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Tunneling from an Independent-Particle Point of View
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A method is developed for calculating wave functions through
regions of varying band structure. This method is applied to
tunneling problems using the transition-probability approach of
Bardeen. It is found that the experiments of Giaever involving
tunneling into superconductors cannot be understood strictly in
terms of an independent quasi-particle model of the supercon-
ductor. The observed proportionality of the tunneling probability
to the density of states depends upon the matrix elements being
constant which, in turn, depends upon a many-particle feature of

I INTRODUCTION

ARDEEN! has discussed tunneling from a many-
particle point of view. He did not, however, discuss
‘systems in which the band structure varies with posi-
tion. In the following treatment we restrict ourselves to
an independent-particle approximation, but extend the
work to allow for variations in the local band structure.
We proceed by first developing a method for con-
struction of one-particle wave functions, taking particu-
lar care that these conserve current locally. Matrix
elements are then calculated in terms of these functions
and the tunneling current determined.

Within this framework we consider the Giaever ex-
periment? (tunneling into superconductors) using an
independent-particle model of the superconductor. The
failure of this approach sheds some further light on the
treatment by Bardeen.

The same formulas are applied to systems involving
tunneling into semiconductors, semimetals, and transi-
tion metals as well as into simple metals. Finally, we
discuss the dependence of the tunneling properties on
the nature of the boundary between different regions of
the system.

II. DETERMINATION OF WAVE FUNCTIONS

We consider first a simple system which is divided by
the plane x=0 into two regions of known band struc-
ture, and an electron energy which lies within the
allowed bands in both regions. If suitable boundary
conditions were applied to either one of these regions
alone, we could construct a complete set of Bloch func-
tions corresponding to the appropriate band structure.
We will assume that wave functions for the composite
system may be given, to a good approximation, by a
linear combination of an incoming and an outgoing
Bloch function on each side of the boundary, with each
of these waves having the same component of wave
number parallel to the boundary. This latter condition
corresponds to an assumption of specular reflection and
transmission by the boundary and will be relaxed in

17]. Bardeen, Phys. Rev. Letters 6, 57 (1961).
2 1. Giaever, Phys. Rev. Letters 5, 147, 464 (1960).

85

the problem. This feature does not carry over to fluctuations in the
density of states arising from band structure, and contributions to
the current are not expected to be proportional to the density of
states in that case. Instead, a projection in wave-number space of
the appropriate constant-energy surface enters. Tunneling systems
are discussed which involve semiconductors, semimetals, and
transition metals as well as simple metals. Finally, alterations in
the properties arising from alterations in the nature of the bound-
ary regions are discussed.

Sec. VI. This cannot be an exact eigenfunction for
general band structure since we are required to match
the wave functions on the entire plane x=0, but have
only the coefficients of four waves at our disposal.

The problem of constructing wave functions is now
reduced to the problem of obtaining two matching con-
ditions upon the wave function; these, in conjunction
with normalization and external boundary conditions,
will uniquely determine the eigenstates. It will be a
great mathematical simplification to assume reflection
symmetry in the band structure at all points ; this would
correspond to time-reversal symmetry in a one-dimen-
sional problem.

It will be convenient to represent the Block waves by
plane waves of the same wave number, and to represent
linear combinations of Bloch waves by linear combi-
nations, ¢, of the corresponding plane waves. Since it is
the Block functions which are to be matched smoothly
at the boundary, the function ¢ may not be smooth at
the boundary. We write generalized boundary con-
ditions:

¢

across the boundary, where o and 8 may depend upon
energy and transverse component of wave number and
are different for different band structures. These
parameters may be related to the current-density oper-
ator by noting that we may associate
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B¢ continuous, ad¢/dx continuous,

a d
[¢*a—-ﬂ¢—¢a‘“ﬁ¢*], 2

Jox dx
with the x component of current density. This is per-
missiblesince witha=g=1, this J,is the current density
for free electrons and J, is conserved across all bound-
aries between differing band structures. The particular
ordering of terms will be appropriate when the equations
are generalized to continuously varying band structures
and will guarantee the conservation of current in the
volume of the material.

