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Lattice Anharmonicity and Optical Absorption in Polar Crystals.
II. Classical Treatment in the Linear Approximation
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An expression for the elements of the dielectric susceptibility tensor for an ionic crystal has been derived
in a manner analogous to that employed by Kubo in his treatment of magnetic susceptibility. In the high-
temperature (classical) limit, this expression reduces to the Laplace transform oi the autocorrelation function
of the single normal coordinate which interacts directly with the external radiation Geld. We have applied
this formalism to the calculation of the high-temperature linear optical absorption coefBcient of an anhar-
rnonic ionic crystal for which we have retained only cubic anharmonic terms in the lattice Hamiltonian. We
have solved directly for the Laplace transform of the autocorrelation function to lowest order in the anhar-
monic coupling constant by solving the equations of motion for the normal coordinates after they have been
linearized. The linear absorption coefficient obtained from the susceptibility tensor is of Lorentzian form with
a frequency-dependent damping constant which varies linearly with temperature. The absorption coefhcient
for a diatomic linear chain with nearest neighbor interactions has been evaluated.

I. INTRODUCTION
" 'N a series of papers published in the 1930's, Born
~ - and Blackman presented a classical theory of
anharmonic optical absorption in ionic crystals. ' They
started with the equations of motion of the individual
normal coordinates which, due to the anharmonic
interactions, form a set of nonlinear coupled equations.
Treating the dispersion oscillator, i.e., the optical mode
of infinite wavelength which couples directly to the
external radiation field, separately from the other normal
coordinates, they electively linearized the equations
of motion and solved them using ordinary time-
dependent perturbation theory. Their results show a
Lorentzian shape for the absorption curve as a function
of the frequency of the external field which is peaked
about the frequency of the dispersion oscillator ("disper-
sion frequency"), but in addition, the damping constant
in the Lorentzian expression is itself a function of the
frequency of the external field. This frequency depend-
ence of the damping constant imparts additional,
subsidiary, maxima to the absorption spectrum in
qualitative agreement with experimental results.

Recently, notable advances have been made in the
theory of transport properties and in methods of dealing
with the statistical mechanics of systems of many
interacting particles. These developments have
prompted us to re-examine the theory of anharmonic
optical absorption in ionic crystals with the objective
of obtaining a systematic theory which not only can be
extended to include higher-order contributions in the
classical limit, but also can serve as the starting point
for a satisfactory quantum mechanical theory. The
necessity for a fresh approach is emphasized by certain

'M. Born and M. Blackman, Z. Physik 82, 551 (1933); M.
Blackman, Z. Physik 86, 421 (1933); M. Blackman, Phil. Trans.
Roy. Soc, London A236, 103 (1936).

II. FORMULA FOR OPTICAL ABSORPTION
COEFFICIENT

In deriving the formula for the optical absorption
coefficient, we follow a procedure analogous to that
employed by Kubo' in treating the magnetic susceptibil-
ity. We begin with the equation of motion of the density
matrix for our crystal system in the absence of an
external time-dependent perturbation:

Bp 1 1
PpH EIph = Pp, Hl. —

Bt ik ih
(2.1)

s A. A. Maradudin and R. F. Wallis, Phys. Rev. 120, 442 (1960).
s R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).

weaknesses in currently available quantum mechanical
treatments. '

In this paper we develop the basic formalism which
will be employed in these investigations.

We derive the equations of motion for the normal
coordinates, and after linearizing them, solve them to
obtain the absorption coeKcient. The motivation for
studying the linearized equations of motion is heuristic.
If the equations are correct to lowest order in the
anharmonic coupling constant, then we expect the
solution to be correct to the same degree of approxima-
tion. We restrict ourselves to the classical case because
its relative simplicity permits us to display our methods
to best advantage. The more difficult quantum mechan-
ical case will be treated in a subsequent paper.

The basic formulas required for the evaluation of the
optical absorption coeScient are derived in Sec. II,
In Sec. III, the equations of motion of the normal
coordinates are obtained, and their solution, in the
linear approximation, is carried out in Sec. IV. The
resulting expression for the absorption coeKcient is
evaluated for a simple model in Sec. V.
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M (t) ei ™M., e

We now assume that, at time t= —~, an external where we have put
electromagnetic field E(t) is turned on. The interaction
energy of our system with the external field has the form (2.9)

II'(t) = —M E(t),

where M is the dipole moment of the crystal. The
equation of motion for the perturbed density matrix
p+Ap becomes

8
[p+Ap]=——[p+Ap, II MR(t—)]

Bt iA

With a change of variable we obtain

f
(M„)=—Trace P [M„p]M„(r)E,(t r)d—r. (2.10)

A P P

If we describe our external field by the following
relation,

E(t) =e"E (2.11)

where the factor e" is introduced to turn on the field
di b ti llyfo t(0, d

'
t llyp t q lt

zero, we obtain finally that

(M„)=—Trace P Eo„e'+'"'
V

X [M„p]M„(r)e " '~'dr. (2—.1-2)
"0

The expression for the pv element of the dielectric
susceptibility tensor thus becomes

Bdp 1
Php, II]+—[p, M E(t)]-.

Bt iA ik
(24) x („)

where, since in all that follows we will be interested only
in a linear relation between the dipole moment of the
crystal and the external field E(t), we have neglected
the commutator [Ap, M R(t)] as small of the second
order in writing Eq. (2.3). With the aid of Eq. (2.1),
we see that the equation of motion satisfied by Ap is

The solution to Eq. (2.4), subject to the condition
Dp( —~)=0, is

~t
gp(t) — P I e Q(t t')HIA- —

It QQ

oo

lim Trace ' e '"' "[M p]M„(r)dr, (2.13)
$'ter' &~0+ J

where V is the volume of the crystal.
If we assume that the unperturbed system is in a

canonical distribution so that
X [MQ p]e*" "&~'"E„(t')dt'—

, (2.5) p=e—e~jz, (2.14)

as can be verified by differentiation with respect to t.
The ensemble average of the expectation value of an

operator 8 is given by

(B)=Trace(p+hp)B. (2.6)

(M„)=TracehpM„

In the present case, we are interested in the expectation
value of the p component of the dipole moment of our
crystal M„. Since in the absence of the external field
the crystal has no permanent moment, we have that

A

[g e eH] e PH
~

e—i Hge AH—dy—
J, (2.15)

we obtain
Trace

x„,(pi) = lim sG)T STD j9H

Q~O+ Zy

X I e"~M,e "~dF,M (r)drV p

where Z is the crystal's partition function; then, with
the aid of Kubo's identity,

=—Trace P
A V

&
—i(&—t') H/A

X[M.)p]e'" "&~'"E,(t') M„dt'. (2.7)

Trace
= lim

~
dr e '"' "

o+ Zp'

With the aid of the cyclic theorem for traces and the
fact that E„(t) is not an operator, this expression is
rewritten as

X ~C e e~M„( iXA)Mp(r)dh. (2.16a—)
0

In the classical limit, 5 —+ 0 and we have

(M„)=—Trace P „[M„,p]M„(t—t')E„(t')dt', (2.g)
V

cX„„(pp)= lim — e ""' "(M (0)M„(r))d7, '(2.16b)
Q~o+ P' J
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where (. ~ ) means an average over the unperturbed
canonical distribution.

