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A resonance model is proposed to explain the excitation function, the angular distribution, and the large
polarization of A. in the reaction p+m ~ h.+E'. It is assumed that there exists a low angular momentum
resonance in the channel p+2I- —+ (resonant state) —& A.+It'.

There are 6ve real parameters in this model. Two of these are the coupling constants of the usual inter-
actions. The other three are the position, half-width, and height of the assumed resonance. With reasonable
choices of parameters a fairly good fit is obtained, for both a scalar and a pseudoscalar E meson, to the
experimental data in the interval 910 to 1300 Mev of the pion kinetic energy in the laboratory system.

I. INTRODUCTION AND SUMMARY

HERE are three remarkable features observed in
the reaction P+sr -+A+Ee in the energy in-

terval 910—1300 Mev of the incident pion kinetic
energy. ' They are:

(a) The total cross section rises from threshold to a
peak of about 0.8 mb near 960 Mev and then drops
again to about 0.3 mb in the interval 1100—1300 Mev.

(b) The angular distribution of A is similar in the
interval 910—1300Mev and markedly peaked backwards.

(c) A large asymmetry is observed in the decay of
A's produced in the reaction in the interval 910—990
Mev. Conclusive evidence concerning the asymmetry
factor n in A decay is limited to the relation otP &~ 0.'l3
&0.14, where I' is the average of the polarization over
the energy and angle.

The sign of e is still uncertain, but a more recent and
statistically more reliable experiment indicates that it
is negative. '

There have been several investigations' based on the
possible existence of a new E' meson or a sharp E—m

resonance, explaining the angular distribution. The
existence of a E' meson does not, however, account
directly for either the large polarization or the peak in
the total cross section, at least within the approximation
considered by the authors of reference 3.

In this paper we try to give an explanation of all
three experimental phenomena on the basis of the
assumption that there is a resonant contribution in the
s' integrals of the dispersion relations (8) in Sec. 2 for
the invariant production amplitudes (see Fig. 1).

There are Ave real parameters in this model. Two
of them are the coupling constants of the usual
d'Espagnat-Prentki interactions. The other three are

the position, half-width, and height of the assumed
resonance.

The main results of the present paper are as follows:

(1) A satisfactory fit with experimental data is
obtained over the energy range in question )Figs. 3 to
5(b)$. The values of parameters chosen are shown in
Table II for both a pseudoscalar and a scalar E meson.

(2) If this resonant contribution is due to the sug-
gested resonance in the A —E scattering, it will be at
about 100 Mev of E-meson kinetic energy in the
laboratory system, with a half-width of about 50 Mev.

(3) The total angular momentum and parity (relative
to the rr E) of the—resonant state can be (j= sr, odd)
or (j=-,', odd) if the Emeson is 'pseudoscalar and
(j=-,', even) or (j=-'„even) if the E meson is scalar.

(4) The resonant contribution cannot be attributed
to the higher energy resonances observed in w —E
scattering. 4

(5) A negative value for P is preferable, though the
other case is not entirely rejected.

(6) Even relative parity between Z and A is preferable.
(7) A E' meson (or E rr resonance) wou—ld enhance

the peak in the case of a pseudoscalar E meson, though
its existence is completely unnecessary in order to
explain the data in the case of even Z parity.

The kinematics is given in Sec. II. In Sec. III we
develop the general formalism of the resonance model.
The last section is devoted to numerical analysis.

II. KINEMATICS

Consider the process

p+sr —+ A+ E'.

Fxo. i. The assumed reso-
nant state in the s channel.

Re$0naat
State

4 An investigation has been done by T. Sakuma and S. Furui,
taking into account the m —N resonances in addition to the Born
terms (private communication).
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The four-momentum and the mass of the p (A) are
denoted by P (P') and m (m'), while those of the ~ (EP)
are denoted by k (k') and p (p'), respectively. The
S-matrix element of the process is given by

dg 1 mm' A,
"

=L I f~ I'+
I fp I'+2 «(f~fp*) cos8j,

dQ (kr)' W' k

with

( mm
S=—Z(2')'B(p'+k' —p —k) I I T, (2)

E pppp kpkp )
P(8)= 2 sin8 Im(fop*)/

[If, l +I f, l
+2 Re(f,f,*) cos8j, for I'

e k'Xk
T= 4 y i 2 for F=1,

kk'
(4)

T=u, (p')r[A+ ',fy(k+-k')Bju„(p), (3)

where u„and uq are the Dirac sponsors of p and A,
respectively. A and 8 are invariant functions of three
variables,

s = —(p+ k)' t = —(k—k')' and u = —(p —k')',

which satisfy the restriction s+t+u= m'+m"+u'+ p".
1 is 1 if the E meson is pseudoscalar and y5 if the E
meson is scalar, where we have adopted the convention
of the same parity for p and A.

