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We start with the linearized plasma equations containing an isotropic pressure term, plus extra source
terms J¢ and p® in the Maxwell equations. The fields of (J¢,0®) can be decomposed into two modes. The
electromagnetic (EM) mode has all the magnetic field and no charge accumulation; it is the ordinary EM
field of (J#,p°) in a dispersive medium of relative dielectric constant ¢,=1— (w,/w)% The plasma (P) mode
has all the charge accumulation and no magnetic field; at great distances from the source, it becomes a
longitudinal (radial) plasma wave with the usual dispersion relation for plane plasma waves. Various
potentials for the EM and P modes are given by the inhomogeneous Klein-Gordon equation. The fields
of a uniformly moving charged particle are found by a Lorentz transformation. When (% /2) <1 (#=particle
velocity, vo=rms thermal velocity), the EM and P fields are exponentially screened outside oblate spheroids
foreshortened in the direction of motion. When (%/v0) >1, the P field exists only within the Mach (Cerenkov)
cone trailing the particle. The frequency and angular spectra of the Cerenkov radiation are found, and the
total radiated energy is found by assuming an arbitrary high-frequency cutoff due to Landau damping.
The expression for total radiated energy agrees with that given by Pines and Bohm, except for the loga-
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rithmic terms.

I. INTRODUCTION

HIS paper is part I of a series! in which a linear
continuum theory of radiation in a plasma is
developed and applied to several situations. The main
departure from usual practice is the addition of source
terms to the equations. The source so represented is
arbitrarily set by an external agent. The source gener-
ates the disturbances in the plasma but is itself un-
changed by the reaction of the fields.

In Secs. IT and III of this paper we discuss the basic
equations, which are the usual linearized Maxwell and
Euler equations for the electron fluid, with source terms.
We show that the disturbance can be broken into two
components. One contains all the magnetic field and no
charge accumulation; it is an ordinary electromagnetic
field in a dispersive medium of relative dielectric
constant e,= (1—w,?/w?). The other component has no
magnetic field and all the charge accumulation. It is an
electrified sound-wave field which, at great distances
from the source, becomes a radial plasma wave with
the usual dispersion relation found in plane plasma
waves. :

* Supported, in part, by Air Force Cambridge Research Center.

T Guggenheim Memorial Foundation Fellow; on leave from
Cornell University, Ithaca, New York.

1 M. H. Cohen, Phys. Rev. (to be published).

Various potential functions for these two components
satisfy the inhomogeneous Klein-Gordon equation of
quantum-field theory. This equation is peculiarly well-
suited to plasmas, for screening phenomena occur
simply and automatically. It has also been used by
others. Schatzman,? in particular, used its property of
being invariant to a Lorentz transformation, when
discussing the charge distribution around a slow
particle. In Sec. IV we discuss the slow particle, by
using the Lorentz transformation. In Sec. IV we also
find the Cerenkov field of a fast particle, which exists
in the form of a plasma-wave component confined to a
cone trailing the particle. In Sec. V we discuss the
frequency and angular spectra of the Cerenkov radi-
ation, and the total radiated energy.

Gould? has also considered the radiation from sources
in a plasma. He worked with the total fields, rather
than breaking them into the two simple components as
we have done, and so his potential functions and
equations are more complicated than ours. The Klein-
Gordon operator does appear in his equations, however.

Of the results in Sec. IV and V, concerning uniformly

2 E. Schatzman, Suppl. Nuovo cimento 13, 166 (1959).

3 R. Gould, Technical Report No. 4, Electron Tube and Micro-
wave Laboratory, California Institute of Technology, November,
1955 (unpublished).
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moving particles, only the Cerenkov spectra appear to
be new. In particular, Pines and Bohm* have computed
the screening fields and the total radiated Cerenkov
energy. Our result concerning the spheroidal screening
is identical with that of Pines and Bohm; and our
expression for total energy differs only in a minor way,
in a logarithm which depends on an arbitrary frequency
cutoff.

Our point of view in making these calculations is
that the plasma is a continuous fluid. Pines and Bohm,
on the other hand, start with a particle point of view,
and work with Fourier components of electron-density
fluctuations. In Sec. VI we discuss their work briefly.
We show that their “random phase approximation” es-
sentially reduces their equation to one similar to ours.

II. BASIC EQUATIONS

We assume that we deal with a plasma containing a
bounded electric source consisting of current J* and
charge p°, where V-J*4-9p%/8t=0. The source is inde-
pendent of the plasma and may be arbitrarily pre-
scribed. It exerts an electrical force on the plasma,
which responds in some fashion. The problem is to
compute the response.

We make the following simplifying assumptions. The
plasma is homogeneous and neutral, and the ions are
uniformly distributed and stationary. The source is so
weak that the linearized equations are applicable, and
all magnetic forces are negligible. There are no electron-
ion collisions. Finally, the electrons behave as a con-
tinuous fluid, and the effect of all electron interactions
may be represented by an isotropic pressure.

The system then obeys the four linearized Maxwell
equations, which we write in mks rationalized units as

VX E=—puo(9H/82), 2.1)
VXH=¢(0E/dt) —enov+J°, (2.2)

v-H=0, (2.3)
«V-E=—en;+p°. (2.4)

The source terms J¢ and -p* have been inserted in their
usual places in Egs. (2.2) and (2.4). no is the mean
electron density and 7, is the systematic variation in
density due to the action of the source; v is the system-
atic velocity imparted to the electrons by the source;
and —e is the charge of an electron.

