classes of behavior depending on the
sign of D.

(i) 4)0: Then X„2 is real;

2X12=q+ (q' —4s) 6 2X22 =q
—(q' —4s) 6. (3/)

For this case we obtain from (25) that

A l„=A2„=0)

p2 P22P66+P12(P66 pC )
A .=—ls

F22(F12+F66) (P66 PC ) (pl p2 ) (38)

From (25) we obtain that

where

~ee
Al; ——A2; ——

2(F„+F„)(P„—.)

P12(P66 pC )+ P22 P66(G f )
A lr ———A2r ——

48fiP22 (F66+F12)(P66 pC )

pi= p2= &, q2= —ql= fl.

(40)

We see from (39) that the limiting velocity is now
determined from q= —(4s)&. This equation can be
satis6ed by values of ~' less than Fee.

The limiting velocity can be discussed simply for
both cases with the aid of Fig. j. in which we have a
fq, (4s) &) plot. In Region I, both q and 6 are positive;
in Region II, 6(0; in Region III, h&0, q&0. %e can
show that there is no solution possible in Region III
since the conditions 6&0, q&0 violate the elastic
stability criterion that F»F»—F»'&0. Therefore at
c=0 we are situated at some point in Region I or II.
As c increases, both s and q decrease; hence we move
down and to the left until we come to either s=0 or
q= —(4s)&. The hashed line represents the locus of
limiting velocities for the dislocation.

To see how this compares with the isotropic case,
replace F» and F22 by (X+2/1), F» by X, and F66 by p,

in (35) and (36) where (in this paragraph) X and /1 are
the Lame constants. Ke 6nd that

(~+3P) pc'(&+P) '
=2- pc2

p(li+2p) p(X+2p)

( P~(
E p 3 ( )+2/6]

(41)

Since h)0 we are always in Region I of the Lq, (4s)1)
diagram and of course the limiting velocity is always
given by s=0. Hence one of the novel features intro-
duced by anisotropy is the possibility of limiting
velocities lower than those corresponding to the shear
wave velocity.

From (28) we obtain that the shear stress on the slip
plane vanishes when p 22 (A;,A„,)=0. Using either
(38) or (40) (i.e., for either real or complex roots) we
find that the threshold velocity for the anomalous
behavior of edge dislocations is given as a solution of
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an equation analogous to the Rayleigh wave equation,

F22F66 (F22 F66)f F22F66LF66 (F22 Fll)
+2(F11F22—F12')]f'+(FilF22 —F12')

XPF22F66+F11F22 F12 ]f'
—(F11F22—F12')'= o, (42)

where
f'= pC2/F66.

If Fll)F66, this equation always has a root for f(1,
i.e., pc2(F66. Hence for the case of real roots (for which
the limiting velocity is given by pc„=F66) there is
always a range of velocities for which two like edge
dislocations on the same slip plane will attract. For
the case of complex roots there may or may not be such
a velocity range; if the velocity which satisfies
q= —(4s)*' is less than that given by (42) then there
is no anomalous behavior, i.e., the edge dislocation
is "well-behaved" at all velocities up to the limiting
velocity.

It should be noted that it is possible for f to take on
any value from zero to unity, i.e., the threshold velocity
can have any value from zero to (F66/p)', depending
on the elastic constants of the material. For example
consider those orientations for which F~~——F22, elastic
stability demands F»'&F»' but as P»' more closely
approximates F»2 we see from (42) that f approaches
zero. f is equal to unity when F» F« This——is to. be
compared with the isotropic case where it is found that
the Rayleigh wave velocity can have values only
between 0.69c, and 0.96c,. This point is discussed again
in the next section.

pC
X12=p12= 1——,

&«

pc
X22= p22= 1——,

Cii

where c« ——
2 (c»—c») (c». Hence we have immediately

that the limiting velocity of the edge dislocation is
given by pc„'=c«.

We obtain from (38) that

2(1+pl')
Ag; ——

pl (1 pl ) (Cll+C12)

Ag; ——

(1 pl ) (Cll+C12)

All the formulas of Sec. IV. A can now be evaluated.
The displacement field of the moving edge dislocation

is given by (22) as

V. APPLICATION OF RESULTS

To illustrate the use of the above analysis one
example' will be worked out in some detail —that of
an edge dislocation along $0001] in a hexagonal
material. The x; axes are now the crystal axes so that
the F,, can be replaced by c,, ; also the plane of plane
strain is the basal plane (which is essentially isotropic)
so that a direct comparison can be made with Weert-
man's results for the isotropic case.