In the center-of-mass system the amplitude T can be
written in the following form:

The polarization is positive if the spin of A is parallel
to k'Xk, and negative if antiparallel.

It is worthwhile to note here that in order to obtain
a large polarization f~ and f, must be of the same order
of magnitude and nearly out of phase in either case of
E-meson parity.

III. RESONANCE MODEI

I et us start with investigating what behavior might
be expected for the invariant amplitudes in order to
reproduce the experimental situation mentioned in
Sec. I.

We assume, after Mandelstam, ' that the invariant
amplitude A satisfies the dispersion relation

or
ek ok'

r w y, + f, p) roar=&, .
A; k'

(4')

Here
I p) and

I
A) stand for the Pauli spinors of p and

A, respectively. k (k') is the three-momentum of m. (EP)
and k (k ) is its magnitude. f~ and fp are linear combina-
tions of the invariant amplitudes A and 8 with real
coeKcients. They are explicitly given by

A(s, t,u) =
s—m' N —m~'

p~p(s t)
dt'

t »(s',u')
du' +pi(s') +, (8)

Q —N J

f,=NN'(A y,B)+fp cos—8,

fp= NN'xx'(A+s—.B), for I'= 1,
(5)

with

f& NN'x(A+ypB——),
fp NN'x'( A——+spB), —for I'=yp,

N = [(E+m)/2m jl, Ã = [(E'+m')/2m']l,
x=k/(E+m), x' =k'/(F'+m'),

y.=W——', (m+m'), yp=W ——,'(m' —m),

s,=W+-,' (m+m'), sp ——W+-', (m' —m).

(5')

(6)

Here W=gs is the total center-of-mass energy of the
system and E(E') is the energy of p (A). 8 is the angle
between k and k'.

The differential cross section and the polarization
P(8) are given in terms of f& and f& by

da- 1 mm' k'
=(If I'+Ifpl'»n'8),

dQ (4m)' W' k
(&)

2 sin8 Im(f~fp*)
P(8) = for I'=1,

If~I'+I fpl sin'8'

and the amplitude 8 satisfies a similar relation. The
dots represent the other double- and single-integral
terms that occur in the Mandelstam representation. If
there exists another E' meson, ' we must add a cor-
responding pole term R,/(t mx") —to (8), where mx'
is the mass of the E' meson.

Invariance under time reversal requires the reality
of all the residues R„E„,and R& and of the weight
functions p's in all the integrals. Now it is clear from
(5) and (5') that the Born terms alone, even taking
into account the E' meson, fail to give any polarization
irrespective of the E-meson parity, since f& and f& are,
to this order, just in phase. The large polarization
indicates that the contribution from the s' integral in
(8) must be large, at least over the energy range in
question, since only the s' integral can contribute an
imaginary part to the amplitudes in the channel in
question.

Now we assume that there is a resonant state with
definite angular momentum and parity in the s channel,
schematically shown in Fig. 1, whose contribution
dominates the integral terms in (8), or explicitly that

5 S. Mandelstam, Phys. Rev. 112, 1344 (1958) and 115, 1741
and 1752 (1959).
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Tanrz I. a&(s,8) and o2(s,8) for several choices of the total angular momentum j and parity P of the resonant state. The parity is
dehned relative to the m —p intrinsic parity. l is the orbital angular momentum of the resonant state if it is involved in the &—E
scattering. C(s) is a certain slowly varying real function of s.

Pseudoscalar E meson Scalar E meson

S
P

c(s)
C cos9

C(3 cos'0 —1)
2C cos9

C(3 cos'8 —1)
C(20 cos'0+9) cosg

0
C

—3C cos6I
C

3C cos8
C(20 cos 0—»)

P
S

P
D

0
C

2C cose
C(3 cos'8 —1)

2C cos8—C(5 cos'0 —1)

c(s)
0

C
3C costII

—C(5 cos'e —1)
2C cose

A=A~+-
~,

"

(m+y) '

p (s',8)
dS

S —S
/

the invariant amplitudes can be approximated by Here n(s, 8) and P(s,8) are slowly varying functions of s.
r, corresponds to the half-width of the assumed
resonance.

