PHYSICAL REVIEW VOLUME

123,

NUMBER 3 AUGUST 1, 1961

Theory of Average Neutron Reaction Cross Sections in the Resonance Region*

P. A. MOLDAUER
Argonne National Laboratory, Argonne, Illinois

(Received February 2, 1961)

The scattering matrix for compound nucleus processes is studied in the R-matrix formalism, using a series
expansion which is due to Thomas. It is shown that this series generally converges when (a) the average
total resonance width is less than the average resonance spacing, (b) the number of important channels is not
too large, and (c) the width amplitudes have random signs. The treatment also suggests strongly that the
series does not converge in the continuum region. In the region of convergence the exact relationship between
the channel transmission factor 7. and the ratio of partial width to level spacing is found, in the absence of
direct scattering reactions, to be T'c=2m(I"\o)/D—=XT'\)?/D?. The quadratic term is shown to be important
in the vicinity of optical-model maxima. Correction terms to the Hauser-Feshbach relations for average
reaction cross sections arising from the higher order terms of the series are obtained and are found to depend
on the statistical properties of both resonance widths and resonance spacings. The effect on average neutron
inelastic, compound elastic, and capture cross sections is discussed and an example of a calculation is

presented.

I. INTRODUCTION

HE development of improved experimental tech-
niques, as well as the needs of technological
applications, have resulted recently is precise measure-
ments of neutron reaction cross sections averaged over
resonances for neutron energies up to several Mev.!
Given correct theoretical interpretation, such data can
yield information of interest in the study of a number
of topics of nuclear structure. Thus the analysis of
average cross sections for radiative capture, charged-
particle emission, or multiple-neutron emission yields
information on the statistical properties of highly
excited nuclear states. Average elastic and inelastic
scattering cross sections can be used to determine
optical model parameters and to identify low-lying
states of the target nucleus. The examination of average
fission cross sections may be expected to yield knowledge
about the fission process.

The formal theory of resonance reactions has been
highly developed in several different ways. A summary
of these theoretical structures has been given by Lane
and Thomas.? In order to calculate average cross sec-
tions it is more convenient to adopt the R-matrix
formalism of Wigner and Eisenbud® because in the
otherwise simpler Kapur-Peierls formalism* the strong

* This work was performed under the auspices of the U. S.
Atomic Energy Commission.

1 Summaries of recent data may be found in Neutron Cross
Sections, compiled by D. J. Hughes, B. A. Magurno, and M. K.
Brussel, Brookhaven National Laboratory Report BNL-325
(Superintendent of Documents, U. S. Government Printing Office,
Washington, D. C., 1960), 2nd ed., Suppl. No. 1; and in “Tabu-
lated Neutron Cross Sections,” compiled by R. J. Howerton,
University of California Lawrence Radiation Laboratory Report
UCRL-5226, Rev. 1959 (unpublished), Part I.

2 A. M. Lane and R. G. Thomas, Revs. Modern Phys. 30, 257
(1958). See also G. Breit, Encyclopedia of Physics, edited by
S. Fliigge (Springer-Verlag, Berlin, 1959), Vol. 41/1.

3 E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).

4P, L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166,
277 (1938). For a discussion of the extreme low-energy s-wave
neutron scattering cross section employing the Kapur-Peierls
formalism, see G. E. Brown and C. T. DeDominicis, Proc. Phys.
Soc. (London) A72, 70 (1958).

energy dependence of the resonance parameters com-
plicates the evaluation of energy averages.® In the
R-matrix formalism, however, one is faced with the
well-known difficulty of inversion of the R matrix. This
problem was solved by Thomas by means of a power
series expansion of the inverse matrix.® In this study
we follow the method of Thomas and enlarge upon his
results in two ways. We study more closely the con-
vergence of Thomas’ series which had previously been
inferred by examination of the not yet typical second
term. Then we find the contribution to the cross sec-
tions of the higher order terms which had previously
been neglected. Since the formal reaction theory does
not provide values for its own parameters, we also make
the connection with the optical model of Feshbach,
Porter, and Weisskopf” by obtaining expressions for the
mode] cross sections.

Definitions are established and basic relations are
reviewed in Sec. II. Section IIT deals with the optical
model cross sections, and Sec. IV with other reaction
cross sections. The results are discussed and applica-
tions are given in Sec. V. The convergence of Thomas’
series is discussed in the Appendix.

II. DEFINITIONS

We shall employ the symbol ¢ (loosely called a
“channel”) to denote the collection of all quantum
numbers besides energy needed to specify the internal
and relative states of a scatterer and a projectile in the
absence of the scattering interaction. Thus ¢ implies
the internal states of scatterer and projectile, their
relative spin orientations and orbital angular momen-
tum, and, of course, the total angular momentum and
parity of the system. The rules for selecting and com-

5Still another formulation relating resonance parameters
directly to nucleon-nucleon interactions has been given by H.
Feshbach, Ann. Phys. 5, 357 (1958).

6R. G. Thomas, Phys. Rev. 97, 224 (1955). For other approaches
to the problem see T. Teichman, ibid. 77, 506 (1950).

7H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev.
96, 448 (1954).
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bining channels to obtain observable combinations of
states are well known and are not repeated here. De-
noting the normalized wave functions for incoming and
outgoing waves in channel ¢ in the absence of a scatter-
ing interaction by 9. and O,, respectively, the scattering
wave function for incoming waves in channel ¢ only is
asymptotically given by

V,20= g, =3 o UyuerOpr. (1)

Cross sections can be expressed in terms of the
elements of the scattering matrix U, in a well-known
way. Since we are interested in average cross sections
we shall place a bar over all fluctuating quantities to
indicate an average over an energy interval to be
described more precisely later. Calling 27X, the wave-
length of relative motion in channel ¢ and g, its statis-
tical factor,® we have for the average total, elastic,
nonelastic, and partial reaction cross sections in units
of mR7g.:

Fo(tot)=2(1—ReU..), (2a)
Fe(e)={[1=Uce|Dav, {4}uv=4, (2b)
G.(nonel)=1—{|U,c|%}av, (2¢)
Go,r={|Uc,er|H}av, c#C. (2d)

Here “elastic” means same entrance and exit channels
and not merely preservation of the internal state of the
scatterer. In addition the following cross sections in
the same units were defined by Feshbach, Porter, and
Weisskopf to facilitate the application of the optical
model which is a theory of U,,..”

o.(absorption)=T,=1—|U..|?, (2e)
oo(shape el)=g,(tot) —a.(abs) = |1—U..|2, (2£)

o.(fluctuation) =.(el) —o.(shape el) )
={|Uce|Yav—|Uce|2 (28)

According to the R-matrix theory the scattering
matrix is given by

Ucc’= Ucc’0+e_i(¢c+¢c')[6w'+zcucc']: (3)
where, according to Wigner,?