The system also obeys the linearized Euler equations.
The continuity equation is a consequence of Egs. (2.2)
and (2.4):

’}'ZQV' v+(~)m/8t= 0. (25)
We write the force equation as follows:
nem (9v/ 0t) = — noe E— mv?Vn,, (2.6)

where m is the electron mass and w is a velocity
connected with the thermal motion of the electrons.

1D, Pines and D. Bohm, Phys. Rev. 85, 338 (1952).
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For v we shall use the rms velocity (assuming a
Maxwellian distribution) :

v?=3kT/m. 2.7)

This is the commonly used value in cases where one
assumes that the pressure variations are adiabatic,
collisions are infrequent, and one is dealing with plane
waves, with a one-dimensional compression.® The waves
with which we are dealing, however, are spherically
diverging, and close to the source more than one
degree of freedom may be excited. This lack of justifi-
cation points up further the approximate nature of the
pressure term in Eq. (2.6).

A generalization of Poynting’s theorem may be
obtained by manipulating the quantity V- (EXH) as
shown by Field.® The result is

\ (EX H+m1)02%1V)+a/at[%€oE2+%[.t0H2
+IngmP+Enomoed (n1/n0)?]=—E-Jo.  (2.8)

Equation (2.8) displays the symmetry between
electrical and mechanical energy storage and power
flow terms. The right-hand side represents the rate at
which the source works on the plasma, per unit
volume. An integral over a volume containing the
source gives the total power expended by the source.
The 9/t term gives the rate of accumulation of energy
in the volume, in electric, magnetic, kinetic, and
potential forms. The integral of EXH gives the power
flow out of the volume in electromagnetic waves, and
the integral of mwon,v gives the power flow out of the
volume in mechanical waves.

III. SEPARATION OF THE FIELD INTO
COMPONENTS

A. Definitions

We are dealing with the three vector fields E, H,
and v, and the scalar field #;. It turns out that we can
effect a great simplification by separating these fields
into two groups. For reasons which will appear obvious,
we call them the electromagnetic (EM) and plasma
(P) components, and denote them by the subscripts e
and p. The EM component consists of the quantities
(E,H,v.); i.e., parts of E and v, and all of H. The P
component consists of the quantities (E,,vpmni1); ie.,
the rest of E and v, and all of #;.

Let

E=E.+E, v=v+tv, (3.1)

We shall ultimately specify the divergence and curl of
each component; this uniquely specifies E and v,
provided we require all components to vanish at
infinity. Since the P mode has no magnetic field, we set

VXE,=0, 3.2)
and, since the EM mode has no charge accumulation,
5L. Spitzer, Physics of Fully Ionized Gases (Interscience

Publishers, Inc., New York, 1956), p. 59.
¢G. B. Fleld Astrophys J 124, 555 (1956)
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we set
(0%/984w,?)V- Eo= (8%/3) (0°/ €0), (3.3)

where w, is the plasma frequency, w,2=mnoe?/em. The
motivation for this definition can be seen by examining
the oscillating case. When 9/9i= —iw, V-E.=p*/eser,
where €,(=1—w,?/w?), is the relative dielectric constant
appropriate for plane electromagnetic waves in the
plasma.

In accordance with the above definitions, the EM
mode is now defined by a sequence of equations
obtained from Egs. (2.1)-(2.6):

oH
VX Ee= ) (3.4:)
ot
JE,
VXH=€0— —engve—{—Js, (35)
at
V-H=0, (3.6)
62 a2ps
eo(—+wp2)V-Ee= , 3.7
ot o
a2 wp? dpt
%0(—+wp2)V'Ve= - —p——, (3.8)
a2 e 0t
av,
N =— nere. (3.9)
ot
The P mode is defined by
VXE,=0, (3.10)
JE,
0= —engvy, (3.11)
at

92 02
eo(—~+wp2)V- E,=—e ~——+w,,2)n1+w,,2ps, (3.12)
o I

0% 92 oy wy dpt
1o —+wp2)v~v,,= —( | w,,z) + 27 (3.13)
ot ot at e d
vy,
nom—=—noeE,— mv?Vn,. (3.14)
i

It may readily be verified that these sets of equations
are self-consistent, and that the components which
satisfy them add to form total fields satisfying Egs.
(2.1)-(2.6). There is, however, one exception: The
description is not valid at the plasma frequency, and
we must exclude any time dependence of the form
exp(—iw,t). The plasma is resonant and can support a
standing wave for w=w,,.

Equation (3.4) defines VXE,; Eq. (3.12) defines
V-E, in terms of p* and #n,, for which we shall later
have an inhomogeneous differential equation. The
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velocity components, v, and v,, are defined by Egs.
(3.5) and (3.11). This completes the specification of
the electromagnetic and plasma components. They are
generated by the same source, but otherwise are
independent. '

B. Electromagnetic Component

By Fourier analysis, any source may be regarded as
the sum of oscillating components. With the time
dependence exp(—iwf), Egs. (3.4)-(3.9) reduce to

VX E.=1iwuH, V-H=0, (3.15)
VXH=—ivee,E.+J°, €€, V-E.=p",

&=1—(wp/w)2

We see that the EM mode is the ordinary electro-
magnetic field that the source would radiate into a
homogeneous dispersive dielectric medium, of relative
dielectric constant e,. This field is transverse at great
distances from the source. The solutions to the homo-
geneous version of Egs. (3.15) include the usual plane
electromagnetic waves which can propagate in a
plasma.”

