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Longitudinal Magnetoresistance in n-Type Gerraanium: Theoretical*
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The longitudinal magnetoresistance of n-type germanium is calculated for high magnetic fields where
Landau levels are important. The scattering mechanisms considered are acoustic and ionized impurity
scattering. Comparison is made with experiment for acoustic scattering and is found to be satisfactory for
suSciently high fields.

I. INTRODUCTION

~ XPERIMENTAL results at high magnetic fields
for longitudinal magnetoresistance in e-type

germanium have recently been found by Love and
Wei. ' In this paper an attempt is made to explain these
results theoretically.

The theory for low magnetic fields has been given by
Abeles and Meiboom' and Shibuya. ' In that case one
can neglect the Landau4 quantization due to the mag-
netic field. For the case of a high magnetic field this
quantization has been found to be very important.
This was investigated by Argyres and Adams' for
spherical energy surfaces. There are two criteria for a
high magnetic field. One is co*7.))1,where ~* is the cyclo-
tron frequency and r is the collision time. This criterion
means that the Landau states give good basis functions
to be used in a perturbation calculation of the electron
scattering. It will be discussed in Sec. III. The other,
Ace*))kT, means that the magnetic quantization is
important in the statistical treatment, i.e., most of the
electrons will be in the lowest Landau level. Possibly,
from the experimental standpoint, a better combined
criterion would be that the magnetic field is large
enough to give deviations from the saturation magneto-
resistance.

The calculations in this paper are similar to those of
Argyres and Adams' with the modifications necessary
using ellipsoidal rather than spherical energy surfaces.
The well-established four-ellipsoid model' for the energy
surfaces of e-type germanium is used. The only scat-
tering mechanisms considered are acoustic and ionized

impurity scattering. The unperturbed wave functions
based on a high magnetic field are given in Sec. II
along with some useful matrix elements utilizing these
functions. In Secs. III and IV these matrix elements
are used to get transition probabilities from which
relaxation times are found. The Boltzmann transport
equation is used to calculate the perturbed distribution
function, which then gives the conductivity. The
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longitudinal conductivity is calculated in Sec. III for
acoustic scattering and in Sec. IV for ionized impurity
scattering. These are found numerically only for the
(100), (110), and (111) directions for the fields. For
other orientations without the symmetry properties of
these directions, induced transverse voltages resulting
from the anisotropy should be taken into account.

II. WAVE FUNCTIONS

nii= ni cos 8+ns siil 8,

0!22 =0!1)

nss ——ni Sin'8+ns COS'8,

&12 O'21 O23 O'32 Oy

nls=nsl= (n1 ns) S1118 cos8

(2)

where m/ns is the longitudinal mass and m/ni is the
transverse mass. The angle 0 is measured between the
s axis and the longitudinal principal axis.

For a uniform magnetic field H in the positive s
direction, take

A =A, =O, A„=Hx.

The gauge has been chosen in order to have the
Schrodinger equation separable. Solutions of the
equation are then of the form

P„, =y„y(X+X'k„)]exp( —iyk, x+i(k„y+k,s)], (4)

In the effective-mass approximation, the Hamiltonian
for an electron in an anisotropic crystal in the presence
of a magnetic field is

K=P;;n;; (p;+eA;/c) (p, +eA;/c)/2m,

where A; is a component of the vector potential, and
n;;/m is the reciprocal mass tensor. The interaction
between the electron and the scattering mechanism is
neglected in this Hamiltonian and is treated as a
perturbation in Secs. III and IV. For the special case
of germanium the energy surfaces are ellipsoids of
revolution with the longitudinal principal axes along
the (111)directions. Only one'ellipsoid is considered in
the intermediate calculations. When the final results
are obtained, the appropriate summation over the four
ellipsoids is made. If the y axis is taken perpendicular
to the longitudinal principal axis of an ellipsoid, the
components of the e tensor are
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where E is the coupling constant between the electrons
and the dilational waves of the Shockley-Bardeen
theory. ' Scattering by shear waves is not considered
here.