Weer =31 2, gregre’ (Eapg— E—31 2 grerguerr) ™ (4)
Ap o’

Here U..° is the part of the scattering matrix respon-
sible for nonfluctuating or direct interactions. It will be
assumed to include the contributions from all resonances
lying outside the averaging interval, so that the sum
over resonance indices A in Eq. (4) will be carried over
only those resonances whose resonance energies Ey lie
within the interval being averaged over. The partial
and total widths of the resonance \ are given by

I‘)\czg)\c2,
I‘)\=Zc T
8 E. P. Wigner, Phys. Rev. 70, 606 (1946).

®)
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We shall require the averaging interval to be large
compared to the spacing of resonance levels E, and
large compared to any of the total widths T') in the
interval. But we want the interval to be small enough
that d, and O, and hence the channel phase shifts ¢.,
the level shift factors S., and the penetrabilities P,
remain essentially constant in the interval.® Then we
may assume that the channel boundary conditions of
the R-matrix theory have been adjusted in each interval
so that all the shift functions vanish in the interval,
and hence we have for all resonances within the interval

Eyy=0\E,. (6)

According to an argument of Porter and Thomas, one
expects in an interval such as that described above
that the g, for a given ¢ are randomly distributed in A
and that the distribution is normal with zero mean.!
This has, first of all, the consequence that the g\, have
random signs. Secondly, the only parameter required
to describe the gi. is their variance which by Eq. (5)
equals the average partial width (I'\;). The brackets
( ) will be used throughout to indicate an average
over all resonances in the averaging interval. The
partial widths themselves are distributed according to
the Porter-Thomas distribution law for xx=T"./(T\c),

Pp 1. (x)dx= (2xx)de Yedx. (7

The validity of this distribution law has been well
established by analyses of neutron resonance scattering
data.lt

The distribution law for total widths depends on the
number of channels making substantial contributions.
As the number of channels increases, the distribution
becomes narrower, and for very many channels # it may
be approximated by a Gaussian with its mean at (T'))
and a dispersion of V2(T'\)/ (n).

Basing his arguments on assumptions similar to those
of Porter and Thomas, Wigner has suggested a dis-
tribution law for the resonance level spacings.? Calling
D the average spacing of resonances of the same spin and

9 The channel functions ¢, Se, P, are defined in reference 2 and
have been evaluated for neutrons by J. E. Monahan, L. C.
Biedenharn, and J. P. Schiffer, Argonne National Laboratory
Report ANL-5846 (1958) (unpublished). If the stated conditions
for the length of the averaging interval are inconsistent, one may
still expect to obtain useful results by replacing the R matrix
with Wigner’s statistical R matrix [E. P. Wigner, Ann. Math.
53, 36 (1951)7] and moving the difference to R° which contributes
to U°. The author is indebted to Dr. J. E. Lynn for reminding him
of the importance of retaining U? in the formalism.

10 C, E. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).

1 Reference 10 and J. L. Rosen, J. S. Desjardins, J. Rainwater,
and W. W. Havens, Phys. Rev. 118, 687 (1960) and Bull. Am.
Phys. Soc. 5, 32 (1960) and 5, 295 (1960).

12E. P. Wigner, Proceedings of the Conference on Neutron
Physics by Time-of-Flight, Gatlinburg Tennessee, 1956 [Oak
Ridge National Laboratory Report ORNL-2309, 1957 (unpub-
lished)], p. 59; and Proceedings of the International Conference
on Neutron Interactions with the Nucleus, Columbia University,
1957 [Columbia University Report CU-175, 1957 (unpublished) ],
p. 49; and Fourth Canadian Mathematical Congress Proceedings,
1957 (unpublished), p. 174.
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parity, ya= (Exy1—Ex)D™! is distributed according to
™y
Pw(y)dy=5 > exp(—imy’)dy. 8)

The statistical foundations of this Wigner distribution
law have been further discussed by Porter and by Rosen-
zweig and others,”® and Eq. (8) has been shown to be
consistent with existing neutron resonance data.'*1

Following Thomas,® we shall employ the following
expansion of the matrix U as given in Eq. (4).

U= A+ AXAt 3 AXAXA4,
A AEp NEp, sty
+ey )
where the matrices 4 are given by’

A =5i(gaere)/ (Bx— E—3iT)).

In the following sections, the consequences of the expan-
sion (9) are examined in the light of the statistical laws
of Egs. (7) and (8).

(10)

III. OPTICAL-MODEL CROSS SECTIONS

The optical model determines the values of U,.” To
establish a connection with it, it is therefore necessary
to average the diagonal element of Eq. (3). Since U,
and ¢, are assumed not to vary appreciably in the
averaging interval, the problem is to average U.. We
average by integrating over energy the contribution
from all resonances in the interval and dividing by the
length of the interval. Since the interval is assumed to

18S, Blumberg and C. E. Porter, Phys. Rev. 110, 786 (1958).
C. E. Porter and N. Rosenzweig, Ann. Acad. Sci. Fennicae
Ser. A. VI, No. 44 (1960); M. L. Mehta, Nuclear Phys. 18, 395
(1960). See also reference 15.

14 1, I. Gurevich and M. 1. Pevsner, Nuclear Phys. 2, 575 (1957).
J. A. Harvey and D. J. Hughes, Phys. Rev. 109, 471 (1958). See
also reference 11.