We may develop Poynting’s theorem for the set of
Egs. (3.15), and thereby find that the power flow
connected with the EM mode is given by the vector
E.XH. We shall show below that the P mode has a
radial electric field at great distances from the source.
Therefore, at great distances from the source, the
radial component of the electromagnetic power flow
in Eq. (2.8) is contributed entirely by the EM mode.
Moreover, since v, is parallel to E,, the radial compo-
nent of the mechanical power flow term in Eq. (2.8)
must be contributed entirely by the P mode. At great
distances from the source, we have

r-ExXH=r-E,XH, mvinv-r=mvinvy-r. (3.16)

where

C. Plasma Component

For the time dependence exp(—iwt), Eqgs. (3.10)-
(3.14) may be rearranged to yield

—inQEp= enoy p, (317)
GoérEp= (6'1)02/(.02) an, (318)
(VP+-k )= — (w,*/ eve)p?, (3.19)
where
k2= (P—w2)/vi. (3.20)

The homogeneous version of Eq. (3.19) has solu-
tions which include the usual plane plasma waves
with a dispersion relation given by Eq. (3.20).7 The
particular solution of Eq. (3.19) is proportional to
S S S dvp*ei*»"/r. The electric field is proportional to
the gradient of this expression by Eq. (3.18), and for »
sufficiently big the radial component of the gradient

7J. F. Denisse and J. L. Delcroix, Théorie des ondes dans les
plasmas (Dunod, Paris, 1961),
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will be dominant. We therefore conclude that, at great
distances from the source, the P mode is a simple longi-
tudinal (radial) plasma wave, with the usual dispersion
relation for plane plasma waves.

The velocity field of the P mode is proportional to
E, by Eq. (3.17). This field carries the mechanical
energy away from the source, as shown in Eq. (3.16).

From Egs. (3.4)-(3.14), we see that we have defined
the components in such a way that the field of a static
charge distribution is called a plasma, and not an
electromagnetic, mode. If a source has p*=0, it will not
excite the plasma mode. A uniform neutral ring of
current is a source of this type. Such a current ring is
the usual idealization of a small loop antenna. We
might expect that a small loop antenna in a plasma
will be weakly coupled to a plasma wave field, and will
behave very differently from a dipole antenna. The
radiation from an antenna, however, is a boundary
value problem, and one cannot extrapolate readily from
the free-space case. This will be discussed in a later
part! of this series.

D. Evaluation of the Fields

We now derive the inhomogeneous differential equa-
tions for the fields and their potential functions. By
eliminating v, between Egs. (3.11) and (3.14) we obtain

‘ZJ026
(-+wp )E =— —an

When 7, is known, E, may be found from Eq. (3.21) by
Fourier analysis. The function #, essentially acts as a
scalar potential for E,, since each frequency component
of E, is proportional to the gradient of the correspond-
ing component of #;. The equation for #, itself is found
by taking the divergence of Eq. (3.14), eliminating v,
with (3.11), and eliminating E, with (3.12). This gives

1 9% 1 o°
(3o
202 02 D2 eD?

Dr=0¢/co,2=3kT e/ 1o =3\ 1%,

(3.21)

(3.22)

where
(3.23)

by Eq. (2.7) and the customary definition for the
Debye length Ap.

Equation (3.22) is the inhomogeneous Klein-Gordon
equation of quantum field theory, with v, replacing the
velocity of light, and D replacing the Compton wave-
length. This equation has as the solution for a static
point source the Yukawa potential®; in our case this be-
comes the screened Coulomb potential [exp(—#/D)]/r.
We shall also make use of the property that the Klein-
Gordon equation is invariant with respect to a Lorentz
transformation, in finding the field of a slowly moving

8S. Schweber, H. Bethe, and F. de Hoffmann, Mesons and
Fields (Row, Peterson and Company, Evanston, Illinois, 1956),
Vol. I, p. 116.
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charge by transforming the static solution to a moving
coordinate system.

It is convenient to define potentials for the electro-
magnetic components. In view of Egs. (3.6) and (3.4),
we set

wH=VXA, E,=—0A/0t—Vo. (3.24)
Substitute Egs. (3.24) into (3.5), and eliminate v, with
(3.9). Then let

A 1 /&
V—g;‘{‘— -“{“wp )4) 0,

(3.25)

where ¢ is the velocity of light. Equation (3.25) specifies
the divergence of A, which so far has been arbitrary.
Apart from a static term, this gives

VZ— —— = — JA=—peJ=
( ¢ o )

The equation for ¢ is obtained by eliminating A in
Eq. (3.25) by using (3.26). This gives

19 w2 1 9%¢
e
c? ot c? € 012

E. Coupling Between the Modes

(3.26)

(3.27)

The independence of the two modes follows from our
original assumption of linearity. But, in fact, wherever
the disturbance is not infinitesimal, there will be some
coupling between the modes. One way of regarding this
coupling is to say that the electromagnetic wave
scatters off the variations in electron density caused by
the plasma wave. This furnishes a criterion: If, in
some volume of interest, such scattering is negligible,
then the two modes may be regarded as independent.

We have also assumed that the unperturbed medium
is homogeneous. A real plasma, however, will have
gradients of electron density and temperature as well
as fluctuations in density due to thermal motions.
These variations will produce a coupling between the
two modes. The processes by which the coupling occurs
are of great interest in radio astronomy, since there is
reason for expecting some solar bursts to originate as
plasma waves in the corona. These must couple to
electromagnetic waves, which can propagate to the
earth. There have already been a number of papers
discussing the coupling arising from plane discon-
tinuities or gradients in electron density,®® and from
random fluctuations of electron density.?