The transition probability from state m, k to state
e', k' due to this Hamiltonian is

with energies referred to the bottom of the conduction
band,

e,g ——(n+-') A(a*+A'k '/2m*, n =0, 1, 2, . (5)

Here p„ is the Hermite function

y = (P/m*'2"n!)~H„+(x+li'k„) j
Xexp( —-'P'(x+X'k ) ] (6) W(n, k; n', k') = (~E'/pul )P, ((n', k') exp(iq. r) ( n, k) ('

XqL(1V,+1)8(e„ i,
—c„,ijAor, )

+1V,5(e„,t, e„,i, ——AMq)], (13)where H„ is a Hermite polynomial. The functions are
normalized in a unit cube. The following notations are
used here and in the rest of the paper:

l~= (cA/eH) l,

!3=~i'/(&~ii'),

|' &13/&11

a) = eH/mc,

07 =CO Q]Q]y '&

m =ssQyy Q3Q],

The quantity co is the free electron cyclotron frequency,
co* is the actual cyclotron frequency, and m* is the
effective translational mass along the s axis.

In Sec. III it will be shown that one needs only the
diagonal elements of the current operator for the
eigenstates of Eqs. (4) and (5). These are W(n, k; n', k') =AkT8(e„, i; e„,s)—

xga. lM;,.(q.,q.,k, ',k„)I', (14)
(n, k[Z. )n, k)=(n, k) J„(n,k)=0,

(n, k [ J, [n,k) = —eAk. /m*.
(7) with

2 =2~E'/(Apl', '). (15)

where p is the mass density, NL, is the longitudinal
speed of sound, E, is the number of phonons of propa-
gation vector q, and co, is the angular frequency of the
phonon. For a semiconductor such as germanium and
for the temperatures of interest here, T&15'K, Ace, is
smaller than the electron energy for most electrons and
therefore it can be dropped from Eq. (13). Also the

S, can be replaced by the high-temperature limit of
the Bose-Einstein distribution function, kT/A~, . Then
Eq. (13) becomes

Also, for calculation of the scattering probability be-
tween diferent states, the matrix elements of exp(iq r)
between these states are needed. Using Eq. (4), one finds

(n', k'~exp(iq r) ~n, k)= (2m) '8(k„'—k„—q„)
X&( ,k'- ,kq) M.. „(q-.,q„k„,k„'), (8)

where M„,„is the matrix element,

On summing Eq. (14) over k„' with the help of Eq. (11),
one obtains

W(n, k„n',k, ') =PW(—n, k; n', k')

~(ea', s' e~, i)=AkT . (16)

It will now be assumed that there is a relaxation time
r such that

(17)

t'
M„. „(q„q„k„,k„')= dxy $P(x+X'ky')j

~l r '= —k/k. -
X4 -rP( +&'k.)j PI."(q.+vq*)*j- (9)

The time rate of change of k, in terms of 8' is
One can use the generating function of the Hermite
polynomials to establish

M„. „(q„q„k„,k„')=Q, 2'—l &
"+"'&(n!)'*(n'!)&

XL( —.)!("-.) t'~j-'L-~l'q. +'~-'(q*+vq. )j"-
XCp~'q. +4 '(q +vq )j"' ' '"pL ~(&lI'q )'

—-'p-'(q +vq.)' ;~~'(q.+vq*) (4—+k')j, (1o)

where the summation over s is from zero to the smaller
of n and n' Equation (9) .leads to the result'

dq&q„~M, ~'=2m/l%'.

III. CONDUCTIVITY FOR ACOUSTIC SCATTERING

The perturbation Hamiltonian due to lattice vibra-
tions is taken to be

k, = Q W(n, k„n',k, ')(k, '—k,). . (18)

Therefore, conversion of the summation in Eq. (18) to
an integral over e„.z. by means of Eq. (5) yields;=AkT(2m*)-:A; (2irX)- P.'Le —(n+-', )As&*j—:.(19)

The prime on the summation means that e goes from
zero to the largest integer for which e—(n+i~)A&a*)0.
In the hmit as co* approaches zero and n becomes large,
the summation can be replaced by an integral and Kq.
(19) approaches on the average the zero-field expression,

r '=AkTm&(n 'n ) '*el/(24'A') (20)

Kohn and Luttinger' have shown how the transport
equation can be found from the differential equation
giving the time dependence of the density matrix.

H, =EP, Q,q exp(iq r),
7 V. S. Titeica, Ann. Physik 22, 129 (1935).

(12)
~ W. Shockley and J. Bardeen, Phys. Rev. 80, 72 (1950).' W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
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Also, o, (H) and o„,(H) are zero to this order of
approximation. Anisotropic sects in higher approxi-
mations involving off-diagonal matrix elements of the
J's could make these quantities diGerent from zero.

