ANALYTICITY IN MANY-FERMION PROBLEM

self-energy parts; i.e., diagrams which are not skeleton-
like. This difficulty might be eliminated by reformulat-
ing the theory in terms of free-particle propagators and
introducing some graph-by-graph renormalization
scheme. However, the present formulation in terms of
true propagators and skeleton graphs turns out to be
particularly convenient for use in situations where
there is present a static crystal or impurity field. In any
case, the fact that quasi-particles are not stable implies
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that we cannot hope to find such simple relationships
here as those which occur in true particle-field theories.
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The many-body theory of impurity resistance which was developed in a previous paper is extended to in-
clude all corrections resulting from electron-electron interactions. The model used is a normal Fermi fluid
in the presence of a small but finite concentration of randomly scattered, fixed impurities. The resulting ex-
pression for the conductivity may be interpreted in terms of independent single-electron-like excitations, or
“quasi-particles.” The combined effect of the impurities and the many-body interactions causes these
quasi-particles to carry current at their group velocity; but there is no effective charge correction.

I. INTRODUCTION

N a recent paper! the author presented a theory of
impurity-resistance in normal metals using as a
model an interacting Fermi fluid and randomly placed
scattering centers. The physical picture which emerged
was that of single-electron-like excitations at the Fermi
surface scattering from screened impurities. Inter-
actions among these excitations, or “quasi-particles,”?
were assumed to be negligible. It is the purpose of the
present paper to complete the work of I by taking into
account all of the many-body effects. The resulting
expression for the resistivity will be exact to first order
in the density of impurities and to all orders in the
electron-electron interactions.

Although electron-electron collisions cannot con-
tribute directly to the resistivity, there are several
places where they play an important role in the theory.
Perhaps the most important many-body effect is the
screening of the impurities. In principle, however, this
effect is included exactly when one calculates the ampli-
tude for scattering of a single quasi-particle at an im-
purity according to the rules prescribed in I. This
amplitude, which includes even the exchange inter-
actions between the incident electron and the screening
cloud, is merely a basic ingredient of the independent
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1J. S. Langer, Phys. Rev. 120, 714 (1960), hereafter referred
to as I.

2 L. D. Landau, Soviet Physics—JETP 3, 920 (1957).

quasi-particle model. In this paper we shall be in search
of more subtle effects.

One possible many-body effect has been emphasized
recently in an article by Heine and Falicov.? These
authors point out that it may be incorrect to neglect the
interactions among the quasi-particles when calculating
their acceleration in an external electric field. For ex-
ample, the acceleration of a perfectly free electron gas
in an external field is independent of the strength of the
interactions between the electrons. If one uses an inde-
pendent quasi-particle model to describe this gas, one
destroys the Galilean invariance in a way which is quite
inappropriate to this particular situation and arrives at
an incorrect value for the acceleration. The introduction
of fixed impurities or a lattice removes the Galilean
invariance; but it is apparent that a purely kinetic
formulation of transport theory in terms of quasi-
particles requires careful examination from a funda-
mental point of view.

An even more subtle many-body effect, which ap-
parently has not been pointed out before now, involves
the current carried by a quasi-particle. In the usual
Landau picture, a quasi-particle of wave vector k
carries a current ek/m simply because momentum and
charge are conserved in electron-electron collisions.
When we make a dc measurement on an impure metal,
however, we measure the current over a time much
longer than any other time which appears in the prob-
lem. In particular, the period of the applied field must

3 L. M. Falicov and V. Heine, Phil. Mag. 10, 57S (1961).
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be very much longer than the collision time of the
quasi-particles. As a result, the argument based on
momentum conservation no longer is valid, and we
must be quite careful in calculating the quasi-particle
current.

A close analog of this situation occurs in the theory
of electron transport based on an independent Bloch-
wave model. In this model it is obvious that the elec-
trons are tied down to the lattice and that the correct
current is given by the group velocity of the Bloch
wave. In the present problem, although any particular
electron will bump into an impurity only very infre-
quently, the Fermi fluid as a whole is ‘“tied” to the
fixed impurities via the electron-electron interactions.
We shall see that this “tying down” of the Fermi fluid
makes a qualitative difference in the nature of the
single-particle-like excitations.