Putting (10) into (5) or (5'), we obtain Anally, for

(9) I'=1,

B=B~+
(m+V) '

p8(s', 0)
ds

S —S/

with

fr = f~r+ f„s COS0+ar(S, 8)J(S,Sp,rp),

fs= f, s+a(ps, 8)J(s,sp, rp),

f„t NN'(A„——y,B~), —

f„s NN'——xx'(—A„+s,B„),

a, (s,8) = NN'(n y,P)+a.(s,0—) cos8,

a, (s 0) = —NN'xx'( +s,P),
I'02

A(s,8) =A„+n(s,8) ds'
x ~ (~„) I'02 ds

J(s,sp, rp)

.(
'—)[( ' —o)'+ro'j

(1o) or, for r=1„
x .(.,+„)2 (s' —s) [(s'—sp)'+rp'j

2

B,s,8) =B~+P(s,0) "(m+p)
fr= f t+ar(S 8)J(S,Sp,rp),

fs f„..+as(S,8)J——(S,Sp,r p),

ds

where A„and B„represent the pole (Born) terms. p"
and p~ are real functions of s' and 8, which have a peak
at the resonance energy s'=so. If we, further, assume
the Breit-Wigner form to p's, (9) can be reduced to

(12a)

(11b)

X
(s —s)L(s s )'+ro'j

T» (Mev)—

I.O-

9IO 960 990 IIOO 1200 1300
I I I I I I

I
1,0—
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I

9IO 960990
I I I

I I I

I100
I
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I I

I

E—.8—
O
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0.4

0.2

o.&
a
I- 2

0 I

0 0.5
I I I I .I

I.O I.5 2.0 2.5 5.0
K Meson Momentum ( p = I unit )

-0.2

-0.4

(s-s,)/r,

FxG. 2. The real and imaginary parts of J as a function of
(s—sp)/rp. The upper scale of T corresponds to the case sp = 152.8
and Fp=7, while the lower scale is for sp=151.5 and I'p=5.

FM. 3. The total cross section of the reaction p+m- ~ A+E
in the energy range from the threshold to 1300 Mev of the pion
kinetic energy T (lab system). The unbroken curve is the cal-
culated cross section in the case of a pseudoscalar E meson with
a (j=~, odd) resonant state, while the broken curve is for a
(j=-'„odd) state. The dot-dash curve stands for the cross section
of a scalar E meson with a (j=-'„even) resonant state. The cross
section with a (j=-„even) state is quite similar to the corre-
sponding one for the pseudoscalar E meson. The values of
parameters chosen are given in Table II. The experimental data
are given in references 1.
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TAnrz II. The choices of parameters in the case of even Z parity. The p.—iV coupling constant is 6xed as f /kr=IS. The unit io= 1
is used. The ratio C/f„q(s= so, 8=or/2) gives an idea of the magnitude of the resonant contribution. The E-meson kinetic energy (lab
system) TKp and ATJ p, corresponding to sp and &I'o, are also shovrn.

E meson G'/4x

5.0
5.0

f'G'/fG

—0.538—0.538

(ClfG) X lo C//~ o(&o,or/2)

10.0 0.465
6.8 0.316

Sp

152.8
151.5

Tap (Mev) ri Taco (Mev)

106.5 &30
91.5 +25

5.0
5.0

+0.570
+0.570

10.4
7.0

1.07
0.722

152.8
151.5

106.5
91.5

~30
~25

with

f„i=NN'x (A„+ypB„), f~s NN'——x'(A, + so B~),

ai(s, e) =NN'x(e+ypP), ai(s,8) =NN'x'(u+spP), (12b)

and the same J as in (12a).
The angular momentum and parity of the resonant

state Axes the angular dependence and relative mag-

nitude of ai and a& in (11a) and (11b). They are given
in Table I for several angular momentum states.

IV. NUMERICAL ANALYSIS

We discuss first the Born terms f„i and f„s in (11a)
and (11b). We are here concerned with four vertices
(orNN), (orZA), (EN/t), and (ENZ). The renormalized
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Fro. 4. (a)—(e) The differential cross
sections for the pion kinetic energies T =910,
960, 990, 1200, and 1300 Mev. ' The notation
for the various curves are the same as in Fig.
3.
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(Ps, even):

f„r=NN'[ (W——m)F(s)+ (W+mz m—m—')

XF'(u)], (13 )f„s= iVN'xx'f(W+m)F(s)
—(W—mz+ m+ m') F'(u) ];

(ps, odd):

f~r NN'[ ——(W—m—)F(s)—(W—mz) F'(u) ],
f„2 NN——'xx'$—(W+ m) F(s)+ (W+ mz)

XF'(u)];

(13b)

coupling constants corresponding to these vertices are
denoted by f, f', G, and G', respectively. f and G, and
f' and G', always appear as products in the Born terms.
For the four combinations of E and Z parities, they
are given by