The calculations so far have been concerned with a
single ellipsoid. To obtain the total conductivity one
has to sum o.„(H) over the four ellipsoids. Also the
Fermi energy p& is needed. This is evaluated in terms
of the electron concentration, N(H), as follows. The
electron concentration in the vth ellipsoid is

Their procedure in this case gives for the lowest-order
approximation,

(m*) 'e—hk, BBfp/B e = —(Bf/Bt) „g;„.„„(21)
in which fp is the zero-electric-field distribution function
and h is the electric field. In finding the density matrix,
the wave functions of Eq. (4) are perfectly usable, and
the condition Ace*&)1 need not be considered. However,
Eq. (21) corresponds to retaining only the diagonal
elements in the density matrix, i.e., de=0. In this
representation for small magnetic Gelds, the off-
diagonal terms of the density matrix where he=~1
are comparable in magnitude to the diagonal terms and
give appreciable contribution to the current. These
off-diagonal terms are small and can be neglected only
if co*r&1. This will be assumed in the following. One
would expect that this theory and that of Abeles and
Meiboom' would 6t together in their saturation region
where the magnitude of co*r is on the order of one.
The usual procedure for Gnding f in terms of r leads to

f= fp+(m*) 'elk BrBfp/Be . (22)

N" (H) =2 P„'t f"dk,/(2 l~)

= (2m.X) ' exp (prI/kT) (2s m„*kT/A') &

Xcsch(fur„*/2kT) (28. )

Hence, summing over the four v's to obtain the total
concentration, one finds

fp ——expL(prr —e)/kT j) (23)
exp(pp/kT) = (2mkT/s h') '(nisnp)'*Np. (30)

exp(IJ~~/kT) = (2sli)'N(H)LP„(2prm„*kT/5')'*

Xcsch(kpp„*/2kT) j ' (29)
In relatively pure germanium the statistics are non-

In the limit as II approaches zero, one obtains thedegenerate; thus
usual Fermi energy for zero Geld,

where p& is the Fermi energy in the presence of the
magnetic Geld H.

The current density j is given by the trace of the
current operator times the density matrix. Since the
diagonal elements of the density matrix given by Eq.
(21) are predominant, j is