In later parts of this series! we shall consider the
problems of reflection at a plane metal boundary, and

*D. A. Tidman, Phys. Rev. 117, 366 (1960); A. H. Kritz and
D. Mintzer, ibid. 117, 382 (1960).

0V, L. Ginsburg and V. V. Zhelezniakov, Soviet Astron.—AJ
(translation) 2, 653 (1958); 3, 235 (1959); Paris Symposium on
Radio Astronomy, edited by R. N. Bracewell (Stanford University
Press, Stanford, California, 1959), p. 574.
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scattering by a small plasma bubble. In both these cases
we shall find coupling between the modes.

IV. FIELD OF A UNIFORMLY MOVING
CHARGED PARTICLE

Let the source consist of a single particle of charge ¢
constrained to move with uniform velocity # along the
z axis. This source, in principle, is different from the
test particle used in other papers, for the latter is a
free plasma particle and subject to acceleration. There
are, however, many problems where the free motion is
nearly uniform, and one then assumes that the test
particle is a source in our sense.

A. Zero Velocity

First, consider a stationary charge at the origin of
the xyz coordinate system: p*=¢8(x)5(y)d(z). With
9/9t=0, Eq. (3.22) becomes

(V2_ _1_) = — ——1— 6 ()6 ()8 ( ) (4.1)
D2 = eD2q FIONY IO\ '

The solution to Eq. (4.1) is well known:

. q e—r/D

ny=-—
dreD? 7

; (4.2)

where
r’=ua2+y*-2%

"From Eq. (3.21) we see that the electric field also
contains the factor e=7/P. The stationary charge is thus
screened, in a distance on the order of a Debye length,
by a distribution of charge of opposite sign. (By
definition, #; is an excess of negative charge.)

This result has been derived from statistical consider-
ations by Pines and Bohm* and others. From the point
of view of randomly moving particles, the stationary
charge is surrounded by a cloud of particles of opposite
sign which, on the average, effectively neutralizes the
charge at distances greater than the Debye length.
From the point of view of the continuum theory, the
Coulomb force displaces the fluid until the electrostatic
force is balanced by the pressure. The excess fluid
density then has the exponential dependence, and the
total electric field, of source plus excess fluid, dies out
as e¢71/P,

B. Nonzero Velocity

Equation (3.22) is invariant with respect to a
Lorentz transformation, modified by exchanging v, for
¢. The field of the uniformly moving charge can there-
fore be found from the known solution for a static
charge by transforming to a moving coordinate system.

Let

p*=qd(x)3(y)é(z—ut). 4.3)

This represents a point charge moving with velocity #

I. CERENKOV EFFECT 715

along the z axis. For the case #?<v¢, let
W=, o=t (1)
Y=y, V=(t—zu/v?)(1—F)7,

where 8= (u/v)% This is the Lorentz transformation,
with inverse

(4.4)

x= xlr 2= (Z’—I—Ml,) (1_:82)‘})

y=y', t="+2u/v?)(1—p)74
Under the transformation (4.5), Eq. (3.22) reduces to
the static equation

1
(V/2___ _)nl (xlylzl)

= — Lotz -1, (@46
eD?

(4.5)

which has the solution

q 1 gD
m(a'y's") = )

(4.7)
dreD? (1-80)F »p

where
p?=a>+y*+ (z3—ub)?/ (1—57).

Thus, the excess electron density still has the shielded
Coulomb form, but the equal-density surfaces have
been compressed in the direction of motion and are
oblate spheroids. The identical result has also been
found by Pines and Bohm.* Schatzman? has also used
the Lorentz transformation in dealing. with a slow
particle in a plasma.

There will also be an electromagnetic mode which
comoves with the particle. We may write the current
density as

J2=J,2=0, J.,=qud(x)5(y)s(z—ut),

so that, by integrating Eq. (3.26) in the manner just
used, we find

_ P exp(_‘-"ppc/c)
4 [1— (u/c)? P Pe

pd=a+y2+ (s—utf/[1~ (u/c)"]

The vector potential, and therefore the total electro-
magnetic component, is also spheroidally shielded. The
shielding is different from that for the plasma mode
however, for ¢ replaces v. The spheroids are nearly
spheres, and the shielding distance is ¢/w<D.

The shielding of the electromagnetic mode comes
about because the electrons move in response to the
electric field of the electromagnetic mode. This motion,
however, results in zero accumulation of charge; and
the shielding is effective only at great distances, because
the electrons can not squeeze in upon the source, as
they do when shielding the plasma wave,

Motk 1

(4.8)

where
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Equation (4.3) still represents the source, but now
the particle velocity # is greater than the rms thermal
velocity. The Cerenkov field is usually not found from a
Lorentz transformation, because the character of the
transformed equation changes.!* In our case, however,
this method yields the desired results as quickly as a
direct integration of Eq. (3.22).

It is necessary to modify the Lorentz transformation.
Let

o=z, 2'=(—u)(@-1)7

4.9
Y=y, t=Gmp @17, )
which has the inverse transformation
x=xa/, z=—("Hut)(B—-1)"}
) ( )(82—1) (4.10)

y=y', t=—+u/ve)(FE-1)74

Under the transformation (4.9), Eq. (3.22) reduces to
the static equation

9 o2 9?

1
) e

-
x> 9yt 972 D?

= L= (=11 (411)
eD?