The relation between the susceptibility tensor and the
absorption coefficient is obtained as follows. 4 From
the relation between the dielectric constant and the
susceptibility

where

M.(oj)= 2 ~.(~Ioj).
M„

(2.25)

In fact, however, M„(oj) vanishes for j corresponding
to an acoustic branch, so that we can write

PIIP ((d) =8PP+41I'XPP ((P) 1 (2.17) M„=gx M„(oj)Q(oj), (2.26)
we find, in the plane-polarized case, that

pg2;((p) = 1+4')(»((p).

We now set p„=e', where e=X+iji and
X„into its real and imaginary parts

where it is now to be understood that j refers to an
(2 1g) optical branch.

Thus, for the partial dielectric susceptibility asso-
ciated with the jth dispersion oscillator, we find, on
combining Eqs. (2.26) and (2.16b),

X„((p)=X„(')—iX„(p). (2.19)

X is known as the ordinary index of refraction, while p
is the extinction coeKcient. If X, is so small that its
square can be neglected relative to X„itself, then we
find for X and p

(i) ((p) =
A) M„(0j)M„(0j)

VkT '~ "()

X(Q(0j;0)Q(0j; t))dt, (2.27)

l(= 1+2prX„'"((d),

p, = —2irX,.(') ((p).
(2.20)

The linear absorption coeKcient a„(pp) is given by

where by Q(oj; t) we mean the value of the normal
coordinate Q(oj) at time t. If we can find a way of
expressing Q(oj) at time t in terms of its value at
time t=0 in the form

CO GD

G»((p) = —2—ti= +4pr —X
C C

Q(oj; t) =Q(oj; oy„(t)+j(oj;o)G„(t), (2.2g)
(2.21)

then we can rewrite Eq. (2.27) as

Since the absorption coeKcient n„((p) is just propor-
tional to the imaginary part of X„((p), Eqs. (2.16)
formally solve the problem of determining the absorp-
tion coefficient of our crystal.

We will be concerned here with the classical limit,
and Eq. (2.16b) is the basic equation of this paper.

In an ionic crystal, the dipole moment M is given by

M= Q p„u(l((), (2.22)

u(l(() = p e()(~ kj)Q(kj)e'~'"'('), (2.23a)
(EM„):»

where u(l)() is the vector displacement of the i(th ion
in the /th unit cell from its equilibrium position and
~„ is the charge on the ath kind of ion in a unit cell.
We now expand u(li() in terms of normal coordinates,

XM„(oj)M, (oj)
x,„()( ) = " "

(j(oj;0)j(oj; o)&
VkT

X lim ~ e ' ' "Gp;(t)dt, (2.29)

since the thermal average of Q(oj; 0)Q(oj; 0) will
vanish. This is essentially what we will do in the
present paper, although we will have to be somewhat
more careful in evaluating the thermal averages than
has been indicated in the derivation of Eq. (2.29).

As an illustration of the use of Eq. (2.27), we calculate
the absorption in a purely harmonic lattice. In this
case, we have that

Q(0j; t) =Q(0j;0) cos(pp&'t+Q(0 j;0) (sin(pp, t/(pp;), (2.30)

where co». is the frequency associated with the mode
(lrj).Equation (2.27) becomes

1VM„(0j)M, (0j) (
"

lim e '"' "sin&pp, tCt& (2.31)
V(pp;(2.23b)Q(kj)=Q*(—kj)

where e(((~kj) is an eigenvector (normalized to unity) X (i)(~)
of the dynamical matrix for our crystal. The normal
coordinates Q(k j) satisfy the reality condition

where j labels the branches of the frequency spectrum,
with the consequence that Q(oj) is a real quantity.
The )M component of M can be written as

Mp=v'& Z~ Mp(oj)Q(Oj), (2 24)

4R. C. O' Rourke, U. S. Naval Research Laboratory Report
No. 4975, 1957 (unpublished), p. 207.

pr 1VM„(oj)M.(oj)
Im&„.")((p) = —— 5((pp,—(p). (2.31)

2 Vcoo;

Combining this result with Eq. (2.21), we find for the

since in the harmonic approximation (Q(0j; 0)Q(0j;0))
=AT, so that
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linear absorption coeKcient

2x' a) M.(0j)iV,(0j)
n.:.")=+— &(~—~o,),

C GPp& &a

(2.32)

tively. The 4& coeAicients are general force constants
for our crystal.

If we apply the normal coordinate transformation
given in Eq. (2.25) to the above Hamiltonian, we obtain
the result that

where Vj, is the volume of a unit cell in the crystal. This
is the expected result. A factor (1/eo), where No is the
high-frequency refractive index, may be included on
the right-hand side of Eq. (2.32) to take into account
the electronic polarization.

The approach outlined in this section has at least
two advantages over more conventional ways of .
calculating the optical absorption. Firstly, since all
that is required is the time evolution of one particular
normal coordinate, questions relating to the intensive
or extensive nature of the damping constants which

appear in the course of the calculations are absent. ; the
required damping constants come out automatically
as intensive quantities rather than as the differences of
extensive quantities. Secondly, we note that the
integral in the expression for the susceptibility tensor
Eq. (2.29) is of the Laplace form with a complex
parameter s= e+ico. This suggests that if we solve not
for the primitive function Go, (t) but instead for its
Laplace transform go, (s), we need only replace s by
e+i~ in the expression for go, (s) and pass to the limit as
e ~0+ in order to obtain the susceptibility and hence
the absorption coe%cient. Not only does this procedure
eliminate any need for ever returning to the time-
dependent representation, but, more importantly, it
introduces the frequency dependence into the damping
constants in a very natural way, something which

appears to be extremely difficult in the time-dependent
formalism. Indeed, it is rather natural to solve the
equations of motion by Laplace transform techniques,
since the latter are particularly well suited for solving
initial-value problems.