When Eq. (27) is summed over the four ellipsoids and
combined with Eq. (29), the result is

~~~ (H) = L16pr'e N (H)li'/gl
XLP, &(App, */kT) exp (——,'Ace„*/k T)/m„*j

XLP, (2sm, *kT/Ps')'* csch(rshpi„*/kT)$ —'. (31)

j=2(2pr) 'P„) (n)k~ J~n, k)fdk„dk,

From Eq. (7)

(24) The function Ii is given by

Also from Eq. (7) it is clear that the integrand is
independent of k„. One can, therefore, integrate at
once over k„obtaining

dk„= 1/li'.

The limits arise from Eq. .(4). Gathering together Eqs.
(7), (22), (24), and (25), one Gnds

j,= —2(eh/2s. lcm*)sh P„~ k,sdk, 7Bfp/Be (26).
Equations (5), (19), and (26) then give for the longi-
tudinal'conductivity in the magnetic Geld H

( yap
o„(H)=$4e'(Am*) '(.kT) 'g expl I

de e ' "r
EkT) J ,*s„*

It is easily shown that as j approaches infinity, p
approaches one. Thus when Ace*&)kT, F can be replaced
by one in Eq. (31). By properly converting the sum-
mations over e to integrals, one can show that in the
limit as ( goes to zero P becomes one-third. The
integration in Eq. (32) has been done numerically and
an approximate expression for Ii has been found,

Ii ($)=1—('s+0.33)+0.074@)e &. (33)

This has an error of less then rs /o for p)-,'. The maxi-
mum error of 1/o occurs near )=0.05 since the slope
appears to approach infinity at )=0. In any case this
divers appreciably from the low P expression given by
Argyres I

The same calculation will be done for the H=O case
since what is frequently measured is p(H)/p(0), where
p is the resistivity. The eigenstates and eigenvalues

ip P. N. Argyres, I. Phys. Chem. Solids 4, 19 (1958).
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are now

Pg, ——exp(ik r),
e~ —As(nlk 2+nlk s+nsk s)/2m,

(34)

This ratio with N(H)/Z(0) set equal to one is plotted
in Fig. 1 along with the experimental ratio' for several
directions and temperatures. In the numerical'calcu-
lations the following values were used:

in the principal axis system. Using a method similar to
that by which Eq. (14) was obtained, one now has O,g= 12.3, n3=0.63.

W (k,k') =AkT8 (es es).— (35) In the case of large Aa&~/kT, Eq. (37) becomes

Then, using the usual Boltzmann equation with the r
from Eq. (20) and fre from Eq. (30) and summing over
the ellipsoids, one obtains for the total conductivity

o (0)= (16e'/9Am) (nrsns) I

X(2 + )Ão(2mkT/ A')&. (36)

The ratio of the conductivity of Eq. (36) to that of
Eq. (31) is

o(0)/o**(&)= (1/9) (2nr+ns) L&(0)/&(&)3
XP„(-',A(o„*/kT) csch(-,'Ace„*/kT) t P„F(A(o„*/kT)

X (m/m„*) exp( —rsAto„*/kT)) '. (37)

I2

IO-

(0)/ *.(&)=(1/9)(2 + )L&(0)P (&)3
X (m.*/m) (Are, */kT), (38)

where the v refers to the ellipsoid for which co* is least.
In the low field limit Eq. (37) is

o(0)/o..(V=0) =-,'(2n]+n3)$+„m/m„*j '. (39)

In the isotropic case with o,~=na this would be one.
However, in general it does not go to one for anisotropic
cases as might be expected from the discussion of the
transport equation. In fact, Eq. (39) gives the identical
ratio that Abeles and Meiboom' obtain for the satu-
ration region in their low-field theory. This again
suggests that the two theories be connected in this
saturation region.

It is clear that Eq. (37) could be used equally well
for silicon with obvious modifications of the constants.
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IV. CONDUCTIVITY FOR IONIZED
IMPURITY SCATTERING

Calculations similar to those of Sec. III will be made
in this section for the scattering by ionized impurities.
This scattering, of course, predominates in certain
temperature and impurity concentration ranges. How-
ever, for high magnetic fields the results will indicate
that rather high concentrations are needed for it to
predominate.

It will be assumed that an electron at r has a screened
Coulomb potential energy due to the ionized center at R,
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47

V(r—R)= —e'exp( —k, tr —R))/E[r —R(, (4())

where E is the dielectric constant. A semiclassical
derivation of the reciprocal screening length k, is
given by Argyres and Adams. ' It is on the order of 10'
to 10' cm—' for impurity concentrations of 10" to 10"
per cm' in germanium near 30'K. The Fourier integral
for this energy is

V(r—R)

= —(e'/2rr'E) ldll exptitl (r—R)j/(g'+k, '). (41)

0.6-
I I . I I 'I I I I

0 20 40 60 80 100 120 140 160 180
H (kilogauss)

(~)

FIG. 1. Comparison of experimental magnetoresistance of
n-germanium with that calculated for acoustic scattering in the
(100), (110), and (111) directions. The solid curves are from the
experiments of Love and W'ei and the dashed curves are the