We may identify the velocity associated with a state

of wave number %, as 7aBk./m by noting the form of the
current density, (2). This, in turn, must equal dH/3p,
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= (1/%)0E/dk, in a one-particle approximation. Thus
the product ok, may be evaluated in terms of the band
structure as

ofk,= (m/h*)IE/ k.. 3)

Equation (3) will provide sufficient information about
the matching parameters for most of our treatment, but
further knowledge will be needed when we treat special-
ized boundary regions in Sec. VI.

In terms of these parameters the problem of obtaining
wave functions for a system in which the band structure
changes discontinuously at planes of constant x is com-
pletely determined. Within regions of constant band
structure, the x variation of ¢ is obtained from the
equation

9%/ 95>+ kp=0

(noting the assumed reflection symmetry in the band
structure). At planes of discontinuity we apply the
conditions, (1).

It may be noted that the matching conditions intro-
duce discontinuities in the slope and value of ¢, and that
these are required in order to conserve electron flux at
the boundaries. The method strongly resembles the
earlier treatment by the author® of wave functions in
perturbed monovalent metals utilizing a cellular method.
In that case variations of band structure in three di-
mensions were allowed.

The method is readily generalized to continuous
variations of the band structure by taking the planes of
discontinuity closer and closer together and, in the
limit, obtaining a differential equation for the x varia-
tion of ¢;

dad
B— — —Bo+PLakip=0.
dx B ox

(4)

Here ¢, @, 8, and k, are functions of position which are
assumed to be slowly varying over a single atomic cell.
The latter three need not be slowly varying over a
wavelength of ¢; that is, we have not yet made a WKB
approximation.

In order to treat problems involving tunneling, we
must extend the above treatment to electron energies
which lie in the forbidden band. We do this simply by
analytically continuing the band structure (E[k]) and
the parameters o and S into the space of complex k.
This is the procedure used by James* in treating one-
dimensional problems and by Peterson® in developing a
crystalline WKB approximation.

III. CALCULATION OF THE TUNNELING CURRENT

We now have a well-defined procedure for con-
structing wave functions, and we may proceed to
calculate eigenstates and the tunneling current. We will

3W. A. Harrison, Phys. Rev. 110, 14 (1958).
4H. M. James, Phys. Rev. 76, 1602 (1949).
5 G. A. Peterson, Bull. Am. Phys. Soc. 5, 161 (1960).
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use the very convenient procedure developed by
Bardeen.!

Bardeen has written the probability per unit time of
the transition of an electron in a state @ on one side of
the tunneling region to a state & on the other side:

Pab= (ZT/h)lMabl2pbfa(1—fb)7

where M .5 is the matrix element for the transition, pe
is the density of states at b, and f, and f, are the
probabilities of occupation of the states ¢ and b, re-
spectively. Further, he shows that we may write the
matrix element in terms of the matrix element of the
current operator between states ¢ and & which are con-
structed to continue to drop exponentially beyond the
tunneling region.

©)

where the x component of the current density operator
Jap is to be evaluated in the tunneling region between
the states @ and b which decay in opposite directions.
M .5 vanishes unless the transverse wave number %,
is the same for the initial and final states (specular
transmission) ; thus pp is a density of states for fixed %..
We sum over all states @ of fixed &, sum over &,
multiply by 2 for spin and multiply by the electronic
charge e to obtain the total current to the right. Sub-
tracting the current to the left, we have finally

Mab= _'ih]ab,

4me *
i=—2Z | |Mas|*paps(fa— fo)dE. (6)
h ke —
The integral over energy is taken at fixed transverse
wave number Z..

