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Critical Percolation Probabilities (Site Problem)
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Monte Carlo estimates of the critical percolation probabilities for the "site problem" are presented for
a number of two- and three-dimensional crystal lattices. The connection with the critical concentration
of magnetic elements of certain models of random (magnetically dilute) ferromagnetic crystals is noted.

' 'N a previous publication, ' we de6ned two percolation
- ~ problems of physical interest, the "bond problem"
and the "site problem, " and gave numerical estimates
of the critical probability for the "bond problem"
p, (B) for a number of two- and three-dimensional
crystal lattices. Here we shall present numerical esti-
mates of the critical probability for the "site problem"
p, (S) for the same crystal lattices as used in the
previous study. ' We shall display our results in Table I
in a form convenient for comparison with estimates of
p, (S) obtained from series expansions for the mean
cluster size. ' ' The probability p, (S) is the limiting
concentration of magnetic elements, in a random
(magnetically dilute) Heisenberg or Ising model of a
ferromagnetic crystal, below which there is no Curie
temperature. '4

A modification of the previously used' Monte Carlo
procedure, adapted for an IBM /090 computer, was
developed for numerically estimating the p, (S). We
present in Table I the mean critical probabilities in
100 runs in which Anally sV vertices are "wetted" by
the percolating "Quid. " In this study cV is either 1000
or 2000. For the three three-dimensional lattices for
which the coordination number z exceeded 4, the
storage capacity was quickly exceeded above iV=1000
and thus we are unable to give results in these cases
for 27=2000. The average rnachine computation time
per run is about 0.006 hr if %=2000. The value of P.
shown in Table I (plus or minus the standard deviation)
is the sample mean for those runs in which a higher p
was required to "wet" 2000 or 1000 vertices than to
"wet" 100 vertices.

We note 6rst that in those cases for which Monte
Carlo estimates are available for both X=1000 and
Ã= 2000 vertices "wetted" that these agree well within
the standard deviation for the mean. From Fig. 1 we
see that if p(S,rs) represents the expected probability
of site occupation at which m vertices have been
"wetted" then p(S,e) appears to approach P, (S)
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exponentially with e. This is similar to the behavior
of the numerical results for the "bond problem. '" Both
the agreement in the entries of Table I and the form
of the curves of Fig. 1 suggest that some con6dence
can be placed in the accuracy of the estimate of the
mean critical probability on "wetting" only 1000
vertices.

A number of tests of the self-consistency of the
numerical data, suggested by theory, can be applied:
(1) In all instances p, (S))p,(B); it is known that
p, (S)&p,(B).' (2) In accord with theory' p, (S) for
the plane square lattice is larger than (or equal to) —,'.
(3) In accord with theory"" the sum of p, (S) for the
plane hexagonal and triangular lattices is larger than
(or equal to) 1.

The Monte Carlo estimates of p, (S) and the esti-
mates obtained by Bomb and Sykes' and Rushbrooke
and Morgan' (at least for the three-dimensional la, ttices)
agree fairly satisfactorily, although the former are
uniformly about 5—10% higher than the latter. We
note again that p, (S), like p, (B), in all cases listed in
Table I appears to be little affected by differences of
lattice type if the number of dimensions and coordi-
nation number are the same. The probabilities p, (S),
like p. (B), increase with decreasing z, for fixed d, in
all cases cited in Table I. This increase of the critical

FIG. 1. Plot of p(S,e) vs I for the simple cubic and tetrahedral
lattices. Other lattice structures give a curve analogous to these.
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TABLE I. Critical probabilities (with d number of dimensions and s the coordination number of the lattice).

Lattice

Triangular
Square
Hexagonal
hcp
fcc
Simple cubic
Tetrahedral
Ice (quartz)

6
4
3

12
12
6

p, (s)
N =1000

0.487~0.021
0.575+0.017
0.683+0.020
0.204m 0.008
0.199+0.008
0.325&0.023
0.434&0.013
0.432+0.013

P.(~)
%=2000

0.493~0.018
0.581&0.015
0.688+0.017

~ ~ ~

0.436&0.012
0.433&0.011

p, (s)
(ref. 2)

0.51
0.55

0.6 &p. &0.75

0.28

p. (~)
(ref. 3)

0.36
0.48
0.49

p. (&)
(ref. 4)

0.48

0.18
0.28

P.(&)
N =2000

(ref. 1)

0.341a0.011
0.493a0.013
0.640a0.018
0.124&0.005
0.125+0.005
0.254a0.013
0.390&0.011
0.388&0.010

probability with decreasing s is less rapid for the "site
problem" than for the "bond problem. " A number of
simple algebraic relations between p, (S), s, and d can
be found which reproduce about equally satisfactorily
the numerical data in Table I. However, unless the
class of lattices under consideration is restricted (e.g. ,
to regular tessellation lattices), counterexamples to the

A

simplest such relations are easily obtained. For ex-
ample, if we let p denote p, (S) for the plane hexagonal
lattice, and let p denote p, (S) for the lattice of Fig. 2,
it is easily seen that

so p&p, although both lattices have s=3. Likewise, if
p' and p' stand for p, (B) for the plane hexagonal
lattice and the lattice of Fig. 2, respectively, then
clearly

FIG. 2. Plane lattice with s =3. This lattice has values of p, (S)
and p, (B) different from the values for the plane hexagonal
lattice.

so again p'&p'. Gilbert has constructed plane lattices
with s= 3 which have similar properties, and, in
addition, have both point symmetry and line symmetry.

As an internal check on the consistency of the
computer programs, p, (S) and p, (B) were computed
for a square lattice with all bonds doubled. Doubling
the bonds should leave p, (S) unaltered, while substi-
tuting 1—L1—p, (B)$'*for p, (B). Hence the results for
the usual square lattice lead us to expect values for the
square lattice with doubled bonds of about 0.575 for
p, (S) and 0.288 for p, (B). The values actually deter-
mined by the computer programs are 0.580~0.016
and 0.287&0.009.