theoretical ones.

The transition probability from state e, k to state
e', k' from perturbation theory is

+'(Nk; N', k') =2sA '/1((tb')k'[ V(r—R) [ss k)['
X&(e,s —e,s). (42)

Again using Eqs. (17) and (18) to define the relaxation
time and assuming a random distribution of impurities,
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Similarly, Eq. (47) gives

r—'= —[4e'N (H)/E'hk, jg~ dk, 'dqgq„(k, ' k—,)

X8(e„,„. .„—,) ~m„.,„(q„q„k„',k„)
~

X [q '+q '+ (k.' —k,)'+k.'j ' (43)

where the M„,„are given by Eq. (10) and NI(H) is
the concentration of ionized impurity centers. In this
section only the limit Aco*&)kT is considered and
therefore only the n=e'=0 term will be retained. The
integration of this equation over k, ' is readily done
because of the delta function. Then the Mo, o from
Eq. (10) gives

r '= [8m*e'Nr(H)/&'E2
I k*I j JI dq~qw

C=1+5m*k T/P'A'. (50)

Here the k, terms have again been neglected due to
their smallness. To obtain the total conductivity the
0's of Eqs. (48) and (49) are summed over the proper
ellipsoids.

Finally, these calculations will be repeated for the
zero-field case. The transition probability from Kq.
(42) is now

0,.= [64K'm*(kT)9, '/7re'A'5[N(H)/N (H) 5
&(exp( —-', Aa&*/kT) [13.2+7.5C '
+5(3.6—2.5C ') (C—1) '/47[+„(2zm„*kT/h')&

)(csch(-,'i't~, */kT) 1 ', (49)
where

&&exp[—2i (P/2qy) —~~P (q,—2/kg) $

)& (q '+q '+4k '+k ') '. (44)

W(k, k') =32~'e'N'(0) 5(e,.—.&)

)(l$—iE—~[(li—li')2+k 2$—2 (51)

This integral can be evaluated approximately for large
k,. Let

(45)

If m is much greater than one, the integral can be
evaluated in an asymptotic power series in 1/w. In
this case the k, terms can be dropped since over the
whole range of interest here (k,/P)' is very much
smaller than one. The resulting v. when only the two
leading terms in m are retained is

r=PPE'P9, '/2'. e'N (H) m*7{(1+y')'
~
w

~

'
—[(Sv'—1)—(Pl ) '(1+v') ) I

w I'} (46)

Whether or not the large m approximation is good is
determined by the exponential in the Boltzmann
distribution function. This is a function of the energy
ellipsoid orientation. It turns out to be a good approxi-
mation for all orientations and magnetic field ranges
considered here except for two of the four ellipsoids in
the (110) orientation of the fields. For these two
ellipsoids the longitudinal axis is perpendicular to the
z axis and ai/nii has its maximum value of 19.4 with
y=0. An approximate expression for ~ in this case
accurate to better than 10%over the whole range of w is

r=PPE'P'
~

w
i /24 e'N'(H) m*j[4.4w'+3. 6w'

+2.5 (w4 —w') exp (—Sw'/4)]. (47)

Using Eqs. (26) and (29) with the approximation,
Eq. (46), one obtains

0.,= [64K'm*(k T)9,'/are'k')[N (H)/1V'(H) j
Xexp (—g' AM*/k T){3(1+/')' —[Sy' —1
—(PX) 4(1+7')$P'5'/4m*k T }[+„(2m m„*kT/A')'*

)&csch(—'fur„*/kT)$ '. (48)

The relaxation times along the principal directions are
now defined as in Eq. (18). There will be one longi-
tudinal relaxation time and two equal transverse times.
These are given by

ra '= [2 e'N'(0)rn3~/E'm&elj I dn(1 —cos8)

&&[(1—cos8)'+r sin'8+t7 ' (52)

7 i '= r. '= [2*'e4NI(0)n3&/K'm'e& j
f

X dQ(1 —sin8 cos$)[cos'8(1—r)

2r sin8 co++2r+—tj ', (53)

with dD an element of solid angle, r=n3/ni, and t
=A'k.2n3/2me. Let the integrals in Eqs. (52) and (53)
be called g3 and g&, respectively. The integral g3 can
be evaluated in a straightforward manner and the
result is

g3 ——2m (2—r)[(1—r)t —r2] '(4+t) '

)2[(1—r) t—r']-'*
q—

iver[(1 —r)t —r2j & tan '~ I, (54)
(t+2r)

for (1—r)t —r' greater than zero. This condition is
satis6ed for the energy of the order of kT. The other
integral g~ is not so simple. However, for small r and t
the main contribution to the integral is near 8=m/2.
This suggests that one let coso=x and then let the
limits on x go from minus in6nity to plus inanity.
Numerical integration shows that in the worst case
this leads to an error of about 2%. The integration
over @ is straightforward, and the integration over x
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FIG. 2. Calculated magnetoresistance of n-germanium at 20'K
and an impurity concentration of 10' per cm' for ionized impurity
scattering in the (100), (110), and (111)directions.

o.i——o sg, (3kT) Lrgi(3kT) j—'. (57)

Here, g& and g3 are assumed to be slowly varying
functions of energy, so they are treated as constants
evaluated at an energy 3kT which is the maximum of
the rest of the integrand. Actually for large enough
X(0)/T this assumption is not correct, but nevertheless
it leads to a fair approximate value for o (0). The total