In evaluating the matrix elements, we construct
states which are sinusoidal in a positive-energy region
and drop exponentially in an adjacent negative-energy
region. We assume that, except near the transition re-
gion, the band structure is uniform. We assume for the
time that the band structure is slowly varying in the
transition region and make a WKB approximation. In
Sec. VI we consider the consequences of making an
abrupt approximation instead.

The WKB approximation is readily applied to Eq. (4)
by assuming «, 8, and k. vary slowly in the x direction.
The wave functions are found to be of the form

(Bl )t exp(if kzdx),

except near turning points. The occurrence of the factor
(eBk,)~% could have been forseen from the form of the
current operator and the requirement of current con-
servation. Connection formulas across regions where
afk, is small are the same as the usual ones. If x, is the
point on the left of the tunneling region at which
afk,=0, the x variation of a left-hand state is given by
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Ca(aﬁkz)‘*COS( f ukxdx+7a), * <L,
o (1)
(3C2) (o) eXp(— 1) ]kzldx), .

where k, is chosen to make the local energy independent
of position. C, is to be determined by normalization ; if
L, is the extension of the crystal to the left of x4, then

C2=2(oBks)a/La.

Similarly, right-hand states may be constructed by
replacing the subscript a by &.

We may now evaluate the matrix element for transi-
tion using its relation to the current-density matrix
element [Eq. (5)], the form of the current density
operator [Eq. (2)], and the wave function [Eq. (7)].

e ()
“Nom/) L,

X(aik:)b exp(-—ZJ;:b[kxldx). 8)

This is to be substituted into Eq. (6) for the current
density;
2e

j=;% 3 exp(—Zj;a [kwldx)(fa—fb)dE_ )

In the determination of (9) the density of states was
written as

p=(L/)(OE/ k). (10)

We notice the conspicuous absence of the density of
states factor in Eq. (9). This is a direct consequence of
our independent-particle model and the resultant re-
ciprocal relation between the particle velocity [Eq. (3)]
and the density of states [Eq. (10)]. We will see, in
Sec. VI, that the exact form of the integrand in the
expression for the current depends upon the nature of
the barrier region, but only a quite artificial model
would restore the simple proportionality to the density
of states.

IV. TUNNELING INTO SUPERCONDUCTORS

The absence of the densities of states in the integrand
in Eq. (9) is contrary to the experimental results of
Giaever and to the result given by Bardeen. The incon-
sistency results from a failure of the independent-
particle model. In order to obtain agreement with
experiment, we may (following Bardeen) assert that the
density of states is that for quasi-particles, but the cur-
rent entering the matrix element is given by the value
for normal metals. From the independent-particle point
of view, this violates charge conservation at the bound-
ary; from the many-particle point of view this is the
assertion that back-flow around the quasi-particles
should be neglected. In either framework, the essential

problem is gauge invariance, and its resolution is beyond
the realm of the independent-particle model. It seems
remarkable that the simple experimental result depends
so directly upon the subtleties of the many-particle
system.

In any case, we do not expect this essential breakdown
of the independent-particle model to occur in tunneling
involving normal metals, semimetals, and semicon-
ductors. Neither, then, do we expect to find the simple
proportionality of the ac conductance to the density of
states.

V. TUNNELING INTO NONSUPERCONDUCTING
MATERIALS

We may obtain a more informative description of
Eq. (9) by replacing the sum over k. by an integral over
the projection S of a constant energy surface onto the
plane of the barrier; i.e., d*,=dS. After rearranging
factors, we obtain for the current per unit area,

j=2—;;¢ | a1 [as e,

zp
17=2f | k| d.

n depends on energy and on the transverse wave number
associated with dS. The second integral is over regions
of %, corresponding to positive-energy states on both
sides. Thus if we define the “shadow” of a constant-
energy surface to be its projection in wave-number
space on a plane parallel to the barrier, the integral over
S is over the overlap of the shadows from the two sides
for the energy E.