Equation (4.11) is a two-dimensional Klein-Gordon
equation. As shown in Appendix A, the appropriate
Green’s function is

g(r'—ro)

2 cos{[(z'—20)*— (&' —x0)?— (y'—30)* ]}/ D}

[(z'—20)2— (&' —x0)?— (¥/ — y0)* ]2
(5" —20)2> (&' — x0)24 (' — 90)%;
(5" —20)2 < (&" — x0)2+ (v — 30)2,

where %o, yo, 20 are the coordinates of the Green’s
function source. The solution to Eq. (4.11) is, therefore,

i J o0

X8 (20)8 (90)8[ — 20 (82— 1) ¥ Jdxodyedzo,
g cos[ (z2—x"2—y?)t/D]
2meD? (B2—1)}(z"2—a2—y'2)}
for z2>a2+4y72,
=0 for 2?2<a249y"

for

=0 for (4.12)

m@y's)=

or

nl(x’y’z’) —

The final result is obtained by transforming back to the

11 W, Panofsky and M. Phillips, Classical Electricity and
Magnetism (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1955), p. 309.

H. COHEN
0 . ut M
'v
(x,y,z,t)

Fic. 1. Cerenkov cone.

(wyst) coordinate system:

g cos{1/DL(z—ul)*/(8—1)—a*—y" ]}

n1(wyst) =

2mreD? [(z—ut)2/(B2—1)—a2— %]
for (z—ut)?/(B°—1)>a+9%,
=0 for (z—ut)?/(B2—1) <a?+92. (4.13)

The solution (4.13) is very different from that
obtained above for a slow particle. The field consists
of damped waves which die out as 2™ for 22 very large,
and at a fixed point die out as ¢! for # very large.
The Debye length now controls the wavelength, rather
than the space rate of decay.

At great distances, the field is oscillatory and dies
out as z1. This allows for the radiation of power. This
is the Cerenkov radiation, in the form of plasma waves
whose phase velocities are slower than the particle
velocity. The familiar confinement of the field to a
cone trailing the particle is explicitly contained in
Eq. (4.13). The field is zero unless

(1/8%) (z—ut)> (2*49*) cos®Yom, (4.14)
where

SIN%Y = v¢%/ 22

Now, add (z—ut)® to both sides of (4.14); a little
rearrangement gives

cosiy> costY m,
where

cos= (z—ut)/[2*+y*+ (z—ut)* .

The retarded solution is

Y<¥m.

The cone is depicted in Fig. 1.

The cone in Fig. 1 is, of course, the Mach cone
containing the disturbance of the fluid, for », is zero
outside the cone. Our particle is supersonic and runs
ahead of its disturbance, in the usual way. The cone is
determined by the requirement that the front face of
the disturbance travel with the velocity v, which is
the fastest group velocity for plane plasma waves.

The particle will also be surrounded by an EM
component, but since #<c¢, this component is still
given by Eq. (4.8). This field is shielded and dies out
exponentially outside a spheroid which is convected
along with the particle. When the particle velocity

(4.15)
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approaches the velocity of light, the spheroid becomes
a disk, with radius ¢/w,,.

V. CERENKOV SPECTRUM
A. Frequency Spectrum

To find the spectrum of the plasma mode Cerenkov
radiation, we follow, as far as possible, the treatment
for the ordinary Cerenkov effect in optics.! We revert
to the original equation for »; and use the method of
Fourier analysis.

Let

p* (xyzt) = f pue”i¢tdw,
—®

(5.1)

1 ]
po(xyzw)=— f poeivtdt.
21 J_y
From Eq. (4.3),

q
po(2yzw)=— . €i#/§(x)d (y).

U

The density #; also can be expressed as a Fourier
integral as in Eq. (5.1). From Eq. (3.22), the Fourier
components #, satisfy the equation

g ,
(V2+-E2)no= i/ 4§ (x)8 (y). (5.2)
27ueD?
Equation (5.2) has the particular solution
q 0 0 L
No= — f f f giwzo/u
8r2ueD? J_J_J_1
eikpR
X 8(x0)d (o) 2 dxodyodzo,

where
R?= (x—2x0)*+ (y—30)*+ (z—20)?,

and where the integration on 2, is taken from —L to
+L to avoid a singularity in the field; we require
wL/u>>1. Since we are interested in the radiated power
only, we may evaluate this integral by using the
far-field approximation:

[+ 92+ (z—z0)2 =7 — (3—20) cosf, (5.3)

where 6 is the polar angle from the positive z axis, and
the term (z—2o) cosf may be neglected in the denomi-
nator. The integral is readily evaluated, giving

gL e sin(w/u—k, cosf) L
drueD? r  (w/u—ky cos)L )

In the far field, the ! term of the electric field is
dominant, so we have, from Eq. (3.21),

(5.4)

Now=

1k pevo?
eo(w?—w,?)

(5.5)

where r is a unit radial vector.

I. CERENKOV EFFECT 717
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Fic. 2. Dispersion relation for longitudinal plasma waves

¢/vo=7. In the dashed region, Landau damping inhibits the wave
propagation.

Since wL/u#>>1, n, has a sharp maximum when
w/u==Fk,cosd, or cosb=uv,/u, where v, is the phase
velocity for plane plasma waves of frequency w. This
is the familiar result from optics. There is a difference
from the optical case, however, which comes from the
fact that the medium is very dispersive. The dispersion
relation is shown in Fig. 2. At a frequency a little
greater than w,, v,=u, and the radiation is forward.
Higher frequencies are projected at various angles, and,
if the particle velocity is very high, the radiation
persists nearly to 90°. This angular spectrum is dis-
cussed below.