conductivity is found by summing over the ellipsoids.
It is

o (0)= 4sV2as'*Es(kT)'*E1+2gs(3kT)/rgi(3kT) j
&&L(~ )' 'gs( k )j ' ( g)

The ratio p„(H)/p(0) is plotted in Fig. 2 for the three
symmetry directions.

V. CONCLUSION

Comparison of the curves of Fig. 1 indicates that
there is reasonably good quantitative agreement be-
tween the theory and experiment for A~*/kT greater
than 2 if co* is the smallest cyclotron frequency for a
given direction. For the (100), (110), and (111) direc-
tions, respectively, this Aoi*/kT is 0.99H/T, 0.37H/T,
and 0.65H/T with H in kilogauss. Certainly the agree-
ment is as good as can be expected, considering the

leads to elliptic integrals. The result is

g
—

4~PI (1 «)sggs(gs ks)2j—ll Los+b2
—2 (1/r) gsbs)E((1 —ks/o') &)
—yP —(1+r)(g'+ y))KP(1—y/g')ij} (55)

where
(1—r)sa'= 1—r+2«t '(1+L1+/(1—r) ji},
(1—r)'b'= 1—r+2«t '{1—i 1+t(1—r) j'*}.

K and E are complete elliptic integrals of the first and
second kind, respectively.

The use of the Boltzmann equation and Eq. (30) gives

o.s
——%2nsiK'(kT) if''*re'm'gs(3kT) 1 ', (56)

difficulty of the experiments and the approximations
of the theory. There is qualitative agreement and fair
quantitative agreement to lower fields. The minima in
the theoretical curves for the (100) direction which do
not occur in the experimental curves reflect the increase
in F(6u*/kT) with H. The same eRect would be
predicted for the isotropic case. This occurs at the low
fields where the theory cannot be expected to be correct
and experimentally the e6ect probably would not
occur in the isotropic case either.

The minima in the (110)direction result from a quite
different reason. This is the quantum transfer eGect
in which electrons in ellipsoids of low mobility shift to
ellipsoids of higher mobility. This is due to the changing
distribution function when the ground states of the
ellipsoids are separated as the magnetic field increases.
Mathematically it results primarily from the hyperbolic
cosecant term in the numerator of Eq. (37), which in
turn comes from the expression for the Fermi energy,
Eq. (29). The minima in the (111)direction are due to
a combination of these two effects. Experimentally
there are very slight minima for this direction for some
curves.

While curves for temperatures near 25'K are com-
pared in Fig. 1, these should be regarded with suspicion
since there are obviously some other large effects taking
place near this temperature. This is especially evident
in the large difference between the 25' and 23.4' curves
of Fig. 4 in the paper of Love and Wei. It would be
desirable to have measurements to higher fields to
more carefully check the theory for the higher temper-
atures.

It should be noted that the ratio E(H)/E(0) was
taken to be one in the curves of Fig. 1. There is no
real indication that it should be different from this.
This would indicate that possibly the theory of Yafet,
Keyes, and Adams" is not applicable here. It would
predict a much lower electron concentration ratio and
thus a higher resistivity ratio.

The curves of Fig. 2 are valid only above about
80 kgauss since it was assumed in their derivation that
fuo*/kT was large compared to one. These curves
indicate that the effects of ionized impurity scattering
are greatly cut down by the magnetic field. This could
give minima in the resistivity for all directions. This
effect occurs for several reasons. The potential favors
low angle scattering while, because of the magnetic
6eld, k, '= —k, gives the relaxation. These competing
processes considerably cut down the scattering relative
to the zero field scattering. Also, especially for the
(100) and (111)directions, the y in Eq. (44) gives an
anisotropic increase in o„(H). Only the q, riear 2yk,
contribute appreciably to the scattering, which again
tends to cut down low-angle scattering. Numerical
estimates show that for an impurity concentration of

"Y.Yafet, R. W. Keyes, and E. N. Adams, J. Phys. Chem.
Solids 1, 157 (1956).
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about 10' per cm', ionized impurity scattering slightly
dominates for zero magnetic field and for temperatures
around 30'K, but that at high magnetic fields the
acoustic scattering is predominant. The curves of Love
and Wei for the doped sample appear to agree with this.
The curves are similar to those for the pure samples
except that the resistivity ratio is cut down by a factor
due to the higher resistivity at zero field. Since no
samples had a high enough impurity concentration to
make ionized impurity scattering predominant at high