The current between corresponding energy shells on
the two sides of the barrier is proportional to the
difference in the probability of occupation of the states
in the two shells and to a surface integral over the
overlap of their shadows. If one or both of the energy
surfaces is small, as in a semiconductor or a semimetal,
1 becomes essentially constant and the integral over .S
is simply the exponential times the area of the shadow
overlap. If, on the other hand, both of the surfaces are
large, as when both sides are simple metals, the ex-
ponential becomes small for high angles of incidence.
Only electrons moving approximately normal to the
surface tunnel and the integral is equal to the value of
the exponential at normal incidence times that area of
the constant-energy surface for which appreciable num-
bers of electrons tunnel. This area depends only upon
the properties of the tunneling region and may be
readily evaluated for simple models by expanding |Z.|
for small £, and integrating over .S.

(11

with

A. Simple Metals

The integral over S in Eq. (9) is a constant and the
integral over energy is equal simply to the difference in
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Fic. 1. The current-voltage characteristic for tunneling from a
metal into an idealized semimetal. The hole mass was taken equal
to three times the electron mass. Voltages are measured in units of
the electron Fermi energy; the scale of the ordinate is arbitrary.
The currents associated with the electron and the hole band are
shown separately as well as the total current.

Fermi energy (or to the applied voltage). The behavior
is Ohmic as observed by Giaever for normal metals,

B. Semimetals

We consider the tunneling between a simple metal
and a semimetal. There is Fermi surface in both the
electron band and the hole band and two contributions
must be added. We calculate a sample characteristic
neglecting the dispersal of the Fermi surface over the
Brillouin zone and take  the same for both holes and
electrons; we assume spherical surfaces and an effective-
mass approximation for both signs of carriers with the
result shown in Fig. 1.

We note that the irregularities are somewhat “washed
out” and would be further reduced by the inclusion of
other bands. The success of the nearly free-electron
approximation for treating bismuth® suggests that there
will be many other band edges near the Fermi energy
and that the collection of all bands resembles a single
free-electron band. This would suggest a generally
linear characteristic with minor fluctuations.

C. Transition Metals

The very large fluctuations in the density of states in
this case would have provided spectacular results if the

6 W. A. Harrison, J. Phys. Chem. Solids 17, 171 (1960).
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tunneling were proportional to the density of states.
However, the Fermi surfaces associated with both d and
s bands are expected usually to be large. The current
into each is determined by an area of surface which
depends only on the properties of the insulating barrier,
so the contributions from the two bands should be
comparable. Only near band edges should there be
fluctuations in the characteristic and these should be
more pronounced near a d-band edge since the energy
surface and its shadow area change more rapidly with
energy in that case. Such irregularities have not been
observed.

D. Esaki Diode

The application to the tunnel diode is straight-
forward. The band structure is continued into the plane
of complex k in the evaluation of 4. In this case, with a
reasonable model of the tunneling region, » will depend
upon the applied voltage.

An interesting feature of the analysis is the failure of
the one-dimensional density of states to enter the
integral. The same feature occurs in the treatment of
tunneling as a Zener current in a uniform field.” In that
analysis, an artificial density of states enters which
depends only on the applied field and the magnitude of
a reciprocal lattice vector.

VI. NATURE OF THE TRANSITION REGION

It has been necessary in this treatment to make two
specific assumptions about the boundary between differ-
ent regions of the system. We have assumed that this
region is sufficiently planar that the transmission of the
barrier is specular. We have also assumed that the band
structure varies sufficiently slowly that we may make a
WXKB approximation.

The experiments on superconductors shed no light on
either of these questions. The one-dimensional density
of states which enters Eq. (6) is proportional to the
three-dimensional density of states which would enter
if the transmission were diffuse. Furthermore, the asser-
tion that the matrix element is the same for the super-
conducting and normal metals is sufficient to assure its
relative constancy whether the boundary is gradual or
sharp.