IIL EQUATIONS OF MOTION OF THE
NORM AI COORDINATES

If we retain only cubic anharmonic terms in the
expansion of the potential energy of the crystal, the
Hamiltonian for our vibrating lattice becomes'

I/= ', P M„u '(l»)+-,' Q P C,-p(l»; l'»')u„(l»)up(l'»')
Z]rn Z'a'P

+-', P P Q 4 p, (1»;l'»', 1"»")u (l»)
l]ra l'a 'P l"x"y

Xup(l'»')u, (l"»")+, (3.1)

where u (l») is the n-Cartesian component of the
displacement of the ~th atom in the 3th unit cell from
its equilibrium position, M„ is the mass of the ~th
kind of atom in a unit cell, and the indices l and I; range
over lV unit cells and two atoms per unit cell, respec-

See, for example, M. Born and K. Huang, Dyrza»zzcal l heory of
Crystal Lattzces (Oxford University Press, New York, 1954), p.
343.

&=l 2 {Q(kj)Q(—kj)+ '(k)Q(kj)Q( —kj)}

with

+ P P A(k+k'+k")c (kj;k'j'; k"j")
6/E kk'k" ij'i"

XQ(k j)Q(k'j')Q(k" j"), (3.2)

~(k+k'+k") =I, k+k'+k"=K
=0 otherwise, (3.3)

and is completely symmetric in the indices kj, k'j',
I 1/ 'll

For convenience we put

—A(k+k'+k")c (kj; k'j', k"j")
2+.V —= U(k j;k' j'; k"j"), (3.5a)

and we see that this function satisfies the relation

y(—kj; —k'j'; —1"j")= V*(kj; k'j'; k"j"). (3.5b)

Hamilton's equations of motion for the lattice become

P(k j)= =Q(k j),
BQ(—kj)

(3.6a)

P(k j)= — = —(d, '(k)
~Q( —kj)

Q V (—kj; k' j'; k"j")
1I1 1II t P 7'/ e

XQ(k' j')Q(k"j"). (3.6b)

Combining these two equations, we obtain

Q(k j)+~ '(k) Q(k j)= —2 2 I'( kj; k' j'; k"j")—
k/III jI jib

XQ(k'j')Q(k" j"). (3.7)

In the harmonic approximation, the right-hand side

where K is a primitive translation vector of the recip-
rocal lattice. The {~J2(k)} are the eigen values of the
dynamical matrix for our crystal, and are the squares of
the normal-mode frequencies.

The coefficient C (kj; k' j'; k"j")is given explicitly by

c (kj;1'j'; k"j")
C.p, (0»; l'»', l"»")

~a ('~'p i"~"y (le„)1f r~ (r):

Xe (»
~

kj)ep (»'
~

k' j')e, (»"
~

k"j")
Xe2w([k' x(]')+k" x((")] (3 4)
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(p„. (k) = —(p .;(k),
Q(kj;0)

Q(kj;t)=- Q(kj;0)+ .
2 ipp, (k)

V(—ka j;k'a j'; k"a j")
= V(—kj;k'j', k"j"), (3.11)

of Eq. (3.7) vanishes, and the solution for the normal By adopting the notation
coordinates can be written as

Q(kj;0)-
+—Q(kj;0) — e '""&'.

2 happ, (k)
(3.8) we can rewrite Eq. (3.10) in the compact form

2 U( —kj; k'j '; k"j")
2ipp, (k) k'k" +~'+i"1 Q(kj; t)

C(kj; t)= Q(kj—; t)+ e '"i(k)' (39a)
2 ip);(k) XC(k'j'; t)C(1 "j";t)

In the anharmonic case, it is convenient to introduce C(kj; t)
new variables C(kj; t) and C(k —j; t) in place of dt

Q(kj; t) and Q(kj; t) by means of the relations 1

1
C(k —j; t) = g(kj;-

2

Q(kj; t)
t) eke;(k)t

i(p, (k)
(3.9b)

—C(k+ j; t)
dt

By using Eq. (3.7) one can verify that the quantities
C(k&j; t) satisfy the equation

Xe{[(ai (k')+rag i(k")—'M)(k)]i (3 12)

where j' and j" are now summed over positive and
negative values and j may be either positive or negative.

For the purposes of the present"paper, we linearize
the equation (3.12) in the following way. In the absence
of the anharmonic interactions the C(kj; t) are inde-
pendent of time. We thus write

&P'toe j(k) &

P U(-k j; k j;k"j' )
2i{p;(k) k k"~'i"

X/C(k' j'; t)e'"i'k')'+C(k' j'; t)e '"—'('"]
XPC(k"j";t) e'"~"(""'

+C(Q~& f&. «)e (~7 ll(k")t]— '

C (kj; t) =ck, (')+ckj(') (t), (3.13)

where ck,(" is the time-independent solution to the
harmonic equation of motion, and ck, ("(t) represents
the time-dependent correction due to anharmonicity.
Substituting Eq. (3.13) into Eq. (3.12) and retaining

(3.10) only linear terms in ck, ('&(t), we obtain

c„.(~)—kj
dt

U(—kj i k'j '; k"j")ck., (')ck .„'.«)e'{~&''(k')+~i"«")—~i(»&&

2 (p(k) k~k" t'e'

+ Q p V( kj; k'j'; k"j "—)cki, i("ck.~, (')e'(~~'(k')+"~"(k")—"&(k)&'. (3.14)
(p . (t'«) gz gr r P P z

It is with the solution of this equation (in the special
case k= 0) that we will be concerned in this paper.

IV. SOLUTIONS OF EQUATIONS OF MOTION

In calculating the dielectric susceptibility tensor, we
must evaluate the thermal average

(Q*(1j;O)g(kj; t)),

in the special case k=O. In terms of the new normal

coordinates C(kj; t) and C(k —j; t), this average
becomes

—i(pk, ()C*(kj; 0)—C*(k—j;0)]
XLC(kj; t)e'""+C(k—j; t)e '"»']).