fields, no experimental curves are drawn in Fig. 2.

In the limit of very high magnetic fields p(H)//p(0)
for ionized impurity scattering saturates. This is seen

for the (110) direction from Eq. (49) in which C—1
and X' are both proportional to 1/H. More accurate
expressions for r for the other directions, similar to
Eq. (47) for the (110)direction, would lead to saturation
for these directions also. In Fig. 2 there is already
saturation in the (110) direction and with only slightly
higher fi.elds there will be saturation in the (111)
direction. The saturation in the (100) direction will
not occur until the magnetic field is four or five times
as large, so there is a considerable range in which there
is a linear change with H. p(H)/p(0) is approximately
a function of H/T so this saturation occurs at higher
fields for higher temperatures.
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Adiabatic Demagnetization with Yttrium-Rare Earth Alloys*
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Alloys of yttrium with 0.3 and 1.0 atomic percent gadolinium,
1.0 at. % dysprosium, and 0.6 and 1.0 at. % holmium have been
investigated to determine their usefulness as the working substance
for adiabatic demagnetization. In addition, single crystals of 0.6
and 1.0 at '%%uo holm. ium-yttrium alloys were studied. Those alloys
which exhibited paramagnetic susceptibility behavior in the
temperature range 1.2-4.2'K were demagnetized adiabatically
from about 11 koe and 1.25'K. The lowest temperature attained
was 0.76'K for the single crystal of 1.0 at. % holmium with the

magnetic 6eld parallel to the a axis of the hexagonal crystal.
Magnetization measurements obtained for the single crystals in
the temperature range 1.2-4.2'K indicated strong anisotropy with
the a axis as the easy axis of magnetization. Hysteresis was ob-
served in the magnetization of the 1.0 at. % holmium single
crystal, with the a axis parallel to the field. Entropy removal during
magnetization was calculated from the magnetization data for the
single crystals and found to be only about 15'%%uo of that expected
if the alloy behaved like an ideal paramagnetic substance.

INTRODUCTION

HE use of thorium-dysprosium metal alloys in
magnetic cooling to obtain temperatures less

than 1'K has recently been reported by Parks and
Little. ' We report here the results of adiabatic de-
magnetizations and susceptibility and magnetization
measurements on dilute alloys of rare-earth metals in
yttrium.

The work was initiated because of the thermal-
contact advantages metal alloys would have over
conventional salts. Normally with a metal, one might
expect eddy-current heating when demagnetizing, but
the high residual resistivities of our alloys essentially
eliminate this problem. Yttrium was chosen as the host
metal since it has the same crystal structure and very
nearly the same lattice parameters as the solute metals.
Gadolinium (J=S=7/2), with no orbital moment and
7 unpaired spins, was the first solute metal used. In

* Contribution No. 983. Work was performed in the Ames
Laboratory of the U. S. Atomic Energy Commission.

t Present address: Department of Physics, Luther College,
Decorah, Iowa.' R. D. Parks and W. A. Little, Seventh International Conference
on I.oz-Temperature Physics, Toronto, 1060 (University of Toronto
Press, Toronto, Canada, 1960), Ofhcial Programme, 354-356.

order to study the eRect of the spin of the solute metal
on the Curie (or Neel) temperature, dysprosium
(J=15/2, S=S/2) and holmium (J=S, S=2) alloys
were next investigated. The small cooling eRect ob-
served during adiabatic demagnetization of the
holmium-yttrium alloys prompted a study of the
magnetic properties of single crystals of these alloys.

MATERIALS STUDIED

The pure metals used in fabrication of the alloys were
prepared in this laboratory by methods previously
reported. '' The alloys were made by arc melting
together in a helium atmosphere the proper amounts of
the constituent metals. The button formed by this
process was turned over and remelted several times in
order to insure a homogeneous alloy. The samples were
shaped by machining on a lathe into the nominal size
of 1.5-in. length, by 0.6-in. diam. The alloys investigated
consisted of two gadolinium-yttrium alloys with 0.3

' F. H. Spedding and A. H. Daane, J. Am. Chem. Soc. 74, 2It83
(1953).' C. V. Banks, O. N. Carlson, A. H. Daane, V. A. Fassel, R. W.
Fisher, E. H. Olson, J. E. Powell, and F. H. Spedding, Atomic
Energy Commission Report IS-1, Iowa State University, Ames,
Iowa, 1959 (unpublished).