15 P, A. Moldauer, Bull. Am. Phys. Soc. 4, 319 (1959) and P. A.
Moldauer (to be published).

16 All of the mentioned statistical results are based on the as-
sumption of the randomness of the reduced width amplitudes
Yre=gxre(2P,)~* which are proportional to the overlap integrals of
the compound nucleus and channel wave functions at the channel
radius. The consequences of this assumed randomness of the
compound-state wave functions have been confirmed only in the
extreme resonance region where resonance levels are well sepa-
rated. It should not be surprising if, in the region of overlapping
resonance levels, correlations appeared due to interactions of the
resonance states via the channels and if these correlations should
cause a breakdown in any of the statistical laws, including the
random sign assumption.

17 The fact that the level shift factors do vary over the averaging
interval introduces in each of the terms of Eq. (9) a correction
factor (1—3AS, P, 1) for each of the channels ¢’ arising from the
implied sums over channels. By AS.- we mean the change in shift
factor from the center of the interval to the energy in question.
Assuming a linear variation of .S.r across the interval and using the
tabulated values of the derivative of S, given in the work cited in
footnote 9, one can estimate the maximum numerical value of
AS¢ to be less than the size of the averaging interval measured
in Mev. But this value can always be made very small compared
to the value of P for all channels making significant contribu-
tions to Eq. (9). Furthermore, these correction factors can only
improve the convergence of the series at the edges of the interval
as compared to the center (see Appendix).
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be very large compared to all widths we may extend
the range of integration from — o to 4-co. If the expan-
sion (9) converges uniformly in the interval we may
average it term by term. Doing this, we note from
Eq. (10) that each term consists of a product of analytic
functions each with a single pole in the lower half plane
and going to infinity as E~1. Consequently the average
of all terms except the first vanishes and we have

{curcc}av= Z)\ A)‘ccz _'%7"<P7\c>/D- (11)

The convergence requirement for the validity of this
relation may be relaxed somewhat by invoking the
random signs of the g).. With this assumption all terms
in Eq. (9) which are linear in any g\ cancel one
another before integration and the condition becomes
that part of Eq. (9) containing terms quadratic in the
& shall converge uniformly in the interval. Conditions
for this convergence are found in the Appendix. It is
shown there that Eq. (11) may be expected to hold,
provided the average total width is less than the average
level spacing for resonances of the angular momentum
parity in question and provided that the number of
channels contributing significantly to the decay of such
resonances does not become too large.

Under these conditions we obtain then from Egs.
(3) and (11):

Uccz Uoc0+':e—2i¢6[1_%<7')\c>], (12)
where

re=2aT/D. (13)

From this we obtain, using Eq. (2e), the absorption
cross section or transmission coefficient,

T.=(me)—1(m)?
-2 ReUcc"e“d’C[l '—%<T)\c>]_ l Ul

This well-known expression'® has been used extensively
in the region where (7)) is small and where therefore
the quadratic term in (7;) may be neglected. However,
for low-angular-momentum neutron channels, and par-
ticularly at optical model maxima, T, may approach its
limiting value of unity at fairly low neutron energies.
Then the quadratic term can no longer be neglected.
In fact, under the assumption that U.® vanishes, one
finds that (r,) approaches the value two as T, ap-
proaches unity. The effect of this quadratic term, with
U.9=0, on the neutron strength functions

'Ycz/D: <7')\0>/ (4’"'Pc)y (15)

at the optical model  and d wave maxima, is shown in
Fig. 1. It is clear that as (7\.) exceeds the value of two
it will tend to decrease T,, eventually even in the
presence of a nonvanishing U.?. This physically un-
satisfactory situation strongly suggests, as do the argu-
ments in the Appendix, that the convergence condition

(14)

18 This equation has recently been written and discussed in a
form in which U, is combined with ¢. by H. Feshbach, in Nuclear
Spectroscopy, edited by F. Ajzenberg-Selove (Academic Press,
Inc., New York, 1960), Part B, p. 1041.
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F16. 1. A comparison of the neutron strength function (y.2)/D
with the ratio of neutron transmission coefficient T to the penetra-
bility P for p-wave neutrons at the p-wave optical model maximum
and for d-wave neutrons at the d-wave optical model maximum.
E, is the neutron channel energy in Mev. Xo=KoR, where K, is
the neutron wave number in the well and R the potential well
radius. The curves are based on the neutron optical model phase
shifts of Campbell, Feshbach, Porter, and Weisskopf (see ref-
erence 32). ‘

derived there for the validity of Eq. (11) and hence
also of Eq. (14) does in fact correspond closely to the
actual limit of validity of these expressions and that
these expressions are not valid in the continuum region.!
Another cause for the breakdown of these expressions
would be any correlations in the signs of the g\. (see
footnote 16). Formally, it would of course be possible
to retain the validity of Egs. (11), (12), and (14) by
transferring parts of U.. to U, in particular any cor-
related parts, in such a way that the convergence
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condition remains satisfied. The practical usefulness
of such a procedure will depend on whether one has a
model for this new U, enabling one to calculate it and
to average it if it should fluctuate.

In addition to the absorption cross section we can
now write down, subject to the same conditions, ex-
pressions for the average total cross section in units
of mRig.:

7.(tot) =2[1—ReU"—cos(2¢.) (1—3(mre)) ],
and for the shape elastic cross section in units of wAs2g.:
o.(shape el)=|1—-U. 0|2
+2 Re(1—U.Heri*e(1—(n\o))
+(A=3 ) (17)

The same argument which led to Eq. (11) gives, in
view of the random sign assumption,

{‘ucc’}avzo,

(16)

cd. 18)

IV. REACTION CROSS SECTIONS

To calculate the remaining cross sections in Eq. (2)
we need expressions for the average value of ||
Employing again the expansion (9) we have

{Iqlcc’l?}avzz {(ucc’nn}av"!" Z 2 I{e{(ufcc’nm}av,

n n<m

(19)

where the summations are carried from one to infinity
and

cucc,nm____ Z

Ni#Nig1
for i=n

X (A)\n+1XA)\n,+2>< et XA)\n+m)cz’-

(ArFXANFX -+ X AN o0

(20)