In this expression and in what follows, for typographical
convenience, we have expressed &p;(k) as {pk,. If we
substitute this expression back into Eq. (2.29), we

obtain the result that

(i) ({p)—
(pp; NM„(0j )M, (0j )

lim e
—'+' —'"o~' '([C*(0j;0)—C*(0—j i 0)]C(0j; t))d t

VAT ' ~ ~p

+ ~ e ('+'"+'"')'(LC*(Oj; 0)—C*(0—j;0)]C(0—j; t))dt . (4.1)

Thus, the problem of obtaining X„„(&')((p) reduces to finding the Laplace transforms of C(0j; t) and C(0—j; t)
and evaluating the indicated thermal average. In view of Eq. (3.13), the Laplace transform of C(kj; t) can be
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written as

Z(C(kj; t)) =Z(ck, '"+ck,&'&(/))

c .(')
ky

+Vk;(s). (4.2)

We begin by taking the Laplace transform of Eq. (3.14). We obtain

ck &'&(0) i
Vk ($)= +

S 2$G0 ic'k' 7'j'

V( kj; k'—j', k"j")ck &
i'&ck, &"

~ /
$ Z(~—ki P+~k I.P i —(g) gq)

sG0 k'k" j'j"V(—kj;k'j', k"j")ck;&o&yk",' [$ i(—~k., +a:rk.,'.—idk;)]. (4.3)

We assume that c» &(0)—=0. This can be regarded as equivalent to incorporating it into the definition of c»i'&.
For the purpose of calculating optical absorption we need yo, (s). However, it is just as easy to solve for a general

y»(s), and we solve for this variable by iteration:

V(—kj;k' j'; k"j")ck;&'&ck"p
&'&

V»($) =—
2$ k'k" &'O' M»[$2(Mk~P+Mk~lP~ Mki)]

2S k'k"k 'k "j'j"j'j"
V(—kj;k'j'; k"j")V(—k"j";ki'ji'', ki"j,")ck; i"ck, ;, "'ck, ;, i'&

~ /
COkjMk»j» S 2$P& jI k»j» +kj

X + . (4.4)
$—Z(Mk'j'+Mk "j"—~kj) —i(G)ki'jz'+~ki J'i Kk g )

(Q*(kj)Q(k' j'))= A(k' —k) 8;;.,

(Q*(kj)Q(k' j'))= kTA(k' k)8,,', —

we obtain the results that
kT

(C*(kj;0)C(k'j'; 0))= A(k' —k) B~J,
2cog '

(4.5)

(C*(k—j;0)C(k'j'; 0))=(C*(kj;0)C(k' —j'; 0))

=0, (4.6)

At this point, we can effect an immediate simplification
in this expansion if we remember that, for the calcula-
tion of optical absorption, we require the thermal
average of the product of y»(s) and yk;(s) with
C~(k —j;0) and C*(kj; 0) in the special case k=0.
From Eqs. (3.10) and the relations

kT

kT
(C+(k—j; 0)C(k' —j'; 0))= A(k' —k)8,y.

2'»

The thermal averages, Eq. (4.5), have been evaluated
in the harmonic approximation. They suffice, however,
to give us final results which are correct to the lowest
order in the anharmonic coupling constant.

These results imply that only the even-order terms
in this expansion give a nonvanishing contribution after
averaging since the thermal average of the product of
an odd number of normal coordinates vanishes. Further-
more, in the even-order terms, certain pairings of
indices on the c»(0) are required in order that the
thermal averages do not vanish. As an example, we
work out explicitly the second-order contribution. Ke
compute first (C*(kj;0)p»(s)). This quantity is given

by

(i)'
(C*(kj;0)y»(s)) =

2s k'k"k1 kl j ~ jl jl"

V( kj; k' j'; k"j")V(—k"j—";ki' ji'; ki"ji")
~k Mk„,i[$—Ztid~iP+~giIPi —M»)]

(ck *io&ck {'&ck ~, iO&ck, " "&'&)

X . (4 7)
S—Z Mk'g' k"g" —kg —2 sky'gy' ky "gy"—k"J"

e thermal average vanishes unless the normal coordinates are grouped in pairs. We neglect here the cases in
which all four normal coordinates are equal since neglect of such terms leads to an error of only O(A '). »»ew
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of Eqs. (4.6) and (3.9) there are three possible pairings, and these are given by

(a)

(b)

(c)

kl"——k,
kl' ——k,
k'= k,

J~ J7 k,"=—k',

kl"= -kl', Jl Jl

kl'= -k', j,'= —j'
(4 g)

However, of these three possible pairings, only the first two give nonvanishing contributions since it is a general
result that'

v(—kj; kj; k"j")=—0.

The contributions from the first and second sets of pairings are equal to each other and are given by

(4 9)

2g klkf I~'1~II

V(—kj;k'j';k"j")V(—k"j";kj;—k' —j') (kTq ' 1 1

4d»4dk"j"p 2(4dk'j'+4dk"j" 4dkj)] ~ 2 ~ ldkj 4dk'j' p 2(4dk'j' 4dkj) 2(4dkj 4dk'j')]

(i)' (kT)' I V(—kj;k'j', k"y") I'

2@2~(g k k'k" j'j"ky Q7 k &'Q) k jP Q) kI s P t. 2
(4.10)

S Z(4dki ji+4dkii ii —4dk )

I v( kj; k'j', k"j—")
I
'(i)2 (I T)2

(4.11)
2s 2e $$ i (4d—k j +ldk" j. cdkj—)]$$+2i4dkj]kg~k'g' (gk. 2

Similarly, the thermal averages (C~(kj;0)pk j(s)) and (C*(k—j;0)yk j(s)) are given by

In a similar fashion, the thermal average (C*(k—j;0)p»(s)) is found to be the sum of two terms, each of which
is equal to

(i)2 (kT)2
&C*(kj;O)~, ,(.))= —2

2$2 (ok k'k" ~'i"

Iv( —kj k'j';k"j")I'
Q) kjQ)k 2P Q) kI jP 8. 2

(4.12)
L$2(4dk' '+Cdk "+Cd»)]CS 224dk ')

(i)' (kT)2
&C*(k—j;0)7 —( ))= —2

2/2 2~~k.2 kjk jj4l I

I v(—kj; k'j'; k"j")I'

kqk'P &R"q". 2 S—2 (~ki i+4d ki i i i —(d k ). (4.13)

respectively.
Before proceeding to a general discussion of the contribution from the 2nth term in the expansion (4.4), we have

one more point to bring out, and this is illustrated by the contribution from the fourth-order terms. Explicitly,
we have that

(i)'
v»'"($) =

2$

V(-k;k' ', k" ")V(-k""k'''k" '")
kjk "j"ky "ji "k2 "j2"