As discussed in Sec. IIIB, the energy flux density in
the plasma mode is given by S,=muv¢*,v, w/m?2 The
usual Fourier transform relation for the total radiated
energy [Panofsky and Phillips,* Eq. (13-36)] must
be modified for our present use. The result we need,
derived in Appendix B, is that the radial energy flux
density is

f S, (¢)di=tdremy f FuBo*(1— X) /Xdw, (5.6)

0

where X =w,2/w? Integrate Eq. (5:6) over a sphere to
obtain the total radiated energy

2w T ®
Woe f f f dreEoE*(1— X)Y/ XrdedD.
0 0 0

Now, define the spectrum I, as the total radiated
energy per unit frequency interval per unit length of
path by
W= f 2LT.de, 5.7)
0

so that

o™ T
w= 27r€0710L__1f f Eme*(l—X)%/szdQ.
0 0
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1 1 1 1
10 107 10 10
(8-1)

F1c. 3. Cerenkov frequency spectrum. In the dashed region,
Landau damping inhibits the wave propagation. The spectrum
has a low-frequency cutoff at w,=wp/[1— (vo/u)2 ]t

Substitution from Egs. (5.5) and (5.4) gives

_ “» (""/wp)
dreo u2 (w/wp)2—1 ’

2
e wp

(5.8)
where
b
B=rx"1 f 172 sin®dt,

a

o= (oL/u)(1—u/v,), b= (wL/u)(14+u/v,), and v,= o[ 1
— (wp/w)?T*=phase velocity. When (wL/%)>>1, the
function B has the value § if u=v,; if (#/v,—1) goes
positive, B very rapidly approaches unity, and if
(#/v,—1) goes negative, B very rapidly approaches
zero. It has the character of a unit step function

B=1 for wu>uw,;
B=0 for u<uw,.

This is another statement of the fact seen above, that

the particle excites only those frequencies whose phase

velocities are less than the velocity of the particle.
The spectrum, Eq. (5.8), can finally be written as

ewy (w/wp)
0= — for w>w,,
et (w/wp)?—

=0

(5.9

for w<w,,
where w,=w,/[1— (vo/#)?]%. In cgs units, this is

(‘*’/ wp)

To=1.62X10" 31(1()8)( )(w/pr

ergs/cps cm, (5.10)
where fo,=w,/2m.

The spectrum is shown in Fig. 3. It has a maximum
at the cutoff frequency w,. When (vo/#)?<1, w, is very

close to the plasma frequency w.=w,[ 1+% (vo/%)%].

B. Total Radiated Energy

The total energy radiated, per unit length of path,
is written from Eq. (5.7) as W= Syl dw. If we use
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the spectrum as it stands in Eq. (5.9) we derive an
infinite radiated energy, because the spectrum drops off
only as w™ as w— . We now avoid this situation by
assuming that the Landau damping inhibits the
propagation of a plasma wave when its phase velocity
is close enough to v,.” We assume, arbitrarily, that the
spectrum is zero unless v, 2> V22, or equivalently, unless
< Wmax=V2w,. Since v,<#, this also implies % >V2u.
The regions where the Landau damping is effective
are shown dashed in Figs. 2 and 3.
The energy thus becomes

f“m“ (w/wy) J
= w,
47('6()%2 we (w/wp)2— 1

ew,

(5.11)
161
87!'60%2
In cgs units, this result is
2 c 2 u 2
W=35.1X 10_23(—'@—) (—) ln[(——) - 1]
108 % %
ergs/cm.  (5.12)

The logarithmic factor in Eq. (5.11) varies very slowly
with wmax, so that the arbitrary nature of our selection
for wmax is not too important.

Note that the radiated energy is approximately
inversely proportional to the square of the particle
velocity. This point may be of importance in the
discussion of solar radio bursts. It means that low-
energy particles, which the sun produces in abundance,
are more efficient in producing electrical waves than are
relativistic particles.

Pines and Bohm* have shown that a charged particle
with velocity greater than the rms thermal velocity
will excite a Cerenkov field. The expression they
deduced for radiated energy per unit length is
(e2w,? /2u2) In(14+242/v®) (cgs) [their Eq. (58)]. Our
result is the same, except for the logarithmic terms.
When (#/v)>>1, the difference is negligible. The
calculations of Pines and Bohm are discussed in Sec.
VI.

C. Angular Spectrum

We now discuss the angular distribution of the radi-
ated energy. Since the radiation is symmetric around
the z axis, we define the angular spectrum, I, ,, by
21y, sinfdf=1.,dw. From Eq. (5.4) we have the
relation between 6 and w. At the sharp peak of the
function #.,, cosf= (vo/u)[1— (wy/w %, so that

dw sinf w® ( vo)
d0 cos® w,?

Substitution from Eq. (5.9) gives, after a little rear-
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F16. 4. Cerenkov angular spectrum. The high-angle cutoff
results from Landau damping.

rangement,

Ew,? cosf

Iy,

joule/sr m. (5.13)

B 8m2eott? cos?— (vo/u)?

The angular spectrum has a singularity at cosf
= (vo/u). This occurs at infinite frequency, and corre-
sponds to the infinity in the expression for total radiated
energy, which is discussed above. By using the same
arbitrary upper frequency cutoff, wm.x=V2w,, we find
an angle cutoff; 6K Omax Where

COS0max=V2v0/u.

