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are the members of the p-vibrational band via the p rays
of energy '?25 and 593 kev, respectively. The transition
to the (0,2+) level is also present via the 1600-kev y
ray but its reduced transition probability is about 100
times less than that of the 725-kev y ray, the 1600-kev

ray being assumed E1. If this 1723-kev level is
collective in origin, an assignment of the E value can
be made. The experimental ratio of the reduced transi-
tion probabilities of 725- and 593-kev p rays is compared
in Table III with theoretical ratios for diferent E
values assumed for the 1723-kev level. As can be seen
from Table III, the assignment E=2 for this level is
clearly favored. Such an assignment explains the relative
slowness of the 1600-kev y transition to (0,2+) level
since a transition of E1 type is forbidden by the E
selection rule. It is interesting to see if any M2 mixture,
which is allowed by the E selection rule, is present in

this y transition. An identical y transition of 1189 kev
in W'" has a 40% 352 mixture. '"

The 2 levels are found in other deformed even-even
nuclei also. Table IV summarizes the presently known
2 levels occurring in the region of medium-heavy and
heavy deformed nuclei. An inspection of this table
reveals that such 2 levels are occurring in regions
where there is a shift from a spherical to a deformed
nucleus and vice versa. The ratios of the energies of
these 2 levels to the energy of the 2+ member of the
ground-state rotational band (column 3 in Table IV)
seem to be grouped into values of about 14, 10, and 20
in the regions of neutron numbers around 90, 110, and
138, respectively; in each region this ratio appears to
increase with the increase of deformation.

"C.J. Gallagher, Jr. and J. O. Rasmussen, Phys. Rev. 112, 1730
(1958).
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The antishielding factor q„ for a possible nuclear electric hexadecapole moment has been calculated for
the Cu+, Ag+ and Hg++ ious, using the Hartree-Fock wave functions for the 3d, 4d, and 5d electrons in-
volved. It was found that g„(cu+)=—1200, q„(Ag+)——8050, and g„(Hg++)——63000. The implication
of these results is discussed.

' "N a previous paper, we have considered the inter-
action of a possible nuclear electric hexadecapole

(16-pole) moment (HDM) with the ion core surround-

ing the nucleus. It has been shown that for medium
and heavy atoms with closed d shells, the interaction
energy of the HDM with the fourth-order derivative
terms of the potential due to the ionic lattice (for the
case of a crystal) will be considerably amplified by
antishielding effects of the same type as have been
calculated' and observed' for nuclear quadrupole mo-
ments. The antishielding effect arises from the large
hexadecapole moment which is induced in the closed d
(and possibly f) shells of the ion core. The induced
HDM was written as

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'R. M. Sternheimer, Phys. Rev. Letters 6, 190 (1961). This
Letter will be referred to as I.

'R. M. Sternheimer, Phys. Rev. 80, 102 (1950);84, 244 (1951);
95, 736 (1954); 105, 158 (1957); R. M. Sternheimer and H. M.
Foley, ibid. 102, 731 (1956).

3 See, for example, M. H. Cohen and F. Reif, in Solid-State
Physics, edited by F. Seitz and D. Turnbull (Academic Press,
Inc. , New York, 1957), Vol. 5, p. 321; T. P. Das and E. L. Hahn,
Nuclear QuadruPole Resonance SPectroscopy (Academic Press, Inc. ,
New York, 1958).

where H is the nuclear HDM, and q is de6ned as the
hexadecapole antishielding factor, in a completely
analogous manner to the antishielding factor' y„ for
the nuclear quadrupole moment.

In the present paper, we wish to report the results of
calculations of g for the Cu+ and Ag+ ions, using the
Hartree-Fock wave functions which have been obtained
for these ions. 4 ' We have found that g„——1200 for
Cu+ and q„——8050 for Ag+. These values are ex-
tremely large, even when compared to typical values
of p„( —100), and therefore suggest that it may be
possible to detect the nuclear HDM for nuclei with
spin I& 2, by observing the deviation from the rela-
tionships between the resonance frequencies which
wouM be expected for a pure quadrupole resonance
spectrum. '

The predominant contribution to g„ for Cu+ and
Ag+ is due to the 3d ~ d and 4d ~ d excitations, re-
spectively, produced by the nuclear H. (Although the
stable isotopes of Cu and Ag have spin I=—,'and —,',
respectively, we assume the presence of a nuclear

4D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).