V(—kl"jl", k2' j2', k2"j2")V(—k2"j2"
&

k3' j3', k3"j )8&kj
'' 4kl'jl' &k2'j2' &k3'j3' &k3 "j8

X
LS—(24djk' +4d"k"1Mkj)][$8(Mk'j'+~k "j" ~kj) 2(~kl'jl'+~kl "jl" ~k"j")]

X
LS—2( ld' kji+ldkj" —4dkj) —2(4dkl'jl'+4dkl"jl" —k"j 4"d) 2(4dk2 j2 +4dk2 j2 4dkl jl )]

X
2(4dkj''+4dk''2 — ldkj) (4dkl j—l +ldk—l 'jl —k"j "4d) —i(4dk2 j2 +4dk2 j2 4dkl jl ) (4dk8 j3 +~k8 j3 k2 j2 )]

(4 14)

The law of formation of all higher-order terms should
be clear from the results of Eqs. (4.4) and (4.14).

Now, for each of the four kinds of thermal averages,
which arise from pairing either of C*(kj; 0) or
C*(k—j;0) with either of y»&4&(s) or yk j&4&(s), there
are 12 possible groupings of the six normal coordinates

6 R. Peierls, Qguntlm Theory of Solids (Oxford University
Press, New York, 1955), p. 37, second footnote.

(c»'3&) into three groups of two each, if Eq. (4.9) is
kept in mind. However, not all of these 12 groupings are
equivalent for our purposes. We are primarily interested
in those terms which dominate at large values of time,
and we neglect all other terms. This choice follows from
the fact that the dielectric susceptibility is associated
with the long-time forced motion of the system produced
by the external radiation. Ordinarily, short-time
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12n 1
f(~)=-II

S j=l (S+2Q)
(4.15)

in 2eth order. Here some of the {a,} can be equal to
each other, and can also be zero. We know, for instance,
that

while

F,(t) =Z-'
(s+ia)'

]g
—iat

7

(e int ~
—ibt—)

(S+ia)(S+ib) 2(b —a)

so that Fl(t) will dominate F2(/) for large values of the

transient terms will also occur, but these are of no
importance in determining the susceptibility and should
be neglected.

What criterion can we use to eliminate all terms in
each order except those which give the dominant
contribution? We are working with Laplace transforms
which are of the form

time. This is a special case of a more general result,
which can be stated in the following way: Of all
Laplace transforms of the form of (4.15), the ones which
contribute the highest power of 3 to the primitive
function F(~)=Z '{f(s)} are those which contain the
largest number of equal parameters {gj}.The truth of
this statement follows from a partial fractions expansion
of the right-hand side of Eq. (4.15) and the fact that

1

ls"+') n!
(4.16)

This result tells us, for example, that as long as we
are interested in only those terms which dominate the
long-time behavior of the integrand of Eq. (4.1), we can
neglect the contribution from Eq. (4.11) in comparison
with that from Eq. (4.10) and the contribution from
Eq. (4.12) in comparison with that from Eq. (4.13).
We now show that these results are contained in a
more general result. Consider that part of the general
2mth order term in the expansion of y»(s) which
contains the product of the {c»&2'}coefficients and the
last frequency denominator:

~kl jy ~k2 22 ' ~k2n —I i2n—1 ~k2n —1 i2n —I

L' 2(~k't'+"k't "kj) 2(~kl'jl+"ki jl ~k 2 ) 2(~k2j2+"k2 j2 ~kl jl )
2("k2n—l~j2n —1+"k2n—1 j2n—1 ~k2n —2 j2n—2 )j

Gk'j' Cky'j, Ck2'j2' ~ - Ck2n ].'&2n—&' Ck2+, "j2&
(4.17)

'L"k'1' "kj+~kl jl+~k2 j2+' ''+~k2n —1 j2n—1+~k2n—1 j2n—1

When the numerator of this expression is multiplied
either by c»&"* or c~;"'*, as is required in taking the
thermal averages indicated in Eq. (4.1), then there is

a one-to-one correspondence between the 2@+2 factors
in the numerator and the 2m+2 frequencies in the
denominator. Thus, when the {c»&'&}in the numerator
are paired two-by-two in order to yieM nonvanishing
thermal averages, the frequencies in the denominator
are paired in the same way. However, since in pairing
the {c»'2'} we must form the product of ck j &2' with

~
(') ——gk j &0)*, and since co» changes its sign on

reversing the sign of j regardless of the sign of k, we

see that, for every permissible pairing, the frequencies
in the denominator cancel in pairs. This is the case for
all sets k, j except for the one which pairs with kj.
In this case, we have two diferent results depending

on whether it is c»&')* or c~, ')* we have multiplied

y» by. In the former case, it is clear from (4.17) that

co» in the denominator is cancelled also, and the entire

factor collapses to s. In the latter case, it is seen that

~» is not cancelled and that, in fact, the factor in the
denominator reduces to s—2ico~, . Since in our present

discussion, j always refers to an optical branch, co» is

nonvanishing. An analogous set of results holds for the

thermal averages of the products of c»& )* and t,"k,.&0)*

with y~;, as can be seen explicitly in the second-order
results.

This fact has the consequence that we can neglect
the thermal averages of the form (C'(0—j;0)C(0j; t))
and (C*(0j;0)C(0—j; ~)) in determining the suscep-
tibility tensor by means of Eq. (4.1). This is due to the
following reasons. In determining the thermal averages
(C*(kj;0)p»(s)) and(C*(k —j;0)p»(s)) thereisclearlya
one-to-one correspondence between the pairings of the
{c»&'&} in the two cases. What is more, these pairings
are identical in the two cases except in the case of the

which pairs with c». '* or with c~;"&*, respec-
tively. In the former case, j =j; in the latter case
j = —j.We have just seen that in the former case the
last frequency factor in the denominator collapses down
to s, while in the latter case it reduces to s—2iMk, . There
are thus two cases to consider.

(a) ck, ~;&"* pairs with either &k2 lj2 lto' or
&k2„y"y2„y"". In this case only the last frequency
factor in the denominator is diGerent in the expressions
for the two thermal averages, the remaining factors are
identical. Thus ignoring the frequency factors arising
from the pairing of the remaining {c»&'} among
themselves which will be the same in the two cases
the average (C*(kjt 0)7»(s)) will contain a factor s '
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while the average (C*(k—j;0)p» (s)) will contain a factor
s '(s —2ico») '. The former average will thus contain
at least one more power of t in the long-time behavior
of its primitive function.