The angular spectrum, for three values of (u/7), is
shown in Fig. 4. This figure may be contrasted with
Fig. 3. The frequency spectrum (Fig. 3) has a maximum
at the lowest frequency, where the radiation is forward.
The angular spectrum (Fig. 4) has a maximum at its
largest angle, where the frequency is highest. When
(#/v9)>1, both spectra are sharply peaked; the fre-
quency spectrum has a sharp maximum near the
plasma frequency, and the angular spectrum has a
sharp maximum near 90°,

This peculiar situation comes about because the
low-frequency part of the frequency spectrum is spread
very thinly in angle, so that there is actually a minimum
at #=0, corresponding to the maximum in the frequency
spectrum. The high-frequency tail of the spectrum is
concentrated very much in angle, giving the maximum
of the angular spectrum.

The angular spectrum is different from that obtaining
in the optical Cerenkov effect, because the dispersion
formulas are different. In the optical case, the visible
light is emitted in a cone determined by the index of
refraction. To keep the energy finite, one assumes that
the index of refraction drops to unity in the ultraviolet
region, so that the high-frequency components are
concentrated near §=0°.

D. A Numerical Example

To see the order of magnitude of some of these
quantities, we consider a high-energy particle traversing
the solar corona. Take #=¢, 19=6.7X10% cm/sec (for
T=10%°K), and f,=10% cps. The spectrum has a
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low-frequency cutoff at w/w,=142.5X1074 i.e., at a
frequency only 25 kc/sec above the plasma frequency.
The spectrum is reduced in intensity by a factor of 10
at a frequency 250 kc/sec above the plasma frequency.
The high-frequency Landau cutoff, according to our
assumption, occurs at V2f,, so that the total spectrum
has a bandwidth of 40 Mc/sec.

At the peak of the spectrum, the radiated energy is
3X10728 ergs/cps cm. At the high-frequency cutoff,
the intensity is reduced by a factor of 1400. The total
radiated energy is 4X10722 ergs/cm. If we assume a
total path of 10 cm, the total radiated energy is
4X1072 ergs, or about 3 ev. This estimate is rough,
for the spectrum changes as the electron density
decreases, but it should give the order of magnitude.
The Cerenkov radiation thus will have a negligible
effect on the slowing down of a single energetic particle
in the corona. The situation may be different when there
is a beam of particles, as discussed in the next section.

In the above example, the angular spectrum has a
flat minimum at §=0°, and a sharp maximum at the
cutoff §=88.2°. The angular spectrum is reduced in
intensity by a factor of 10 in 7.5°, at §=80.7°.

In the ionosphere, s> is smaller than the value for
the corona by about 10%. The low-frequency cutoff for
the Cerenkov spectrum for a relativistic particle will,
therefore, occur for w/w,= (142.5X10~7). This value
clearly is unreasonable, since the fluctuations in electron
density are bigger than 1 part in 107, and the medium
cannot be regarded as homogeneous on this scale. In
cold plasmas, a proper discussion of the Cerenkov
spectrum near the low-frequency cutoff must take
account of the fluctuations. In any event, such effects
will not affect strongly the angular spectrum and the
total radiated energy, since these are mainly derived
from the large part of the spectrum well away from
the plasma frequency.

E. Bunching

Equation (5.11) gives the energy radiated per unit
length by a single charged particle constrained to move
with uniform velocity. If the particle is free, it will be
decelerated by the radiation reaction; but Eq. (5.11)
is still approximately true if #>>v,. If, however, there
are n free particles, forming a beam with velocity u,
it will, in general, not be even approximately correct to
say that the total radiated energy is # times the value
given by Eq. (5.11). The beam will be unstable, and
the particles will bunch.

The first particle of the beam is in a homogeneous
plasma and radiates according to the picture developed
in the previous sections. The trailing particles, however,
are affected by the plasma wave fields of the particles
that precede them. These fields are convected along
with the radiating particles, and so appear constant to
any trailing particle within the Cerenkov cone, provided
the trailing particle has some velocity.
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The total field acting on a constrained trailing
particle is the sum of all the fields of the front particles;
each component is constant, and, in general, the sum
will not be zero. The trailing particle is, thus, subject
to a constant force. If the trailing particle is free,
instead of being constrained to move with velocity wu,
it will oscillate about a potential minimum. If ¢/l the
trailing particles are free, the total field will reach some
equilibrium configuration, with nearly all the particles
oscillating about potential minima. The bunched
particles will then radiate in a partially coherent
fashion, ‘greatly increasing the total radiated energy.

This bunching process, with the possible great
increase in radiated energy, is a manifestation of the
twin stream instability.>*? Our discussion shows why
there is a sharp difference between beams with %>,
and those with %<2, The latter do not excite large-
scale plasma oscillations because there is no Cerenkov
radiation for % <.

Ginsburg and Zhelezniakov!® have discussed the
generation of solar radio bursts by coherent and inco-
herent emission of Cerenkov plasma waves. They have
also discussed the reabsorption of the plasma waves by
the beam.

VI. DISCUSSION OF PINES AND BOHM

Our results, where comparable, have agreed with
those of Pines and Bohm,* although the methods have
been very different. We assumed at the beginning that
the plasma was a fluid containing an isotropic pressure.
Pines and Bohm analyzed the Fourier components of
electron density fluctuations and introduced approxi-
mations as needed to simplify the mathematics. Their
“central approximation” is the “random phase approxi-
mation,” in which a certain sum is assumed to be
negligible because the terms have phase factors de-
pending on particle positions. It is just this random
phase approximation which reduces their analysis to
one which is essentially the same as ours.