Assuming no degenerate levels and no correlations
between widths and spacings, we perform the average
by summing over residues in the upper half plane of
each term in the expression (20), obtaining in this way

{(u'cc’nm}av= <(G)\1XG)\2>< M XG)\n)w' (G)\n+1*XG)\n+2*X M XG)\n+m*) ce’

! 7
Walei,€in * - €inim)dendess ' - de;npm

2wt
x—x [ :
D i=1 (ei1+i7'7;1)(€i2+17'1'2)' '

where
G\ = (i/2)gregrers
€;=IEn—ENj,
7i;=3([n—Ty),
0i;=5(TniA4Th;),
and W, (e,€i2, ' €i,ntm) s the combined density func-

tion for the n+m—1 resonance energies Fx;«; relative
to En;, subject to the restrictions that A ;7\ ;41 for j#n

19 By continuum we always mean here, of course, the continuum
for resonances of the same spin and parity.

, (21

r. (Ein+i7in) (éi,nrkl+iai,n+1> e (ei,n+m+7:0'i,n+m)

and \;# A, for j<#x. The primes indicate omission of the
sth term. The function W, can be expressed in terms of
the symmetric pair density function W (e) which is the
average over A of the number of resonances per unit
energy interval at the energy Fi+e If the resonance
energies F, were randomly distributed, we would have
W(e)=D"'. However, the Wigner repulsion effect
embodied in Eq. (8) modifies this relation. The relation-
ship between W (e) and the distribution P(e) of spacings
between neighboring resonances has been previously
discussed by the author, who obtained the density
function Ww(e) corresponding to the Wigner spacing
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L2 1
| T, asisx L c(x)mnuom/
2 -
1o - = ey =y ot 0.8
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[ o2 o4 06 08 LO 12 L4 16 I8 [see Egs. (24) and (25)].
X/D

Fi1c. 2. The pair density function W (x), giving the density of
nuclear levels at an energy x from a given level. D is the average
level spacing. The solid line corresponds to the density function 0.6
arising from the Wigner spacing distribution. The histogram is the 5
results of numerical diagonalization of one hundred 20X 20 random
matrices (see reference 15). The dashed line corresponds to the 0.4 X(x, 0)
approximation of Eq. (22). -

X(x, Xx)

0.2
distribution law [Eq. (8)] by both analytic and L
numerical methods as shown in Fig. 2.5 While no closed T R AT R
analytic form for Ww(e) is known, the approximation 0.01 0.1 1 10
2mwX
Fic. 4. The functions X (x,x) and X (x,0) plotted against 27«
W(e)——~———-exp[ ( ) ln—] €| <D, [see Eq. (26)]. P "
(22)
W(e)=1/D, |e|>D tween level spacings though there is both experimental®!
A " and theoretical?? evidence for such correlations. Their
can t.)e seen in Fig. 2 to fit W (e) w?ll. effect would be to replace those density functions whose
With the help of W (e) we now write arguments are differences between resonance spacings,
Wale,einr - €in€ing1 * * € nim) and which arise from the restrictions placed on W,, by
' more complicated functions. However, it is expected
H W (es;) H [50vhe) E TV (e6) ] that the effects of such correlations will cancel out at

least partially when the summation over 7 is performed
. . in Eq. (21). Furthermore, such effects can show up in
H iy Eq. (19) starting only with terms of the fourth order
X i;g#i DW (eij=ex.+1) k=1}+1 DW (en—eiea)- (23) in the widths. In performing the integral in Eq. (21)
with the help of Eqgs. (22) and (23), we encounter the

This expression neglects the effect of correlations be- following integrals:

@(P/D)zigj::w%iij)—l—ztan ( )+~-exp[( )m—“El[ (1+—) 1%]—&[——;1%]},(24)
o [ ) e Oy

where Ei(z) is the exponential integral. These two functions are plotted in Fig. 3. In addition there appears in the
low-order terms of {|U|2},, the integral

7=1,77%1

(26)

o de W(e) **dn W(n)DW (e—n)
X(PI/DI‘Z/D)___ZI € "f nW@DW (=)
w —o0 €+1F1 — n_‘_1r2

This function may be estimated by setting DW (e—n)=1—[1—DW (e—n)], where the first term just integrates
to ®(I'y/D)®(I's/D) and the second term yields an integrand which vanishes except within a distance D of the

20 Calculatlons show that the integral of Eq. (21) is quite insensitive to the precise form of W (¢). Even a density function constructed
of a linear piece with slope of x/2 and a constant piece gives results differing very little from those of Eqs. (24) and (25).

21 P, Egelstaff, J. Nuclear Energy 7, 35 (1958).

22 C. E. Porter (private communlcatlon)



THEORY OF AVERAGE NEUTRON REACTION CROSS SECTION 973

line e=7%. We approximate this part by integrating along the line e=7 and multiplying the result by D. The results
have been plotted in Fig. 4 for the cases where I'y=T'3 and where I'y=0. Other functions of this type appear in the
higher order terms of {|U|2}ay-

With these definitions we calculate the expression (21) subject to the requirement, due to the random sign
assumption, that the gi. occur only quadratically. We have then for the off-diagonal elements

I‘)\cI‘)\c
{(u‘cc nv=__ G)\u G oo™ > < (27)
1F)\ 2D ’

deW (e)

2ms O
{‘U,MJZ}:W:_<G)\cc'[G)\cc’*G“c'c’*_+_G“cc*G)‘cc’*]__ f >
D i Vo E+ (I‘)\‘[“Pu) N=p

DT I+
= (I‘uc+rnc’)q)(
4D*\ T

F")>w. (28)

Assuming the number of resonances averaged over to be very large, we may disregard the restriction on the average
in Eq. (28). This restriction has also been dropped in the following expressions for n+m=4.

r)\cr)\c' P)\c"r e’ F)\‘I‘r T J‘ ¢’ I‘)“l'r I')\+P I\—[—I‘,.
o P () () o (e ()