(b) ck+;"'* pairs with ck j "', where n&2n —1.
Equation (4.15) takes the following forms in the two
cases:

2n—1 1 1
(C*(kj;0)7 ())=- II

S t=1S—Zni S
(4.18a)

1 2n—1 1
(C*(k—j'0)» (s))=- II, (4.18b)

s &=& s IP( s 'Lco»

where the only difference between n& and P& is that, if

co~; appearing in e~ is cancelled due to the pairing of the
(c»!"),it appears as —2co» in P~. To obtain the highest
power of t in the primitive function, we must have as
many of the factors (s—in&) ' in Eq. (4.18a) equal to
each other and/or to s ' as possible, while for Eq.
(4.18b) the condition is that a,s many of the factors
(s—if~) ' must be equal to each other and/or to s ' or
(s—2'») ' as possible. It is clear that, however many
equal factors (s—in~) ' we have in Eq. (4.18a), we
have the same number of equal factors (s—iP~) ' in

Eq. (4.18b), and the factors are in one-to-one corre-
spondence between the two expressions. Equally
clearly, we obtain the largest terms in t from Eq. (4.18a)
if the factors (s in') —which are equal to each other in
the product can also be made to equal s. Assuming,

provisionally, that this can always be done, the truth
of our original assertion follows directly, since whatever
pairing scheme is used to reduce any of the (n&) to
zero, it requires the cancellation of the co~; appearing
in it. This means that the corresponding P~ reduces to
s—2ico1,;. However, there is one more factor of s ' in
(4.18a) than there are factors of (s—2'&») ' in

(4.18b), hence the latter, in the most favorable case,
contributes one power of t less than the former. It
follows by the same arguments that the thermal average
(C*(kj;0)C(k—j; 1)) can be neglected compared with
the thermal average (C*(k—j;0)C(k—j; t)).

It now remains to show that it is always possible to
pair indices in the expression for the 2vth order term
in the expansion for'(C*(kj;0)y»(s)) in such a way
that the value of n~ which maximizes the number of
equal factors (s—in&) ' in the product in Eq. (4.18a)
is zero. We will see that the solution of this problem
in the form of a systematic scheme for classifying these
dominant terms in each even order will lead immediately
to the complete solution for y»(s) and for yk;(s).

At this point it is advantageous to go over to a
slightly more compact notation in which we replace the
pair (kj) by a single index k. The index —k means
(—k—j).Since V(kj; k' j', k"j") is independent of the
signs of the j's, we can write it in the new notation as
V(k; k'; k"). Furthermore, since co» ——co», but a&k,
= —co~;, we have in the new notation co I, ———~I,.

In this notation the fourth-order contribution to
(C*(kj;0)p»(s)), Eq. (4.14), becomes

COQUE)I'g "MI!;1"CVI(;2"

(Ck!'&~Ck &"!Ck !"Ck !"Cka &"Ck "&0!)

X
$—Z Q)Ic' ~I„-"—Go& $—Z M&' MIk" —God —Z MI1-,1' MI!,1"—coI!;«

(i)' U—I!'k'It'" V —I!'"I!'1'~1"V —@1"It'2'Ik2" U —It'2 "Ik3 'I!:3''

(C*(u; 0)&,«(s))=
2s I'I "»'»" I2I2 IS I3'

X
S—Z COI„' GOk" MIc —Z Mk1' GOk1'' —GOING« —Z COA;2 &2 I!, ].

X . — —. (4.19)
Ls—$(Mk'+Mk" —Gok) —z(caky'+~kg" ~k") i(~k2 +Mk2" Mky") —z(Gdk3'+Mk3" —coke")]

(2~+2) /I(&+1) '2 "+'3 (4.20)

possible pairings of the (ck&'&) two-by-two. Of these,

7The number of ways of arranging r distinguishable objects
into k1 groups of one object, k2 groups of two objects, etc. , is
p 1/[P& I)2 t ~ ~ ~ k~!(1!)kx(21)km. . . (r!)&~7

We have written out the last frequency factor in full,
although we know that every pairing of the (ck&0!) two-
by-two consistent with the nonvanishing of the thermal
average causes it to collapse down to s '. A combinatorial
argument familiar from the theory of the imperfect gas'
tells us that in 2eth order there are

however,
(2e—2)!

(40—3),
(~—1)!2&—~

(4»)

vanish because of Eq. (4.9). Hence, there are 15 possible
pairings in fourth order, or which five can be ignored i'
view of Eq. (4.9). Direct enumeration shows us, with
the aid of Eq. (4.16), that of the remaining ten pairings,
four give rise to contributions which are proportional
to P while the remainder are of lower order in t.

However, as a general method for studying the
contributions from the 2+th order, direct enumeration
is completely impractical, and it becomes convenient
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acterized by a vanishing momentum transfer between
two consecutive vertices.

The diagrams for some typical fourth-order and sixth-
order terms are shown in Figs. 2 and 3, respectively.

We now ask, of the

(2m+2)! (2e—2)!
(4rs —3)

(rs/1)!2 "+t (I—1)!2"—t

Fzo. i. Diagrams which represent the three possible pairings of
normal coordinates to give a nonvanishing thermal average for
the second-order term in Eq. (4.4).
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FIG. 2. Typical fourth-order diagrams associated with Eq. (4.19).
Only the erst four correspond to the sequential pairing of vertices.

to introduce diagrams to classify the various contribu-
tions. The diagrams corresponding to the three second-
order pairings given by Eq. (4.8) are shown in Fig. 1.
In these diagrams, the sequence of events described by
the product of matrix elements V —u'I "V—a "I~v ~"
reading from left to right corresponds to reading the
diagrams from top to bottom. Each dot corresponds
to a matrix element U —I "I„+~'I +~". The solid line
corresponds to the transfer of "momentum" k "
which is implied by the repetition of the last subscript
in each matrix element as the first subscript in the
succeeding element. At each vertex (dot) "momentum"
is quasi-conserved in view of the 4 function which is
included in the definition of V

ques,

Eq. (3.5). The
dashed lines describe the pairings of the various
subscripts as required for the nonvanishing of the
thermal averages, supplemented by the 6-function
restrictions. We have used the convention that a line
(solid or dashed) carrying momentum —k to a vertex is
described by a line directed toward the vertex, while a
line carrying momentum k to a vertex is represented by
a line directed away from the vertex.