0/

100

80-

60-

-40
I

20

0
& 1.0 8 .6 4 .2 0 -.2 -.4 -.6 ' -.8

COSe
-20-

T~=910-990 Mev

(s, even):

f„r= NN'x[(—W+m)F(s)
+ (W+ mz —m'+m) F'(u) ],

(13c)
f„2= NN'x'f(W —m) F(s)—

+ (W—mz+m' —m)F'(u)];
(s, odd):

f„r= cVN'x[(W—+m) F(s)
—(W—mz —m'+ m) F'(u) ],

(13d)
f~s = NN'x' L(W m—)F(s)—

—(W+m +m' —m)F'(u)];
with F(s) =Gf/(s m'), F'(u) =—G'f'/(u ms'). —

0/

100

80

60

4p

~20
I

I

lp .8 .6

(a)

.4 .2 0

Now we examine the case of pseudoscalar E meson
in detail. First it should be noted that f» is negligibly
small compared with f~r over the energy range con-
sidered, simply because of the kinematical factor xx'.
We can see, further, that the only complex quantity in
(11a) is the integral J, the real and imaginary parts of
which are shown in Fig. 2. Then, if we neglect f», the
differential cross section and the polarization become,
except for over-all kinematical factors,

do—~ [f„rs+2arf„r Ref+ (aP+a2s sin'8)
~
J~']

dQ

F(8) ~ —2arf~r sino ImJ/(do/dQ).

Now it is clear from (14) and Table I that the only
possible quantum number of the resonant state is
(j= z, odd) or (j= zs, odd), since the (j=—',, even) state
gives no appreciable polarization, and the. (j=z, even)
and the higher angular momentum states give a wrong
angular dependence for the polarization and a poor
angular distribution, too. This excludes the possible
identification of this resonance with one of the known
higher energy resonances observed in pion-nucleon scat-
tering. A similar situation results in the scalar E-meson
case. Thus, the assumt„d rt;sonant contribution might

-20— „,cos 8

-40"

-60-

-80

T~ =990 Mev

I I I

(b)

I I I I

Pro. 5. (a) The polarization of A in the energy interval 910-990
Mev of the pion kinetic energy. ' The group c of curves corresponds
to the energy 910 Mev, while the group b is that for 990 Mev. The
notation for the various curves is that given in Fig. 3. The data
are not P{8) bnt oP(8), where a is the asymmetry factor in the
decay of the A. (b) The polarization of 4 at 990-Mev pion kinetic
energy'. The curve u is associated with the energy 1240 Mev,
which shows the typical Ggure for an energy higher than the
resonance energy.

be attributed to a resonance in A —E scattering at low
energy.

There are five real. parameters in this model. They
are fG, f'G', ss, I' s, and C(s), the last of which is a slowly
varying function of s and is assumed to be constant for
simplicity.

The markedly forward peak (backward for A) of the
angular distribution must be mainly due to this behavior
of the Born term f„r, since otherwise the distribution
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turns out to be nearly symmetric with respect to cos8.
In this respect, even parity of the Z is preferable to odd
parity, since with the even parity we can easily obtain
the strong forward peak of f» over the energy range
in question if the ratio fG'/fG is adjusted properly.

It is worthwhile to note here that a E' meson would
be helpful in obtaining the peak only in this pseudo-
scalar E-meson case, though it is not at all necessary
for the case of even Z parity.

In the. case of even Z parity, a fairly good fit with
experimental data is obtained by fixing the parameters
as shown in Table II. The choice of either (j=-'„odd)
or (j=-,', odd) is satisfactory. The fit can be seen in
Figs. 3 to 5 (b).

The resonance energy chosen corresponds to 90—100
Mev for E-meson kinetic energy (lab system) in the
A —E scattering. The half-width is about 50—60 Mev.
The resonant contribution is the same order of mag-
nitude as the Born terms, which is-well indicated by
the ratio C/f„r (s=ss, 8=m/2). As for the coupling
constants, if we fix f'/47r=f"/4m =15, then we obtain
a best fit with G'/4 .s5 and G"/47r 1.5 ' which are
reasonable.

With a positive ratio C/fG (Table II), we have a
negative mean polarization P, as shown in Figs. 5(a)

'See, for example, R. H. Capps, Phys. Rev. 121, 291 (1961).

and 5(b). A negative ratio with a positive P is only
possible with a rather poor over-all fit to the data.

Finally we brieQy discuss the case of a scalar E
meson. In case of even Z parity, Eq. (13c) indicates
that f~s is about ten times smaller than f„, over the
energy range in question. Further, if we note that each
of two terms in f~r of (13c) is almost the same numeri-
cally as the corresponding term in f» of (13a), except
for their relative sign, we can see that the analysis may
proceed similarly to that in the pseudoscalar case. In
fact, we can get the same good fit with almost the same
absolute values of the parameters for each of the cor-
responding two resonant states (Table II). In Figs. 3
to 5 (b), only the fit in the case of (j= sr, even) is shown
for simplicity. It is very dificult to obtain a good fit
with. odd 2 parity in this scalar E-meson case.
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