In the tunnel diode it is reasonable to expect that
both assumptions are valid and the question remains
open with respect to the boundary region with deposited
or oxidized films. The observed diffuse reflection at
metallic surfaces® would suggest diffuse transmission
also. This is not conclusive, however, since macro-
scopically diffuse reflection is not inconsistent with
microscopic specular reflection if the transition region is
irregular.

We consider briefly some modifications expected if

7E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959).
8 A. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1954), p. 248.
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either of these assumptions as to the nature of the
boundary is not valid.

A. Sharpness of the Boundary

If the boundary region were sharp, we should proceed
with the calculation of the wave functions by matching
rather than with the WKB approximation. The bound-
ary conditions of Eq. (1) are directly applicable. We
assume sharp boundaries and uniform band structures
in each of the three regions, numbered 1, 2 and 3 (the
tunneling region being numbered 2). We obtain

72\21 1 168:2v4°B3
= (=) —— o
2m7/ Ly Ls (V12+V22) (V22+V32)
vi=Bifoks:. (12)

When multiplied by the density-of-states factors, this
becomes

where

V1V22V3

IMab!2Pan=— e ",
7 (140" (v +v?)

In contrast to the result of the WKB approximation,
this is not independent of energy. Furthermore, the
dependence upon the matching parameters is not simply
through the product a8k, which we were able to evaluate
in terms of the band structure. We must consider these
parameters in more detail.

The complete Bloch function may be written as
wx(r)e™ ¥, If uy is normalized such that its average value
is unity, the factor e*'* may be associated with our
function ¢. When the band structure changes, we must
match the Block functions at the cell boundaries, where-
as our matching condition is that 8¢ be matched at the
boundary. We may therefore associate 8 with the value
of the normalized # at the cell boundary.

g | (cell) |20

ﬁnluk(r)]"’dr

Cf

(13)

Here Q is the cell volume, 3 is of order unity at the edge
of an s band and zero at the edge of a'p band, and 8is
equal to the parameter v introduced by Bardeen® in his
extension of the Wigner-Seitz cellular method. Our
matching conditions are equivalent to those used in the

9 J. Bardeen, J. Chem. Phys. 6, 367 (1938).
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earlier extension of the cellular method to nonperiodic
structures.?

From Egs. (3), (10), and (12) we see that » is pro-
portional to 8% times a density of states. Thus, Eq. (13)
indicates that the density of states has reappeared in the
integrand for the tunneling current. However when the
density of states becomes sufficiently large, it dominates
in the denominator and the result is snversely propor-
tional to the density of states.

If we were to attempt to use the form of Eq. (13) to
obtain agreement with the superconducting experiments
within an independent-particle approximation, it would
be necessary to take 8 in the superconductor (and in
the same metal when it is normal) to be negligible
compared to that in the tunneling region. This seems
quite inappropriate and we maintain our conclusion
that the independent-particle model fails in that case.

The dependence upon the density of states given in
Eq. (13) offers some hope for interesting behavior with
semimetals and transition metals, but the hope is weak.
This dependence on the details of the wave functions
seems unrealistic when the boundary is not ideal.
Further, a sample comparison between an exact calcula-
tion and a WKB approximation for free-electron tun-
neling indicates that the WKB approximation becomes
quite good as the thickness of the transition approaches
and exceeds a single electron wavelength.

B. Diffusion of Transmission

There is no unique way to introduce a diffuse trans-
mission. One might, however, expect three qualitative
conclusions to hold in any case.

First, if the boundary is gradual we might still expect
the cancellation of the density of states by the velocity
in the matrix element even in the diffuse case since this
arose from current conservation. In particular, we
should not expect the simple proportionality to the
density of states to reappear.

Second, we expect no appreciable modification of the
results for simple metals (and superconductors) which
have isotropic electronic properties.

Third, we expect significant differences in tunneling
into semimetals and degenerate semiconductors de-
pending upon the nature of the transmission since their
Fermi surfaces lie in limited regions of wave-number
space. However, the general smoothing of fluctuations
because of the cancellation of the density of states and
the contribution of many bands should remain.