In order to solve this problem, we shall continue the
frontal attack which was begun in I. That is, we first
write down an exact expression for the conductivity o
in the form of an autocorrelation coefficient. This co-
efficient may be expanded, according to well-known
procedures, as a sum of many-body Feynman diagrams.
The idea is to rearrange and resum these diagrams in
such a way that ¢ is expressed finally as a simple func-
tion of more or less physical quantities, in particular,
the group velocity and decay rate for an individual
quasi-particle. It is assumed throughout that the con-
ditions for a “normal” metal! are satisfied; i.e., that
apart from certain renormalization terms, the analytic
properties of the exact propagators and vertex functions
which appear are the same as those of each term in the
relevant perturbation expansions. The mathematical
techniques developed in the preceding paper® will play
an important role in this work.

II. FORMAL EXPRESSION FOR THE
CONDUCTIVITY

The starting point for our theory will be Eq. (12.5)
in which® the conductivity o is expressed in terms of the
autocorrelation coefficient for the total current.

0 e,
—Im | edi(¥o| J(0)- J(t) | To)+—1. (2.1)

302 o ma

o=Ilim
a—0

This expression was derived in I by considering the
system of electrons and impurities in its ground state
¥, and slowly turning on a uniform electric field. In
(2.1), J is the current operator:

J=(e/m) >« kaylay, (2.2)

axt and ax being the usual creation and annihilation
operators for Fermions of momentum k;

J(t)=eiHtJeHE (2.3)

4J. M. Luttinger, Phys. Rev. 121, 942 (1961). See also Sec. V
in L.

8 J. S. Langer, preceding paper [Phys. Rev. 124, 997 (1961)],
hereafter referred to as II.
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where H is the complete Hamiltonian for the electrons
interacting among themselves and with the impurities.
Finally, © is the volume of the system, and #,=N/Q is
the number density of electrons. In principle, Eq. (2.1)
is to be averaged over random configurations of im-
purities as the last step in the calculation.
Let us define the function
F(O)=(To| T{J(0)- J()} | ¥0), (2.4)
where 7" means we are to write the operators J in order
of increasing time from right to left. Since only negative
values of ¢ occur in (2.1), there is no difference between
F and the autocorrelation coefficient which appears in
o. As defined by (2.4), however, § has a simple inter-
pretation in terms of many-body diagrams. In par-
ticular, § has the form of a vacuum-polarization graph
in which the external photon lines are replaced by the
operators J an the scalar product is to be taken. Due
to the presence of the impurities, we may expect F(£)
to diminish as |¢| becomes large. The dominant be-
havior of § will be that of a decaying exponential; but
we cannot rule out oscillating terms which may persist
to longer times. In any case, § must be integrable in
some generalized sense, and we shall assume that its
moments exist also.
In order for Eq. (2.1) to yield a finite value for o,
the terms proportional to ! must cancel out. That is,

2 0 e,
Z Im f §(Odim — .
3Q o m

This is a rather remarkable equation which, in fact,
gives us our first clue concerning the last of the many-
body effects mentioned in the Introduction. If there
were no impurities at all in the system, § would vanish
because ¥ would be an eigenstate of J with eigenvalue
zero. o then would be given correctly by e*2,/ma, which
simply expresses the acceleration of a perfectly free
electron gas in an exponentially increasing external
field. Thus Eq. (2.5) is correct only when there is a
finite concentration of impurities in the sample. On the
other hand, the right-hand side of Eq. (2.5) is inde-
pendent of the concentration of impurities. In the work
which follows we shall find a mathematical explanation
for this qualitative change in the nature of . A direct
proof of Eq. (2.5), using some of the analytical tech-
niques developed in the body of the paper, will be
found in Appendix A. It should be mentioned here,
however, that Eq. (2.5) turns out to be the f-sum rule
for a metal with a finite dc conductivity.