From (35) we obtain that

~= QC (Cll+C12)/Cll(C11 —C12)] )0,
i.e., we are always in Region I of the Lq, (4s) ~] diagram
as in the isotropic case. The expressions for the (real)
roots) 'are

bo f P1X2$ (P2X2$—(1+p12) tan '( [+2 tan '(
22r(1 —p12) & xl' ) & x,' ]

bp
U2=

22r(1 —pl')

(1+p ')
ln(+1 +pl +2 )+p2 ln(+1 +p2 +2 )

2pl

Likewise from (26) we obtain that the stress field of the moving edge dislocation is given by

bpxg

22r(1 —p ')

(Cll C12) (1+pl )pl 2p2(Cll p2 C12)

g I2+p 2~ 2 g I2+p 2g 2

(C11 C12)~02 1 (1+pl ) 4plp2

42rpl(1 pl ) — +1 +pl +2 21 +p2 +2—

&22=
bpX2

22r(1 —p12)

(Cll C12) (1+pl )pl 2p2(Cllp2 C12)

Xl +P2 X2

C16(C11 C12)50P2X2
033= ) 0'13=0'23= 0

22rcll (xl"+p2'x2')

5 It is planned to treat in a later paper a number of cases for which the above plane strain analysis applies and to give numerical
calculations for various materials.
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The potential energy per unit length is derived from (31), using (27) and (29). We ind that

(cii ci2)bo E2 (1+Pi ) (1 SPi Pi ) 2
E„= ln— +—(1+3P22)

82' (1—pi') Ei P2
(47)

Likewise from (32), using (33), we obtain that the kinetic energy per unit length of the moving edge dislocation is

(cii—ci2)bo' E2 (1+pp)(1—6pi'+pi') 2
ln— +—(1+p,') .

8~ (1—pi') Zi P2

Finally we can write the total energy E2=E&+E~ as

(cii—ci2)bo E2 (1+pi ) (1—7pi ) 4
ln- +—(1+2P2') .

82r(1 —pi') Ei P2
(49)

Note that for a moving edge dislocation the total energy
is not given by a simple relativistic formula as is the
case for a screw dislocation.

All these results are the same as those found by
Weertman for the isotropic case if c« is replaced by the
shear modulus and c» by the compressional modulus.

The kinetic and potential energies become equal at
4pip2=(1+pi2)2; at the velocity for which this is
satisfied the shear stress on the slip plane vanishes.
This threshold velocity is obtainable from (42) which
now reads

f'—8f' jS(3—2h) f' —16(1—b) =0. (50)
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FIG. 2. The curve gives the desired root of the Rayleigh wave
equation (50) for both the isotropic and hexagonal cases. For
isotropic materials 0&h& 4, for the hexagonal case considered in
the text 0&k&1.

This of course is the Rayleigh wave equation and
applies to both the isotropic and hexagonal (c-axis
edge dislocation) cases with the following definitions:

Hexagonal
(c axis J )

pc'/c66

c66/cli

Isotropic

pc'/p
(51)

p/(~+2p) = (1—»)/2(1 —~),

where ), p, are the Lame constants and v is Poisson's
ratio. In Fig. 2 we have plotted f vs I6, where f repre-
sents the threshold velocity normalized to the corre-
sponding limiting velocity, (p/p) l or (c66/p)'.

The analogy between the isotropic and hexagonal
cases is complete except for the permissible values of h.
For an isotropic material the elastic stability criteria
demand that Poisson's ratio take on values only in the
range —1(v(~. This in turn implies 0(h(~ and
hence 0.69(f(0.96, i.e., the Rayleigh wave velocity
is never less than 0.69 times the limiting velocity.

For a hexagonal crystal the elastic stability criteria
demand —cii(ci2(cii (cii)0). This implies 0&h&1
and hence 0(f(0.96, i.e., the threshold velocity can
take on any value down to zero. This is a direct result
of the fact that c~2 is allowed negative values down to
—c». In other words, the threshold velocity for the
anomalous behavior of a c-axis edge dislocation in a
hexagonal material will be lowest (relative to the
limiting velocity) in that material for which the ratio
ci2/cii most nearly approximates —1.