8D? T\ '\ 2D 4T, 2D 2D
™ P)+I‘u I‘)\—[—'I‘v
+_(chrvc+ryc’rvc’)x( y T ) }>> (29)
D 2D 2D

w? r)\cr)\c”rua’ruc” I‘R+I‘ I‘)\crkc'
{cu'cc’m}nv:__ Z ( )> < [Fuc'rvc’+Ppc’Fvc+chPvc’+chrvc:|
8D2\"  T,I, 8D»

Tuy+T\ T+ T,—T T4y =T, N+,
()5 ) 2 () )
2D 2D 2D 2D 2D 2D

The corresponding expressions for the diagonal elements are

m /I T,
{‘uccn}av=_ —_‘+_I‘)\0Ppcq)( )>, (31)
2D\T\ D 2D
P)\c2ruc I‘)\"l‘ry ™ P)(‘I“P,,, I‘)\+P,,
{cu'cc }av'—' - _—‘b( )'—_P)\cl-‘p.crvcx( y T )>y (32)
202 T\ 2D 2D 2D 2D
P)\c2 I‘)\C'F#c' I‘)\+I‘u I‘)\cr‘uc I‘)\c'I‘/w’ I‘)\“}"I‘u
{‘uccla}av=— Q’( —2 Z g )
8D*\T') ¢ T Iy ¢ I‘)\+F 2D
T ) I'+T, I‘)\+I‘
+3~— I‘ucI‘ch( ) )+term5 of Order(—r)\c) > (33)
D T\ 2D 2D
P)\cruc I‘)\c’I‘[tc’ P)\+P,. ™ I‘)\c2 P)\+I‘ I‘)‘+F P I‘) T +I‘)\
{cu.cc }av Z ZQ( )+4_‘ I‘ycryc[x( y T ) ('__'—, — )
s\ 1, @ T, 2D DTy

I‘)\—‘P‘, I‘)\—'}"I‘y ™ 4
—<I>( )<I>( )]—i—terms of order(—FM) > (34)
2D . 2D D

Additional terms of the second order in T')/D occur in all quantities {U!™},,. Of these the only ones which make
appreciable contributions are those due to {U“},, and {U'%},,. These terms are, respectively, for both diagonal
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and off-diagonal elements,
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Pkcr)\c’ F)\c"r‘yc” (F#c'+r‘nc) I‘)\+F
: )
8D2 F)\ c’’ I‘)\ P)\—f—I‘“
and
7!'2 F)\CF)\C’ FXC”Fnc” P)\c”’Ppc"’ 1 I‘)\+I‘u
T . \p( )> (36)
16D2 T e’ I\ e’’’ I\ P)\+PM 2D

By substituting Egs. (27)-(36) into Eq. (19) we obtain an expansion of the average of |1L|2 in ascending powers
of (7x.). The convergence of this expansion is of course governed by the results of the Appendix. However, here
we are not so much interested in the mere fact of convergence as in sufficiently rapid convergence so that the first

few terms yield a good approximation. In general this can be established by inspection of successive terms.?

When the argument of the functions ® or ¥ or X is ('x+1',)/2D, we may take advantage of the slow variations
of the functions as well as the small fluctuations of sums of widths—even for small numbers of channels—to
approximate the values of these functions by their values for the average of the argument, e.g.,

h+T
@(
2D

()

(37

In the following cross-section expressions we make use of Eq. (37). In addition we set ®[ (I',—T,)/2D7] equal to

zero and do not specify the argument (I')/D of &, ¥,

We thus obtain for the reaction cross section in units of 7A2g, [Eq. (2d)], using Eqgs. (3), (18), (27)-(30),

and (37),

TxcThe!

Geer = ‘ Ucc’0[2+< { <T)\c+7')\c > _";

™)

1 (rae)(maer)

+%<T)\c><7)\c’>q)2

F3L(me) (e P IX(T)/DAT)/ D)+ {raet1ae PLX(T)/DAT)/D) = X(0,(T')/D) ] }

+13

et

T)\cT)\c"><7')sc'T)\c">
Tx cl/

TAeTAe' T’
———— Mo B+
2

1 <T)\c+ T)\c’>
o

()
TaeTre Tae Tae '\ (Tae {Taer)
TS ) 38)
¢!’ et 7')\3 / <1‘)\>

For the fluctuation cross section which may be used to obtain both the elastic and nonelastic cross sections we

obtain in units of w&2g.:

oo(fluctuation) =4[ { | Uee| 2} av—{ | Wee| }av? 1= (¥ Ti){1— (mae)@+ (mae)2[3X ((T')/D (T')/D)— X (0(T")/D) ]}

TxeT e

T)\cT)\c'\ <T)\c’><7')\c>‘1/

N 2
+i ><1>
n/ i

{m 2

TAETA
e T (7 Mnae 1 T
T)\czT)\c' <T)\c'><7')\c>
+15 ) V5T Y
o 2 - o o

V. DISCUSSION AND APPLICATIONS

The leading resonance terms in Egs. (38) and (39)
resemble in form the Hauser-Feshbach relations which

2 One type of term which might be thought to give difficulty
occurs starting with =3 and has the form

27D Y (Dy—T, )N (Ty—T,/2D), A5p,

which diverges logarithmically as I'\—I", — 0 as a direct conse-
quence of the fact that the spacing « dlstnbutlon law is linear for
small spacings. When averaged over the distribution of width
differences the result is, of course, finite and becomes large only
for very narrow distributions. From the discussion in Sec. IT we
find that for large numbers # of channels (where one might fear
a narrow distribution) the dispersion of the distribution of I'x—T',
is of the order of 2(I'\)n~3~2((I'A))cnt and is therefore expected to
increase with increasing numbers of channels.

3

T)\c27')\c’7')\c“><T)\C'><T)\c”>

X

Y+ (e’ X(T)/Dy(T)/D)+- -+ (39)

()

are based on the notion of independence of formation
and decay of the compound nucleus on the average.>
These latter formulas are

oo WE) =T, T /3 01 T,
5, M- (compound elastic) =T2/> . Tor.