If we assume that Eq. (2.5) is correct, we may return
to Eq. (2.1) and write ¢ in the form

(2.5)

2 0
r=—Tm f 1t 5 ). (2.6)
3Q o

This expression may profitably be rewritten in terms
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of the Fourier transform of (¢):

1 @™
F(v)=—Ilim | &(f)e+nlddt, 2.7)
27 ™0J_,
F(v) has the familiar spectral representation:
1 p 1 1 1
F(v)=— p(v')dv { + , (2.8)
2w v 4v—in V'——u——i-r;l
where
o) =2 (Wo| J| W, 226(F,— Li—»), (2.9)

¥, being an eigenstate of H with energy £,. Inversion
of the Fourier transform for negative times yields

5(l)=fmp(u)e‘”’+’7‘dy, (t<0), (2.10)

where the convergence factor has been retained for use
in the next step. On inserting Eq. (2.10) into Eq. (2.6),
exchanging the order of integration, and integrating
once by parts, we find

2 @ 0
o=——f p(v)dv Imf tetrttnidt
39 0 —00

- ~—f (V)—é(u)du—-—ﬁf

14

(2.11)

)
ye=t0

as long as p(0)=0.

Now p is just the discontinuity across the branch cut
of F(v), and may be evaluated immediately by means
of the analytic techniques developed in IT. We see from
Egs. (I14-3) and (II 4-4) that only the simplest kind
of reduced graph (Fig. 8(a), paper II) contributes to
dp/dv as v — 0. Essentially what has happened here is
that we have expressed p in a form which, if the quasi-
particles were stable, would be a unitarity sum over
intermediate states containing well-defined numbers of
quasi-particle-hole pairs. Because a quasi-particle is
very nearly stable when its-excitation energy is small,
the above verbal description becomes more and more
accurate as » goes to zero. In particular, the factor
y*»~1 which occurs in Eq. (II 4.4) is the same phase-
space factor which would appear in a true particle-field
theory. As a result of this factor, the only nonvanishing
contributions to ¢ come from reduced graphs which
contain only a single particle-hole pair.

The relevant reduced graph is drawn in Fig. 1.
According to the prescnptlon given in II, the associated
contribution to ¢ is

XA (k 1’7k2,;#)B(k2)k1)M)Ai*(k‘Z,)k?)#)' (212>

IMPURITY RESISTANCE

IN METALS

I16. 1. Thereduced graph
associated with the con-
ductivity e.

V=0
>

In this expression, A and B .are the spectral densities
which determine the single-electron propagator in the
case of particle-like and hole-like lines, respectively.
These functions are discussed in detail in I and are used
extensively in II. Note that we no longer are using the
notation in which the chemical potential u has been
shifted to the origin [see Eqs. (I12.1) and (II2.2)].
The function A; represents the sum of all proper vertex
functions (or, alternatively, amplitudes for single pair
production) and is denoted graphically by a small shaded
circle in Fig. 1. The external photon line associated
with A; carries the interaction J; defined by Eq. (2.2).
An extra factor 2 in (2.12) accounts for a spin sum. It
should be emphasized that Eq. (2.12) is still an exact
expression for o.

III. IMPURITY EFFECTS

A detailed description of the procedure for including
impurity interactions in expressions like (2.12) has been
given in I. We shall use exactly the same technique
here; that is, we shall calculate with an impurity
potential

Ng

Vimp=2_ v(r— r,),

s=1

(3.1)

and then average over random configurations of these
impurities. In (3.1), V;=# is the number of impurities
and r, represents the position of the sth impurity in a
particular configuration. As a result of the averaging
process, the total momentum transfer at any impurity
site must be zero; thus the averaged graph retains a
sort of momentum conservation. Finally, remember
that each impurity site which appears in a graph con-
tributes a factor #;.