5 B. H. Worsley, Proc. Roy. Soc. (London) A247, 390 (1958).' T. C. Wang, Phys. Rev. 99, 566 (1955).
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HDM for the purpose of the calculations, which will
also apply approximately to neighboring elements in
the periodic table. ) The term rf„(ed —+ d) due to the
excitation of the ed electrons into higher d states is
given by'

rf„(ed ~ d)

= (80/63) f up (nd)M t, rr(ed —+ d)r4dr, (2)
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where mo'(ed) is r times the radial part of the unper-
turbed rrd function, and I'r, rr(ed —+d) is r times the
radial part of the perturbation. (The notation of the
present paper is the same as in I.) The function
I'r Ir(md ~ d) is determined by the equation,

d' 6
+ +Vp Ep—I,'r, rr(—ed~ d)

dr2 r2

(3)

and by the orthogonality condition,

No'(nd)N'r, e(rrd —& d)dr =0 (4)

6 1 dgp
Vo —Eo+—=—

Np df
(5)

We note that for Cu+, (1/r')3q=219. 0aH ', and for Ag+,
(1/r')4q ——932.3aH 5.

The solution I'&,& was obtained by inward numerical
integration starting at r—=rr ——6aH (both for Cu+ and
Ag+), in the same manner as in our previous calcula-
tions of the quadrupole antishielding factor' p„(el ~ l)
and the dipole polarizability' nd. The integration is
started with an arbitrary value I'&,&(r&) at r& 6aH. ——
The value of u'r rr at rr+o (3= interval of integration)
is then obtained from

u'r rI (rr+6) =u'rrr (rr) exp{, —$1V(rr) j'3), (6)

where E is defined by

6 I
1V(r) —=—+(Vp —Eo)— (7)

r' u'r, rr(r)
'R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 107, 1565

(1957); 115, 1198 (1959).

In Eq. (3), Vp and Eo are the unperturbed potential
and energy eigenvalue for the rrd state, and (1/r')„z is
the average of 1/r' for the wave function No'(Nd).

The perturbed functions@'r rr(3d~d) for Cu+ and
u'&, rr(4d~d) for Ag+ were calculated by numerical
integration of Eq. (3), using the Hartree-Fock functions
no'(3d) of Cu+ and uo'(4d) of Ag+, which have been
obtained by Hartree and Hartree4 and by Worsley. '
The effective values of Vp —Ep on the left-hand side of
(3) were obtained from the function Io' as follows' r:
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Fro. 1. The 3d function ND'(3d) and the 3d —+ d
perturbation u'r rr(3d —+ d) for Cu+.

and where I is the inhomogeneous term on the right-
hand side of Eq. (3). As indicated in Eq. (6), A (r) is
to be evaluated at r =ri.

The integrations were carried out from r=r~ down
to a small radius rp 0.06aH. For small r, one can ob-
tain the power series expansion for I j,~ which is valid
near r=O. We note that I'i,~ is finite at r=O, and has
the value

I'r, rr(r=0) =c3/6, (8)

where c3 is the coefficient of r' in the expansion of the
3d or 4d wave function Np' near r=0. Thus we have

No'= c3r'+c4r'+, for r 0, (9)

where c3 and c4 are constant coefficients which can be
obtained from the tabulated Hartree-Fock wave func-
tions. 4 ~ For Cu+ 3d, we have4 c3——244.5, so that
e'r, rr(r=0) =40.75. Similarly, for the 4d function' of
Ag+, c3= 1114, whence u'r, rr(r=0) = 185.7.

For each case (Cu+ 3d and Ag+ 4d), two separate
integrations were carried out, with starting values at
r&=6az which difter by a factor of 1.5, in order to
obtain a check on the calculations. It should be noted
that after the numerical integration is completed, the
solution m'&, lI is made orthogonal to Np' by adding a
suitable multiple of eo' Lsee Eq. (4)j. For Ag+, the
resulting two solutions u'& rr(4d —& d) differ by less than
1% in the important region between r=1aH and 4aH,
which makes the predominant contribution to the inte-
gral of Eq (2) for .rf„(4d —+d). Correspondingly, the
values of r)„(4d —+d) which are derived from the two
solutions, namely —7999 and —8056, difkr only by a
factor of 1.007. The average of the two results for
rf„(4d ~ d) is thus —8028.

For Cu+, the two solutions I' t, rr(3d —+ d) differ by
less than 3% between r=2aH and 4aH. The resulting
values of rf„(3d —+ d) are —1179 and —1214 (average
= —1197).