Ke see clearly the diBerence between terms in the
expansion which vanish due to Eq. (4.9), Fig. 1(c),
and terms which do not vanish. The former are char-

possible diagrams which are consistent with the
requirements of nonvanishing thermal averages and
Eq. (4.9), which ones correspond to terms contributing
the highest power of t to the primitive function of the
Laplace transforms This question was answered by
Brout and Prigogine' in connection with the study of
an expansion similar to Eq. (4.4) but in the time
representation. They pointed out that the most effective
pairing scheme in 2mth order was the sequential
pairing of the matrix elements in the product V ~I, I,"
X U —I "I&'a&" U —u&"I 2'e2"U —a2"I 3't 3"~ ~ . By this we
mean pairing V ~~~ with V —I "I~'1~" so that k~ =k,
k~"= —k' or k~' ———k', k~"=k; pairing V —a~ "a2'I 2"
with V —I2"I3'r 3" so that k3'= —kg", k3"———k2', or
k3'= —k2', k3"=k~", etc. In 2eth order there are
clearly 2" such diagrams. That such a pairing should
give rise to the highest power of t in each order may be
seen from the following remarks. Firstly, we see that
each of the 2" sequential pairing of the V's corresponds
to a pairing of the (2n+ 2) (c&&"}two-by-two, and hence
is of the form required for nonvanishing thermal
averages. Secondly, each such sequential pairing of the
V's causes every second frequency factor in the denom-
inator to collapse to s, while the remaining factors
reduce to the form $s—i(a&t+a&s+oIs)$. This result is
what was required to justify the neglect of the thermal
averages (C*(k—j;0)yz, (s)) and (C*(irj; 0)yI, , (s)).
Finally, nonsequential pairing leads to the loss of at
least one power of t in the primitive function. The
pairing of additional subscripts to collapse any of the
remaining factors of the form Ls—s(&ot+~s+~s)$
would lead to the loss of at least two summation indices
and hence to two powers of lV.

The 2" diagrams in 2eth order which correspond to
the sequential pairing of the V matrix elements can be
constructed without difficulty by starting at the top
and drawing a different diagram for each of the alterna-
tive pairings at every second vertex. These diagrams
have the property that if they are cut by a horizontal
line between two consecutive vertices belonging to
the same pair only one pairing line is cut, while if they
are cut by a horizontal line between two consecutive
vertices belonging to two diGerent pairs, two pairing
lines are cut. Thus, in Fig. 2 only the first four diagrams
correspond to sequentially paired vertices, and these
in fact exhaust the possibilities in fourth order. In
Fig. 3 only the first two diagrams correspond to sequen-

s R. Brout and I. Prigogine, Physica 22, 35 (1956).
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tially paired vertices. The remaining six can be drawn
with the aid of the rules given above.

Of the 2" dominant diagrams in 2mth order, two play
a particularly important role if we restrict ourselves to
a solution for (C*(k; 0)yk(s)) which is exact to lowest
order in the anharmonic force constants. These are
the diagrams which correspond to those given by
Figs. 2(a), 2(b) and Figs. 3(a) and 3(b), for fourth-
and sixth-order terms, respectively. Since .V»k" is
completely symmetric in the indices, the contributions
from these two diagrams in each order are the same,
and we need study only the contribution from the first
kind of diagrams, i.e., those given by Figs. 2(a) and
3(a). The importance of this kind of diagram is that it
represents a situation in which the same momentum k
is transferred between every second pair of vertices.
These diagrams are thus somewhat analogous to the
so-called "ring" diagrams which describe the dominant
contributions to the thermodynamic functions of the
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FIG. 3. Typical sixth-order diagram. The first two correspond
to sequential pairing of vertices.

interacting electron gas in the high-density limit. ' The
consequence of this is that the contribution from such a
diagram in 2eth order is just the eth power of the
contribution of the second-order term given by Fig. 1(a)
or equivalently by Fig. 1(b). This is shown explicitly
by writing out the contributions to (C*(k;0)pk(s))
from the diagrams of Figs. 1(a), 2(a), and 3 (a):

2nd order:
kT(i)' (kT)' V—kk'k" V—k"—k'k

Gs,
2S' 2 Mk' k'k" MkMk'Mk" LS—4(Mk +Mk" —

Mk) j 4SMk
(4.22a)

4th order:
(i)4 (kT)' V—kk'k" V—k"—k'k V —kk2 k2 V —k2"—k2'k

2$2 Mk k'k" k2'k2" (MkMk~ Mkii) (MkMks' Mks")Ls —z(Mki+Mkri —Mk) j
kT

6th order:

X (Gs)', (4.22b)
p' —&(Mks'+Mks" —Mk) j 4sMks

(i) (k2) V kk k" V k" k kV-kk2'k2" V-k2"-k2 kV-kk4 k4"V-a4"-r 4 k

Z Z
2$4 24(Jgk2 k'k" k2'k2" k4'k4" (MkMk~ Mk») (MkMkS' MkS") (MkMk4' Mk4")

kT
X (Gs)'. (4.22c)

LS—i(Mk +Mk"cc—Mk)]p —i(MkS'+MkS" —Mk) jp—i(Mk4'+Mk4"cc Mk)j 4S—MkS

(i)' kT
Gg=

( U kkckcc~

In these expressions, we have put

(4.23)

where
(i)' kT kk k"~'—

. (4.26)
S 2 k MkMk' Mk«$$ Z(Mk&+Mk~~+Mk)]

(C*(kj;0)Z(C(kj; f)})= +
2$GOk 2$Mk 1—G2

kT 1

kT Gg
(C*(k 0)v ())=

4scok' 1—G2
(4.24)

(4.27a))
2ork $—$GqThis result must be doubled to give the total contribu-

tion from the "ring" diagrams. kT kT Il2
In similar fashion, we And that the analogous (C (lr —j;0)Z(C(k —j; f) })= +

contribution to (C*(—k; 0)y k(s)) is given by 2scok' 2scok' 1—J 2

Recalling Eqs. (4.2) and (4.6), we obtain Anally that,
to lowest order in the perturbation,If we sum the contributions from all orders in the

expansion, we obtain kT kT G

kT F'
(C*(—k; 0)~-.(~))=

2$Mk 1 F2
(4.25)

kT

2&ok $—$If 2

(4.27b)

4 See, for example, E. W. Montroll and J. C. Ward, Phys.
Fluids 1, 55 {1958).

Equations (4.27) constitute a formal solution to our
problem.
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Before proceeding to write down the expression for
the absorption coefficient, we must discuss briefIy the
contributions from the terms in 2eth order which we
have neglected. We have pointed out earlier that
there are 2" terms in 2eth order which arise from the
sequential pairing of the V's and which give the same 3

dependence to the primitive function. Of these 2"
terms, we have used only two.