In order to see where the impurity effects occur in
Eq. (2.12), consider what happens to that equation in
the limit #;— 0. In the absence of impurities,

A4 (kik’7#) = B(k)k’)y’) ﬁoatfk"'ﬂ—z’(k,#)]ak,k’, (3'2)
where ex=%2/2m and Z’(k,u) is the proper self-energy
function evaluated at the Fermi surface. The vertex
functions A are perfectly well behaved in this limit:

€
Ak K ) — Ai(k,u)dw o =—kig(B)dx 1, (3.3)
ni—0 m
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where g(k?) is some dimensionless function of order
unity. If we were to insert Egs. (3.2) and (3.3) into
(2.12), we should find o to be infinite by virtue of a
delta function of zero argument. As discussed in I, the
effect of the impurities is to replace the delta functions
in (3.2) by sharply peaked distributions whose width
is proportional to #; Then the inﬁnity in (2.12) is re-
placed by a term of order n;7}, which is exactly correct
for a conductivity.

It follows that, if we want to evaluate the conduc-
tivity only to lowest order in the density of impurities,
we may use Eq. (3.3) for the vertex corrections and then
proceed exactly as in I. Our new result is

k' Nir| g (ki) |*

om’nur

—[T(kr)—T"(kr) T, (3.4)

o=

which differs from Eq. (I8.15) only by a factor g
The symbols occurring in (3.4) were defined in I as
follows:

nikF2ZVkF ™
P(kp)=——f |#+(kr,0) |2 sinbds; (3.5)
drur 0
7
T (kr) -——-———f |#+(kF,0) |2 cosh sinddd. (3.6)
92’ (k,w)
Ny l=td——| (3.7)
dw w=wk’
where wy’ satisfies:
e—wi’ —2' (kwi')=0 (3.8)

(The primes here indicate functions computed in the
absence of impurities.) #p= (dwi'/dk) | k=t is the group
velocity of a quasi-particle at the Fermi surface. Fi-
nally, # is the proper scattering amplitude for an
electron in interaction with a single impurity. & in-
cludes the electron-electron interactions to all orders;
but the two external electron lines must not contain
self-energy parts.

Now we must look for physical interpretations of the
various terms which occur in Eq. (3.4).

A. Relaxation Time
In I we defined the function

1 1
Skw)=— ———— 3.9
(k) 271 ex—w—2 (k,w) (3.9)

which is the single-particle propagator averaged over
configurations of impurities. S has a branch cut along
the real axis; and

IimZ (k, wtie) = A(kw) =T (kw), (3.10)
0

A and T being real. To first order in #;, I'(kp,u) =T (kr)

LANGER

as expressed in Eq. (3.5). This T', however, is not qu1te
the correct expression for the decay rate of a quasi-
particle. If we analytically continue S from, say, the
upper half w plane, through the cut, and into the lower
half plane, we generally find a simple pole at &
=FE—il'. Strictly speaking, T'x is the correct decay
rate.

In order to calculate I'y, we may expand = about the
point w=FEy and insert the resulting expression into the
equation

ex—a—2(k,»)=0. (3.11)
We find
_ _ 0z
— Ey+iTe—2(k,Ey)+— _ (@T=0 (3.12)
ow w=Ek
Thus B _
Ey~e—A(kEy); (3.13)
and
_ EY
142 (k, Ey) / ( 1| ) (3.14)
dw w=Ek
To lowest order in #;, these equations are
Ek= Ek—A(k,Ek), (3.15)
and B
f‘k=NkI‘(k,Ek). (316)

Finally, the expression relevant to the conductivity
calculation is

nlkﬁ T
D(kr) =t Vi f |+ (kiy0) |2 singde.  (3.17)
drup 0

The physical relaxation time must be:
Tl= 2[f(kp)—fl(kp)] (318)

The factor Nixr in Eq. (3.17) represents a wave-
function renormalization. That is, Ntr normalizes the
scattering states so that they contain one quasi-particle
rather than one electron per unit volume. This factor
will be discussed further in the next section.

B. Vertex Function

In the complete absence of impurities, it can be

shown that
Ai(k,wk') = ek.-/me, 1;=0. (319)

We see that, apart from the normalization factor Nz,
A is the expectation value of the current carried by a
quasi-particle. This expression, however, is not exactly
the vertex function which we must use in Eq. (3.4);
therefore we shall relegate proof of (3.19) to an appen-
dix. The difficulty is that (3.19) is valid only when T is
very small even when compared to the single-particle
level spacing. This will be true only if we keep N, fixed
when we let the volume £ tend to infinity. But this is
not what is meant by the limit #;— 0 in Eq. (3.3). The
correct procedure is to compute A for fixed #; in the
limit @ — o, and then let #,— 0. We now shall prove
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that, if we take these limits in their correct order, we
must replace the factor k;/m by the group velocity in
Eq. (3.19).