(40)
(41)

Our results are seen to differ from these relations in
three ways. First, they differ by the appearance of the
7x instead of the transmission coefficients 7. This dis-
tinction has been discussed in Sec. ITI. Secondly, the
function of average resonance parameters in Eqgs. (40)

2¢ W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
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and (41) is replaced by an average of the function in the
leading terms of Eqs. (38) and (39). This “width fluc-
tuation effect’” has been discussed by a number of
authors.?=%" Thirdly, there are the correction terms due
to the higher order terms in the expansion of U. We
shall discuss the consequences of Egs. (38) and (39) by
comparison with Egs. (40) and (41).

In order to perform the required averages of the
functions of 7 which occur in Egs. (38) and (39) it is
necessary to integrate these functions over each partial
width, weighting ‘the integral with the normalized
Porter-Thomas distribution function [Eq. (7)]. These
multiple integrals can easily be brought into the form
of the following single integral.

<le11-2k2. .. Tnk"/Tm> 1

= dt tm
(T (ra)fa- - - (ra)on /()™ (m—1)! fo

XTT (k= 1)1 [1426r /() ]5, (42)

=1

where (2k—1)!11=1X3X5X - (2k—1) and (—1)!!=1.
This expression can also be generalized for other
distribution functions of the x® class discussed by
Porter and Thomas!® For a channel with widths
distributed according to a x* distribution with » de-
grees of freedom, one replaces the corresponding factor
Qki—D)I[14+2¢r:)/{r)T %% in the integrand by
L' (v/2+k)[T(v/2) 17 (v/2)H[142673)/v(r) >4 In
the case of radiative capture channels it is generally
satisfactory to replace all capture widths by a single
nonfluctuating width.2® In that case the above factor
for the capture channel y may be replaced with
exp[ —#(ry)/{r)]. Some of these integrals have been
given in numerical and graphical form?> and numerical
machine codes for their evaluation exist.?6:*” Graphs of
two types of averages which are of interest in inelastic
neutron scattering are shown in Fig. 5. These are the
two-channel case and the three-channel case, where
the third channel is nonfluctuating. It is seen there that
for two channels with equal average widths, one obtains
a maximum fluctuation effect of

(maemrer/ (TaetTaer)) _1
<T)\0><T)\C'>/<T)\C+T)\c’> 2
<T)\c2/(‘r)\c+7')\c’)>_3

<m>2/<m+m>~i’

and hence

(43)

for (7ac)=(7re). This result can be understood qualita-

25 A. M. Lane and J. E. Lynn, Proc. Phys. Soc. (London) A70,
557 (1957).

26 .. Dresner, Proceedings of the International Conference on
Neutron Interactions with the Nucleus, Columbia University, 1957
[Columbia University Report CU-175, 1957 (unpublished)], p. 71.

27 P, A. Moldauer, Bull. Am. Phys. Soc. 3, 18 (1958) and 4,
475 (1959), see also references 29 and 30.

28 For exceptions, however, see R. T. Carpenter and L. M.
Bollinger, Nuclear Phys. 21, 66 (1960).
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Fic. 5. Effect of width fluctuations on neutron inelastic scatter-
ing cross sections for two- and three-channel cases. Channel width-
to-spacing ratios are denoted by x, v, and z.

tively by considering the fact that according to the
Porter-Thomas distribution law, widths smaller than
the average are much more likely to occur than widths
which are larger than the average width. Hence under
the assumption that the widths for channels ¢ and ¢’ are
uncorrelated, the occurrence of a resonance A, for
which both 7). and 7. are larger than their averages is
unlikely. Now 7acmaer (7ac+7ae) L is always less than the
smaller of 7., 7xr and therefore almost all resonances
can be expected to contribute less than (r),) to the
average. However, m\Z2(7ac+7re)™F approaches 7). in
value when 7). is large and therefore there will be an
appreciable number of resonances contributing a value
greater than (7).) to the second average.

In comparison to the Hauser-Feshbach relations the
width fluctuation effect always tends to decrease the
cross section for different entrance and exit channels and
tends to increase the cross section for the same entrance
and exit channels. The fluctuation effect for the more
complicated functions occurring in the higher order
terms in Egs. (38) and (39) can, of course, go either way.

The effect of these higher order terms on &, has been
calculated for the cases where ¢ and ¢’ are the only open
channels and where there is a third channel with non-
fluctuating widths and {7a,)=(m\»). It needs to be
emphasized, however, that these results are only indica-
tive of the order of magnitude of the correction and the
convergence that may be expected. In cases differing
appreciably in channel structure from those discussed
here, the results may be quite different. Figure 6 shows
the percent correction to the leading resonance term
in Eq. (38) due to the higher order terms, for six cases
falling in the above categories. The corrections are
separated according to whether they arise from terms of
the first order in any of the (r.) or from terms of the
second order. While the first-order contributions are
essentially complete, second-order contributionsare only
those arising from {WU3},, and {U?},,. The contribu-
tions of second order from higher terms in the expansion
may be significant for the larger values of () but are
smaller than the calculated contributions. The following
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F16. 6. Percent correction to the neutron inelastic cross section
due to the higher-order terms in the scattering matrix expansion.

(rey=2m(Tre)/D. (1)=2¢{70).

general observations can be made from Fig. 6 and
estimates of the higher contributions: (1) The expansion
converges rapidly only when total and channel widths
are not too large. The method can apparently be used
fairly safely for (r)<1.5 which is about half the value
for which the expansion converges. (2) The correction
terms are largest and positive when the widths of the
participating channels are small compared to the total
widths. (3) Magnitudes of the corrections in the range
of rapid convergence go up to about 50%,. They can
therefore be comparable in importance to the fluctua-
tion correction.
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F1c. 7. Comparison of calculated with measured Zr®(n,n"y)
excitation curves. The solid curves are calculated according to
Eq. (38). The dashed curves were computed using transmission
coefficients. Optical model parameters of reference 32 were used
throughout. The data points are by D. A. Lind and R. B. Day
(see reference 33) and represent 4w[do(n,n'y)/d2](90°). The
decay scheme was inferred from the data.
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The corrections to the fluctuation cross section Eq.
(39) are similar to the appropriate cases in Fig. 6 except
that the second-order terms are somewhat smaller.