We note that these results for both Cu+ 3d —&d and
Ag+ 4d ~ d are considerably larger (by a factor of 5—8)
than the values which would be obtained for hydrogenic
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FIG. 2. The 4d function zi4'(4d) and the 4d ~ d
perturbation 44'i, rr (4d -+ d) for Ag+.

wave functions with an effective atomic number Z, =1.
As was shown in I, for the hydrogenic case, one finds
ri„(3d~ d) = —147.2/Z, and r)„(4d ~ d) = —1680.8/Z, .
Thus a value of Z, =1, which would be suggested by
results for the quadrupole antishielding factor p„, would
give r)„(3d~d)——150 for Cu+ and r)„(4d~d)——1700
for Ag+. The actual values, namely —1197 and —8028
are larger by factors of 8.0 and 4.7, respectively. To put
it in another way, the results for 4t„(rzd ~ d) from the
Hartree-Fock wave functions correspond to effective
Z values: Z, =0.123 for Cu+ 3d~d, and Z, =0.209
for Ag+ 4d —& d. It should, of course, be noted that the
Cu+ 3d and Ag+ 4d wave functions diGer considerably
from hydrogenic wave functions for any value of Z„
so that one should not expect the hydrogenic formula
to apply.

The perturbed wave functions zz'i zr (3d ~ d) of Cu+
and I'i zr(4d —+ d) of Ag+ are shown in Figs. 1 and 2,
respectively, together with the corresponding unper-
turbed radial functions (zrzod) zWe note t.hat the large
results for r)„(rzd —+ d) are essentially due to two effects:
(1) the large values of zz'r, zi in the region of the outer-
most maximum of the perturbed wave function; e.g.,
I'r, zr(4d —& d) of Ag+ reaches a value of 197 at r =2.3an,.
(2) the large values of the factor r4 in the region of the
maximum of the integrand zzo'I', Izr4 of Eq. (2). Thus
the maximum of No'I'~ ~r~ for Ag+ 4d —&d occurs at
r=2.8aH, where no'= —0.232, n'~, II=176.5, r'=61.47,

whence No'v'i, iIr'= —2517. The fact that No' and u'I JI
have opposite sign in the region of large r is responsible
for the net antishielding effect of z)„(zzd ~ d) (&0), in
the same manner as for y„(zzl —+ I).

For the 3d —+d excitation of Ag+, the perturbed
wave function I'i rr(3d ~ d) was calculated, and the
resulting r)„(3d~ d) is —18.4. If one uses r)„(4d ~ d)
= —8030, one thus obtains for the complete g„due to
the radial modes, r)„,„z(Ag+)——8048. Similarly, for
Cu+, we have r)„,„~(Cu+)= —1200.

As has been discussed in I, the contribution to g„
due to the angular modes of excitation of the core
(rzs ~ g; zzp ~ f, Np ~ Iz; rzd —+ g, rzd —+ z) can be ob-
tained by means of the Thomas-Fermi model, in the
same manner as for the quadrupole shielding factor'
p„,,„,. If we interpolate between the results for K+
(4)„,, ,=0.58) and Cs+ (1.6), as given in I, we obtain
g„,,„,=0.9 for Cu+ and 1.4 for Ag+. These values are
obviously negligible compared to the radial terms
p„,„& which therefore represent essentially the com-
plete hexadecapole antishielding factor g„. Thus we
have as our final result: z)„(Cu+)——1200 and
rf„(Ag+)= —8050, with an estimated uncertainty of

10% due to the procedure of the numerical integra-
tion of Eq. (3).

We have also obtained the antishielding factors
r)„(4d —+ d), r)„(4f~ f), and r)„(5d —+ d) for the Hg~
ion, using the Hartree 4d, 4f, and 5d functions for this
ion. ' The results are: r)„(4d~ d) = —271, ri„(4f~ f)
= —17.6, and ri„(5d —&d)= —62,700. It is expected
that the value of rl„(3d —+ d) will be much smaller than
r) (4d ~ d) L i 4)„(3d~ d) i

& 1$.Thus the complete anti-
shielding factor p„ for Hg++ is ——63 000. Similarly to
the results for Ag+, where

i r)„(3d —+ d) i« i rf„(4d ~ d) ~,

it is seen that also for Hg++ the outermost d shell
makes the predominant contribution to g„.

As already pointed out above and in reference 1,
these large values of g„may make it possible to detect
the presence of a nuclear hexadecapole moment using
quadrupole resonance spectra from crystals containing
ions with closed d shells. We note that the present
results for rf„(Cu+) and r)„(Ag+) are considerably larger
than the estimates made in reference 1 using Z, =1.

4 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A149, 210 (1935).