First let us consider any single electron line which
might occur in a vertex graph. The single-particle
propagator is

1 1
Srkw)=———"—" ax—
271 ex—w—1iay

+0forex>er

(3.20)
—0for ex<ep.

If we insert impurity interactions into S in such a way
that none of these interactions connect to other electron
lines in A, we find the function

1

_ 1
Sl(k,w)=———.

2 ek—w—iak—zl(k,w)

(3.21)

3 is the sum of all graphs in which the impurity inter-
actions form a proper self-energy part. For example,
the second order contribution to 2; is:

k=K
2,0 (k) = g )

k’ ek:—w~iak«

(3.22)

Note that:
I ® (k,w)=ImZ,? (k,w)

= (ni/Qm L |]%8(er —w) sgn(ew —er)
= (n,~/£l)1r sgn(w— EF) Zk’ 1'0125(61(/—0.)). (323)

As usual, 2; may be defined as a function of the com-
plex variable w with a branch cut along the real axis.
The final form of Eq. (3.23) implies that the physical
values of Z; are to be found for w just above the real
axis if w>er, and just below if w<er, i.e., along the
contour Cp.

It should be mentioned that, in order to be com-
pletely self-consistent, we should renormalize the calcu-
lation of S; so that the real part of =; vanishes at the
place where the w contour crosses the real axis. That is,
the impurities, and eventually the electron-electron
interactions, will shift the chemical potential from er
to u; and the ultimately correct w contour, C, will cross
the real axis at u. The impurity shift, however, is of
order 7;, and may be neglected for our purposes.

The point to be emphasized here is that I'i(kw)
always is finite and much larger than the single-
particle spacing. Thus the perturbation expansion for
S; in powers of #; diverges inside a region of radius
XTI (k,ex) about the point w=ex, even when ex= er.
Because of the special nature of the interaction J, it
turns out that there are diagrams in A in which the
entire contribution comes from just this divergent part
of Sy. It is in these “anomalous” diagrams that we find
deviations from Eq. (3.19).

The simplest anomalous vertex is drawn in Fig. 2.
In the complete absence of impurities, diagram 2(a)
vanishes because ex_q cannot be both >er and <er at
the same time. Diagram 2(b), of course, does not vanish.
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We may write the sum of all such diagrams, illustrated
schematically in Fig. 2(c), in the form

2mie
AW =—3 (ki—q:)
m q
@0 _ _ 41re2
Si(k—q, w)S:(k—q, w)dw——. (3.24)
— '

Now note that, if T';(k,w) remains finite even at w=y,
the quantity oy is meaningless in (3.21). We may drop
tax and perform the w integration along the contour C.
On closing this contour in the upper half-plane, we find

2

A (1>___1___Z(k —qi )__

2wt m q 7

“difex—q—w—A1(k—gq,0) 1(k—q, »)
f dw,

w [(ex_q—w—A1)*+T7] (3.25)

where A; is the real part of ;. [Remember that Eq.
(3.25) would be incorrect in the absence of impurities
even if we took S; to be the true one-particle propagator
including electron-electron interactions. It is absolutely
necessary that I'; not vanish at w=pu. ] The integrand in
(3.25) is sharply peaked near w= ex_q. Considered as-a
function of the momentum variable (k—q), I'; is very
nearly constant across this peak for sufficiently small »;
[see Eq. (17.19)]. If we let T'; become small, but still
much larger than the single-particle level spacing, we

may write

. 21F1
limA,® = hm-——e——— ——f —_—dw
nim0 02wt Ok; (ex—q—w)*>+ T2

—e—— T ——f 5 (ex_q—w)des (3.26)
a
=e— 2 — an( ) (k)7
ok; q q
€k —q <er

where Zox @ (k) is the first order exchange self energy.
The final form of Eq. (3.26) suggests that there
exists a Ward’s identity of the sort