The above results have been used for the analysis of
measured neutron inelastic scattering cross sections?
and for the estimation of such cross sections.®® Here we
present only the results of calculations for neutron
inelastic scattering from Zr%, which is a particularly
appropriate isotope.’! According to the calculations of
Campbell, Feshbach, Porter, and Weisskopf*? their
diffuse surface optical model gives a good account of
both the total neutron cross section and the elastic
scattering angular distribution for neutrons in the
low Mev region scattered by Zr. The p-wave strength
function according to that model is shown in Fig. 1.
The s- and d-wave strength functions are very low. The
f wave also has a giant resonance here but the f-wave
neutron penetrability Ps is down by at least a factor of
ten from the p-wave penetrability P, for energies up to
2 Mev. This, together with the level structure of this
even isotope (see Fig. 7) causes almost all fast neutron
scattering to proceed through compound states of odd
parity which decay predominantly through p-wave
emission to the various levels of Zr%. Furthermore, the
p-wave strength function decreases with energy as more
inelastic channels are opened, thus limiting the increase
in total width. As a result, the equations derived above
may be used with confidence up to the vicinity of 2 Mev.
The results of such a calculation including neutron
channels up to /=6 are compared in Fig. 7 with (#,n)
y-ray excitation data obtained by Lind and Day.% The
dashed curves were obtained by using 7' instead of (r.)
in the formulas. The higher order correction terms give
relatively small contributions in this case. Omission of
the width fluctuation effect would cause the curves to
rise much more steeply and give substantially higher
cross sections. In these calculations the same optical
model has been used to describe the excited states as
was used for the ground state. This procedure generally
appears to give satisfactory results.

The width fluctuation effect on average neutron

29 A, B. Smith, Bull. Am. Phys. Soc. 5, 19 (1960), A. B. Smith
and P. A. Moldauer, 7bid. 5, 409 (1960). Results of these and other
calculations will be published in the near future.

% P. A. Moldauer, Proceedings of the Conference on the Physics
of Breeding, Argonne National Laboratory Report ANL-6122,
1959 (unpublished), p. 67; and S. Yiftah, D. Okrent, and P. A.
Moldauer, Fast Reactor Cross Sections (Pergamon Press, New
York, 1960).

31 Entirely analogous results were obtained for Zr.

32 E. J. Campbell, H. Feshbach, C. E. Porter, and V. F. Weiss-
kopf, Massachusetts Institute of Technology Laboratory for
Nuclear Science Technical Report No. 73, 1960 (unpublished).

#D. A. Lind and R. B. Day (to be published). The data points
in Fig. 7 represent 4= times the differential cross section at 90°.
The angular distribution of the gamma rays tends to be peaked
in the forward-backward directions for the 2+ — 0+ transitions
and at 90° for the 24 — 24 transition. To obtain the correct
total cross section the points shown for the 0.93- and 1.84-Mev
gamma rays should be increased just above threshold by up
to 30% and by less at higher energies [R. B. Day (private
communication)]. -
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capture cross sections has been discussed in the refer-
ences of footnotes 25, 26, 27. It reduces the cross section
by at most 329, when the neutron channel width is the
same as the total radiation width and by less otherwise.
The magnitude of the average neutron width affects
the radiative capture cross section substantially only
at energies where the neutron width is of the same order
of magnitude as the total radiation width or less. Since
I',/D is always quite small, the distinction between
(maey and T in that energy region is negligible. That
distinction may, however, affect the capture cross sec-
tion above an inelastic threshold through its effect on
the average total width. It may therefore tend to
produce a somewhat sharper decline of the capture cross
section above such thresholds. Finally, the effect of the
higher order terms on the capture cross section is small
because of the small values of T',/D.
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APPENDIX: CONVERGENCE OF THE
THOMAS EXPANSION

We shall discuss here convergence conditions for that
part of the expansion in Eq. (9) containing the gy, only
quadratically. This restriction means that the general
term

2 AnXAnX: - XA,

NiF#Ni+1

(A.1)

can be rearranged so as to consist of a sum of products
of diagonal elements of the 4 matrices [Eq. (10)7]. The
magnitude of (A.1) is overestimated if we perform the
implied sum over channels by evaluating each 4, for
the channel ¢(\) with the largest partial width 'y, and
multiply the resulting product by an average correction
factor to account for the terms arising from the presence
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of the other channels. In this way one obtains for (A.1)

TN Treon)™ 2 ArQrg: - - Qg (A.2)
NiFENi+1
where .
31T
A= (A.3)
E\—E—1%il,

Here (I'\/Tacoy) may be looked upon as an average
effective number of channels contributing to the total
width of each resonance. Because of the large fluctua-
tions in the channel widths, this effective channel
number is always considerably smaller than the true
number of channels, even when the average channel
widths are of comparable magnitudes. Thus, for two
channels of equal average partial widths, one obtains
from the Porter Thomas distribution (I'y/Tcoy ) =3%+2/7
~1.137. For large numbers of equal average width
channels, one may estimate the effective number of
channels to be of the order of one half the actual number
of channels. This number is further reduced by any
differences in the average partial widths.