We have neglected the remaining 2"-2 terms primarily
for two reasons. Firstly, they are at least of fourth
order in the anharmonic force constants, compared with
the terms of second order which we have retained.
Since we have omitted the quartic anharmonic terms in
the Hamiltonian which in general give a contribution of
the same order in temperature as the cubic anharmonic
terms we have neglected here, it would be inconsistent
to retain higher-order cubic anharmonic terms without

at the same time introducing quartic, quintic, terms
into the Hamiltonian. Secondly, the linearization of
the equations of motion of the normal coordinates has
the effect of making all terms past second order in the
expression for G2 of doubtful validity. Furthermore, in
evaluating the thermal average of a product of two
normal coordinates we have used the harmonic approxi-
mation. This is sufFicient to the order we have worked.
The retention of terms of fourth and higher orders in
G2 would require a more accurate evaluation of these
averages, including anharmonic corrections.

V. THE ABSORPTION COEFFICIENT

In view of the remarks made in the preceding section,
we can rewrite Eq. (4.1) for the dielectric susceptibility
associated with the jth dispersion oscillator as

cop; NM„(oj)M, (0j)
lim {(C*(oj;0)Z(C(oj;t)}) - +
e~0+VAT

e ('+'"-+'"o ) '(C*(0 yo—)C(0—
y t))dt) )

0

cop, NM„(0j)M„(0j)
x„„(»(cp)= hm e ('+'~ '~'&)'(C*(og; 0)C(og; «))dt

i Vk& ' ~ ~o

(5.1)

If we substitute Eq. (4.27) into Eq. (5.2) we find

—(C*(o—j o)~(C(0—j;«)}) = +'-+'-o } (5 2)

X„„(&)(cp) =
2

&~0+ 2~ .2
G00&VAT

cpo; NM„(0j)M, (0j)
lim

~
Voo1

( Vox o ~
)

c+zcp+zcppj—
2 & & cpocpy' coo (p+zcp —Ndp~ —zcpo«)

kT
p+ zcp —zcp 0j+

2 &'&' cop(de~ coo~I (o+$cp c(A)p~ zot)y»)
\

(5.3)

1 f 1'(
lim =

(
—

~

+in.c)(x)
-o+x io Eg—j I

Imx„„(&'& (cp) =—
(5 4)

~e pass to the limit as o~o+ with the aid of the Comparing Eqs. (5.5) and (2.21) we find that
relation

NM„(0j)M„(0j)

and obtain, 6nally, for the susceptibility
7 7

X
(cd cop«dcp) +'r (o)+p)p&'+Do)) +"t

(5.7)

(i) (cp)—
NM„(oq)M, (oq)

2Mpj V

so that, 6nally, the linear absorption coeKcient becomes

4~ cp [M,(oj)j'
(«) (cd) =—-

where

i
Voo)'"i

)o'"" cpocdl) coil" (cp —cpa —cd&")i'

(Vo) p")
y= —kT P l)(cp —coo —cpk ).

2 I("@"Go+0I(;~ cole«

(5.6a)

(5.6b)

x —
, (5.5)

cop Dcd z'r co+cop+ Acp+1'r 7 7x +, (5.8)
(cp cop~ Acp) +r (ct)+cop&+lcd) +r

where v is the volume of a unit cell in our crystal.
We now evaluate the damping constant 7 and the

absorption coefficient a for the linear diatomic chain
with nearest-neighbor interactions. The values of the
various quantities required have been obtained pre-

p
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viously. ' The result for the damping constant is

kT
re2L" (ru +rob)2 ro27

—ifto2 (ro rob)27
—'*

Mt +re+~0+roe

=0, otherwise,

(5 9)

COpy =G)p =CO& ~Nb ~
2 — 2 — 2 l 2

M, (01)= —eL(M,+M,)/M, M,7'*,
(5.11)

where e is the magnitude of the electronic charge.

VI. DISCUSSIONS AND CONCLUSIONS

In the preceding sections, a systematic classical
theory has been developed for the optical absorption
coefficient associated with the lattice vibrations of an
anharmonic ionic crystal. The various terms which
arise in the solutions of the equations of motion can be
classified in accordance with a natural measure of their
importance in the long-time approximation. The
solutions are obtained in a straightforward manner
without the use of an artificial device such as an ansatz.

The earlier treatment of Blackman, like the present
one, is based on perturbation theory and makes use
of the long-time approximation. For the case of the
diatomic linear chain, the damping constant obtained

where

ro '= 2(rb/Mt,

Me = 20b/Ms~ (5.10)

g= 2o ~'(Arob/rd. '(obsess) L (M,+M, )/M tsM ss7,

0.~ is the harmonic force constant, 0-, the anharmonic
force constant, and iV~ and M2 are the lighter and
heavier masses, respectively. The absorption coefficient
is obtained by substituting Eq. (5.9) in Eq. (5.8),
taking j=1 and using the relations

by Blackman has the same qualitative dependence on
frequency as that given by Eq. (5.9) although there are
minor quantitative differences. Both theories lead to
a damping constant which is proportional to the first
power of the absolute temperature T. Recently,
Neuberger" has used a procedure similar to that of
Blackman to calculate the optical constants for a
generalized Kellerman model of an ionic crystal. His
results can be described in terms of a damping constant
proportional to T as in the other classical calculations.

Experimental measurements of the high-temperature
lattice vibration reflectivity have been carried out by
Heilmann" for lithium fluoride and by Hass" for sodium
chloride. Their results are reasonably well described by
a damping constant proportional to T'. Since the
classical theories should be valid at high temperatures,
it appears probable that quartic, and possibly higher-
order anharmonic contributions, should be included in
the theory. A theoretical investigation of the infiuence of
quartic terms is being pursued by D. W. Jepsen.

As pointed out in a recent paper, ' quantum-mechan-
ical calculations of anharmonic lattice-vibration absorp-
tion based on the Born-Huang theory lead to a diferent
high-temperature dependence from that given by the
classical theories. Work is in progress on an improved
quantum-mechanical theory which would overcome
certain weaknesses in the Born-Huang approach and
would make possible a more meaningful comparison
with the classical case.
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