ek; 9
limA; (k, w)—-—— e—72'(kw), (3.27)
ni—0 m  Ok;
where k and w here refer to the momentum and energy
of the external electron lines. To prove this identity, we
insert for each free electron line in A; the propagator
Sr; but omit ax and perform w integrations along Cr.
Any internal self-energy parts which “might occur
should be renormalized according to the rules given in
I, Sec. V. Once the nondifferentiable ai’s have been
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Fic. 2. Illustration of the role of impurity interactions in the
development of an anomalous vertex.

discarded, we can insert the vertex J; into any electron
line by writing
ek; e 0
Sr(kw)—Sr(kw)= ———‘—kSF(k,w). (3.28)
m i

1y

Ordinarily this relation would be incorrect because it
allows anomalous vertices of the kind drawn in Fig.
2(a). But these are just the graphs we want, as demon-
strated by Eq. (3.26). All possible vertex graphs may be
obtained by inserting J; in all possible ways into all
possible proper self-energy diagrams. We may label the
lines in any self-energy graph in such a way that the
external momentum k appears only along the open
electron line which runs through the diagram. The
right-hand side of (3.27) obviously inserts J; into each
segment of this open line. There may remain a number
of closed electron loops in 2’ but these loops make no
contribution to A;. Let us label the lines in any loop so
that a momentum variable k' runs around this loop
and appears nowhere else. Then we may insert J; into
each segment of the loop by differentiating with re-
spect to k. The result is a total derivative of a smooth
function (no iax’s) to be summed over k’, and this sum
obviously vanishes. This completes the proof of (3.27).

Asin I [Eq. (I7.15)], we now apply Egs. (3.7) and
(3.8) to find

Ai(k,wk') = ez\’k‘ldwk'/dki: eNk"lui(k) 5 (329)
thus
g(kp?)=mup/krNkp. (3.30)
Finally :
EkPUPT  NLET [MUF
== ( ) (3.31)
3n? m kp

IV. QUASI-PARTICLES

The reader will note that, although the term “quasi-
particle’” has been used often throughout this paper, the
final expression for ¢ in Eq. (3.31) really has been de-
rived without reference to any particular quasi-particle
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model. In view of the fact that such models recently
have generated some controversy in the literature?®
we conclude this work with a discussion of those prop-
erties of a quasi-particle which may be deduced from
the analysis leading to Eq. (3.31).

Let us define a quasi-particle to be that excitation of
the Fermi fluid whose propagation is described by the
single-particle propagator in the absence of impurities;
ie.,

1 1

S'(kw)=— ————— 4.1
(ee) 271 ex—w—2' (k,w) (1)
S’ has a pole at w=wy; and wi’ must be the energy of
the quasi-particle of wave vector k. Remember that
wyx’” has an imaginary part which vanishes only at k= kp;
i.e., these excitations are not stable except at the Fermi
surface.

The current carried by a quasi-particle may be de-
duced from the vertex function A;. This function con-
tains the expectation value of the operator J=eP/m.
Just as in the case of the scattering amplitude ¢+, A must
be multiplied by the normalization factor Ny in order
for it to measure the current in a state normalized to a
single quasi-particle per unit volume. Thus, from Eq.
(3.19),

Ji=ck/m, (4.2)

n;=0,

in the case of perfect translational symmetry. When
there is a finite concentration of impurities, however,
Eq. (3.29) implies

Jk = €Uy. (43)

As mentioned in the Introduction, Eq. (4.3) is in exact
analogy with the case of Bloch waves. In each case there
exists a persistent perturbation arising from fixed scat-
tering centers; and in each case the expectation value
of the momentum leads to the group velocity. Experi-
mentally we may bridge the gap between Eqs. (4.2)
and (4.3) by changing the frequency » of the external
field. Equation (4.3) was derived on the assumption
that »7<1. Direct evaluation of a few graphs easily
shows that the anomalous vertices vanish when »7>>1.
Thus we may expect Eq. (4.2) to be the correct form
of the vertex function in the high frequency limit.
Equation (4.3) is in direct opposition to the theories
of Falicov, Heine, and Stern,*¢ although our picture of
a quasi-particle is very much the same as theirs. When
there are impurities in the system, the single-particle-
like excitations form a wave packet. Because of the
smearing of the Fermi surface in momentum space,
this wave packet must be localized within a region of
size Ax~uy/T, i.e., the mean free path. The present
paper differs from those mentioned previously only in
that we assert that this wave packet must be normalized