To perform the sum over resonances in (A.2) we
initially evaluate that expression at E=E, (u is any
one of the A;) and treat all resonances other than u
statistically, disregarding for these latter the restrictions
on the sum over resonances. Again we thereby increase,
if anything, the magnitude of the term. Substituting
this expression immediately into Eq. (9), we have

—p1y.
Uee(Ew)~2 (I‘A/I‘xc(w"z\:(n j )

X[@n(En)]”[g_é‘, Gn(E) ] (A4)

The binomial coefficient (*~3%') occurring here is just
the number of ways in which @, can occur p times as a
factor in expression (A.2) without the occurrence of any
adjacent factors @, Rearranging (A.4) by summing
over p and {=n—p--1, one obtains

? {(T/Tacon) E,ﬁ: A (E)[1H(Ty/Tren) Qu(EW) 1}

‘U,M(E,‘) ~

) (A.5)

(T/Tren) X CA(E,)
A

Here we have, by Eq. (A.3), »
Qu (Eu) = "’I‘#c(u)/ru- (A-6)

Provided there is no unusual accumulation of resonances
at E,, the sum over other resonances can be treated
statistically

b (EA(E,.)=<j:00 d(E)\_E“)W(E)\_EM)a)\(Ep)>)\

AFu

_ __§< (Treey/D)®(T2/2D))y, (A7)

where we have made use of Eq. (24). A condition for
the convergence of U, at E, is now that the magnitude
of the general term of the geometric series in Eq. (A.5)
be less than unity. Substituting therefore (A.6) and
(A.7) into (A.5) we obtain the condition

3 To show this, call the desired number C," and write the recur-

sion relation Cp»=Cp"14-Cp_1»2. Iterating this £—1 times, one
obtains

E (&
Cpn = mz,:o (m)cp—k+m"_2k+m-

By extending the definition of C to C¢?»=1 and Cp*=0 for all »
and choosing k=n—p-+1, one obtains the above result.



978

"%(FX/ Dreon){(Treen/D)2(T2/2D))

X[I"(F%/PM()\DF#C(ID/F#] <1. (A-S)

To remove the restrictions placed on the resonance
structure at E,, we must consider the following possible
cases: (1) A second resonance » has an E, unusually
close to E,. (2) A resonance lying close to E, has an
unusually large width T'xeqny. (3) U is evaluated at an
off-resonance energy E. For cases 1 and 2 we must add
to the factor (m/2){T'y/Tacoy){Trcory/ D®) the expressions
Tyewy/T or They/2D, respectively. Case 3 is accounted
for by setting T'yoquy/Tw=0.

As in Sec. IV we now take ® outside the averaging
sign and we also replace I'xc(ny/D by its maximum value
T'y/D. Then, supposing (I'n/Tx.n) to be less than 2,
the expression |1—(I'y/The))Tuewy/Tu| will always be
less than 1. We find then from (A.8) the convergence
condition

4
2z ((Tn)/ D)@ ((T'))/2D) <ot

. (A9)
(Ty/Thren)
Consulting Fig. 3, one sees that this is satisfied if
(Ty)y/D<% for (Ty/Theny) <2, (A.10)

which is a reasonable limit on the effective channel
number up to (T))/D~1. If the effective channel
number is 1 then (I'\)/D may approach unity. Also if
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(T'\/{T'xc0ny) is appreciably larger than unity, the limit
on (I'\)/D is increased by a corresponding factor.

Of the three alternate conditions enumerated above,
the third one does not affect our conclusions provided
(T'x/Treen) <2, while the second one affects condition
(A.10) only slightly. Because of the level repulsion
effect, the first alternate condition may be expected
to be applicable only when (T')) approaches D. It there-
fore gives a convergence limit of the same order of
magnitude as (A.10). However as (I'\)/D increases be-
yond unity, the overlapping resonances at any energy
give rise to rapidly increasing numbers of terms making
large contributions to expression (A.l), causing the
series to diverge. In fact for (I'\)>>D the expression
(A.1) approaches ({(I'\)/D)" in order of magnitude.

In view of the several approximations made in deriv-
ing Eq. (A.5), it is reasonable to conclude that in
general the series converges and the results of Sec. IIT
are valid when the average total width is less than the
average level spacing and the effective number of
channels is less than about two.

A second method proposed by Thomas,® employing
the channel elimination method, leads to an expansion
of the R matrix which may under certain conditions
have a much larger range of validity than that indicated
above. However, .in performing the inversion of this
R-matrix expansion which is still necessary to obtain
an explicit scattering matrix, one is again left with an
expansion whose convergence characteristics are very
similar to those obtained here.
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Decay of Tm!"*}
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The radioactive nuclide Tm!™ was produced by successive
capture of two neutrons in erbium oxide enriched in Er'". The
irradiations were made in the Materials Testing Reactor at Arco,
Idaho. In addition to three thulium activities, these samples
contained six active contaminants. Pure thulium sources were
obtained by use of an ion-exchange column. Studies were con-
ducted with a 256-channel coincidence scintillation spectrometer.
These measurements indicate the presence of at least 17 gamma-
ray and 5 beta-ray transitions. The beta-ray spectrum was studied
with a 180° magnetic beta-ray spectrometer. This spectrum was
analyzed by use of a computer program compiled by the authors
in collaboration with members of the Argonne Applied Mathe-
matics Division. The level scheme proposed for Yb!™ has states

INTRODUCTION

Previous Studies

’ I ‘HE radioactive nuclide gTm!™, which decays to
Yb'? by B~ emission, has been reported by
Nethaway et al! They obtained this isotope from the
t Work performed under the auspices of the U. S. Atomic

Energy Commission. . .
* This material has been submitted in partial fulfillment of the

with energies, spins, and parities ot 0.0(0%), 0.079(2*), 0.260(4+),
1.17(3), 1.46(2), 1.54(3), 1.60(1), 1.64(?), and 1.73(3) Mev. The
total decay energy is found to be 1.88 Mev. The experimental data
are consistent with the previously proposed interpretation that
the first two excited states are members of a K =0 rotational band
based on the ground state. The states at 1.46 and 1.54 Mev are
interpreted as members of a rotational band with K=2. The
states at 1.60 and 1.73 Mev are tentatively interpreted as members
of a rotational band with K =0 and negative parity. It is suggested
that the state at 1.17 Mev has K=3. From the analysis of the
beta spectrum it is concluded that the ground state of thulium
has =K =2 and negative parity.

decay of Er'™ which was produced by two successive
neutron captures in stable Er'”. The thulium activity
was identified by its genetic relationship to the Er'?
activity. The mass assignment was verified by time-of-
flight isotopic separation. The half-life of thulium was
requirements for the Ph.D. degree at the University of Michigan,
Ann Arbor, Michigan.

!D. R. Nethaway, M. C. Michel, and W. E. Nervik, Phys.
Rev. 103, 147 (1956).