8 “The Fermi Surface,” Proceedings of the Cooperstown Confer-
ence, New York, 1960 (John Wiley & Sons, Inc., 1960). In par-
ticular, see the papers of L. A. Stern, L. M. Falicov, and J. M.
Luttinger.
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to unit charge. We now present two arguments in sup-
port of this assertion.

First, we compute the proper vertex function Q (k,w).
Q is the same as A; except that the external interaction
line measures the charge density rather than the cur-
rent. We may insert this interaction into each line of a
proper self-energy diagram by using the relation

e 94
SF(k,OJ)ESF(k,w) = —_SF(kiw))

T 0w

(4.4)

which is valid whether or not Sy contains the term
iax. Then the Ward’s identity appropriate for Q is

Q(kw)=e(149Z"/dw), (4.5)

which may be proved by the same argument which led
to Eq. (3.27). When we evaluate Q on the energy shell
(w=wy") and multiply by the normalization factor Ny,
we find for the effective charge of a quasi-particle

&= inQ (k,wk') =e. (46)

The second argument runs as follows. Suppose we
solve our entire problem in the presence of a uniform
scalar potential ¢. Then we expect the quasi-particle
energy to be wi'+&xp, €k being the effective charge. In
the free-particle propagator Sr, e is replaced by ex+e¢;
and we must make this modification when computing
self-energy graphs. But this modification can have no
effect on a closed electron loop because ¢ can be elimi-
nated simply by displacing the zero of the energy vari-
able which runs around the loop. We may account for
the entire change in =’ by replacing the external energy
w by w—ep. The new quasi-particle energy satisfies

ex—w+ep—2' (k, w—egp)=0. 4.7
We know that this equation has the solution
w—ep=uwy ; (4.8)
thus
éx=e. (49)

It should be emphasized that the intrinsic charge as
discussed here must be thought of as the unscreened
charge of the quasi-particle. The proper vertex Q ac-
counts for no vacuum polarization parts which might
be inserted into the external interaction line. Such
polarization graphs can have no effect on the current
carried by the quasi-particle or its energy in a constant
external potential. Of course, collisions between quasi-
particles or between quasi-particles and impurities
proceed via screened interactions; that is, one must
correct for the dielectric constant of the Fermi fluid.
It would be a mistake, however, to try to account for
this screening by modifying the effective charge.

Equation (3.31) now may be seen to follow exactly
from a kinetic theory formulated in terms of inde-
pendent quasi-particles. For the acceleration due to an
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electric field E, we write
dk/dt=¢E; and dwy'/dt=Ji-E=ecuy-E. (4.10)

We take the unperturbed distribution of quasi-particles
to be the Fermi function f; evaluated at zero tempera-
ture. The Boltzmann equation is

af ag
— = — €Uy * E=5(0Jk/"—,u)€uk' E
Ot | field Jwy
(4.11)
of I=/
9¢ | collisions Tk
Thus
2¢?
o=— Z 5(wk'—y)uk- UrTk
3Q x
(4.12)

2¢? €T [ MU p
=—Z5(k—kp)uka= ( )
3Q x m kr

APPENDIX A. DIRECT PROOF OF EQUATION (2.5)

We offer here a direct proof of the equation

0 3Ne?
Imf F()dt=— ,

2m

(A1)

for systems in which there is a finite concentration of
impurities. ‘

First we may obtain a diagrammatic prescription for
evaluation of the left-hand side of (A.1) by inserting
the spectral representation of § as given in Eqgs. (2.8)
and (2.10).

0 0 0
Im f 5(0)di=1lim I f it f p(v') exp (iv't4ni)ds’
— ki —0 0

® dv'
— —Tmi f p(/)—=n ImF(0). (A.2)

7
14

Because p(v)~v, the real part of F(0) must vanish,
and we may rewrite (A.1) in the form
F(0)=—1(3Ne*/2rm). (A.3)

F(v) is the same vacuum polarization part which we
have been discussing throughout this paper. To evalu-
ate F at »=0, we close the single-particle propagator
upon itself to form one of the external vertices and then
use Eq. (3.28) to insert the second vetex into each
electron line in the graph. S is considered to be averaged
over configurations of impurities; and it is to be empha-
sized that use of Eq. (3.28) is not justified unless the
density of these impurities is finite. The resulting
graph consists of a number of independent closed
electron loops. According to the discussion leading to
Eq. (3.27), we need consider only those graphs in which
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both external vertices appear on the same loop. Thus

e 3 9
>3 k— | dw S(kw) expiw0t. (A.4)

2rim =1 ¥ Ok;J¢

F(0)=

But
fdw S(k,w) expiwlt=— (¥o| axtax| ¥o)= —n(k), (A.5)
¢

where #(k) is the occupation probability of the state
of wave vector k. Again we invoke the presence of the
impurities so that we can say that #(k) is a continuous
function, even at k=kr. Roughly speaking, the im-
purities tend to smear the Fermi surface in momentum
space, removing the discontinuity described by Lut-
tinger. This may be seen easily by inserting in the left-
hand side of (A.5) a propagator in which the discon-
tinuity across the cut does not vanish at w=pu. Thus we
may integrate over k by parts to find

e 3 an(k)
PO)=——— % Tk
2wim =1 x Ok,
3ie? 3ie?
=— > n(k)=———N. (A.6)
2rm x T

Equation (A.6) is a special case of the f-sum rule:

2nfon=Né,
2m | (¥o| J| W)

0n )

3 E,—Eq

(A7)
where

2

(A.8)

according to Egs. (2.8) and (2.9). This sum rule usually
applies to longitudinal external fields of finite wave-
length. Because of the impurities, we are able to write
Eq. (A.7) for the case of an applied field which is
strictly uniform.

APPENDIX B. VERTEX FUNCTION,
EQUATION (3.19)

When the many-body system is translationally in-
variant, we may obtain the vertex function A in the
following manner. We insert the external interaction J;
into each line of the propagator S’ by writing

Li(k,4,t) = (¥o| T{ax ()T :(t)ax"(0)} | ¥o), (B.1)
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so that:
Li (k,w,v)

=4_r_; f dt f dt’ £;(k,tt') expiwt expiv(t—t') (B.2)

=5"(k, o+»)A;(k,w,»)S" (kw).
The translational symmetry of the system implies that

L,(k,t )= (e/m)k:S’ (k,t) for t>¢>0;
=—(e/m)k:S"(k,t) for 0>¢>¢;
=0 otherwise.

(B.3)

If we substitute this expression for £ into Eq. (B.2),
we find

L‘i(k)wﬂ})
eki @ ¢
= J dt f dt’ S’ (k,t) expiwt expiv(t—1')
d7’m 0 0
i 0 0
— dtf dr’ S’ (k,t) expiwt expiv(i—t) (B.4)
47T2m —w t
eki 1
=———[5(k, o+»)— 5" (kw)].
m 2wy
Thus
A(k,w,v)=— - ]
m 27riv[S'(k,w) S’ (k, wtv)

(B.5)

=(~3E[1+2'(k, w—l—v)—z'(k,w)].
m v

Equation (3.19) is obtained by letting » go to zero and
choosing w=wy/'.

It is also of interest to consider the vertex function
when J is defined to be

e
Ji= E_T}gfi(Q) =lim— 3 (ki+3¢:) s qfax.  (B.6)

0y x

In this case we are concerned with only the localized
part of the current fluctuation; and Eq. (3.29) (involving
the group velocity) is the correct form of the vertex func-
tion. This result may be proved directly using tech-
niques of the sort developed in this paper. It is relevant,
for example, to the theory of anomalous skin effect.