After they first make the random phase approxi-
mation, they have their Eq. (9), which we rewrite here
as follows:

@pr .
ar =2k vi)e i Ti—awglpi,

(6.1)

where x; and v; are the position and velocity of the ith
electron, and py is the kth Fourier component of the
electron density distribution. (The ions are assumed
stationary and uniformly distributed.) We recover the
fluctuation in electron density distribution, #;, by
multiplying Eq. (6.1) by e and summing over %,
leaving out the term 2=0:
d2n1

—=— 3 > (k- v))2e ik Ti—w P

a2 k40 i

6.2)

12 A, V. Haeff, Phys. Rev. 74, 1532 (1948).
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Since pr=2_; e~ and V?p,=—&%;, Eq. (6.2) is very
close to Eq. (3.22), our Klein-Gordon equation for #;.
The results one obtains from Eq. (6.2) may thus be
more or less close to what one obtains from Eq. (3.22),
depending on what one assumes for the velocity distri-
bution function, and how one approximates the double
sum. The subsequent approximations which Pines and
Bohm did make were such that their results for the
screening field were identical with ours, and the total
Cerenkov energy was nearly the same._

Pines and Bohm found the radiated Cerenkov energy
by integrating along the path of the particle itself,
whereas we integrated over a distant sphere. We
essentially have used the opposite sides of the volume
integral of Eq. (2.8).
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"APPENDIX A. TWO-DIMENSIONAL
KLEIN-GORDON EQUATION

The Green’s function we seek satisfies the equation

9 92

RN S — _KZ g2
0x? 3y*  ¢* 9 )
=478 (x— 20)8 (y—0)8 (t—to).

The equation is two-dimensional, but we may regard
the field as existing in a three-dimensional space, and
having for its source a line through the point (xo,y,)
parallel to the z axis. The solution for g, then is the
three-dimensional solution for a line source, and is
obtained by integrating the three-dimensional Green’s
function along the line.?

The Green’s function for the three-dimensional
Klein-Gordon equation is given by Morse and Fesh-
bach® as follows:

_B(T—-R/c) K

(A1)

TR - ®D
XTI fkc[72— (R/c)* F}u(r—R/c), (A.2)
where
r=i—ty, R=(x—20)+ (y—y0)*+ (5—20)%
u(x)=1 for x>0,
=0 for x<0.

Equation (A.2) is the retarded solution. The ad-
vanced solution is equally valid, and we must allow for
it also. This is necessary because, at this point, we do
not know which solution will ultimately correspond to
the retarded potential in our final coordinate system.
The choice must be reserved for Eq. (4.19). The

18 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), pp.
842-844.



RADIATION

advanced Green’s function is obtained from Eq. (A.2)
by replacing é(r—R/c) with §(z4R/c), and by re-
placing #(r—R/c) with 1—u(r+R/¢).

Our desired function g, is given by

§2= f g3dzo.

The first term in Eq. (A.2) is the Green’s function for
the three-dimensional wave equation; when integrated
it gives the Green’s function for the two-dimensional
wave equation’®:

©§(r—R/c)
T1=f —d3
—0 R

(A3)

2c ;
=——+—— for
(627'2_ P?)%

=0 for

(er)*> P2,

(er)2<P?, (A4)

where
Pr= (=) (y=30)*

In writing down Eq. (A.4) we have generalized and
allowed for both retarded and advanced solutions.
The second term from Eq. (A.2) gives the integral

“ J\[k(er— PP— )]
Th:—mﬂf e

" u(r—R/O)ds,
o (621.‘2_P2__§-2>,

where
¢=20—2.

The integrand is zero unless {,<{< {5, where
3= —{a= (2= P2}, ¢r>P.
Consequently, 7',=0 for ¢7<P; and, for ¢r> P,

& Ji[k(r?— Pr— Y]
Tor=—2uc f i d
o (@r—peg)
w7 (g)dg
= 2k¢ f
Jo eer-m—gD
This integral is in a standard form."* We thus have

2c
R P 2,2 P2)}
27 @ 2——P2)%[1 cosk (¢ P2%] for cr>P,
=0 for cr<P. (A.5)

When we evaluate the corresponding formula for the
advanced potential, we have that the integrand again
is zero unless {,<{<{», where now {p=—{,= (372
— P2}, for —¢r> P. The second term for the advanced
potential thus is

2c
Top=——r
(#ri= P2
=0

T

[1—cosk(c®r*— P2)}] for —cr> P,

for —c7<P. (A.6)

4 A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Tables of Integral Transforms (McGraw-Hill Book Company, Inc.,
New York, 1954), Vol. 11, p. 18.
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Combine Egs. (A.4)-(A.6) to obtain the final result
2¢ cos[k(c2r2— P?)¥]
go=— for
(c2r2—P2)}

=0 fOl'

(cT)2> P2,

(cr2< P (AT)
Equation (4.12) is obtained from Eq. (A.7) by setting.
c=1, t=z, and k=D"1,

APPENDIX B. RADIATED ENERGY

The radial component of the mechanical energy flux
density is given by Eq. (3.16)

Sp(l) = mvo%lvp, (B.l)

and we need an expression for the total radiated energy
per unit area S ,°S,({)dt, in terms of the Fourier
components E, for the plasma mode electric field.
From Eq. (3.12) we may write #;=— (&/e)V- E,, since
p*=0 in the far field. Substituting this expression, and
the value of v, from Eq. (3.11), into (B.1) gives

Swﬁ—ﬂﬁvmxﬁ?.

Now o -
E,()= f Bueiotde,
so that _:
OF, (1) 9t = f — iR,
and -

V-E,= f ikEoede,

by Eq. (5.5), and the far-field approximation. Thus,

" the radial energy flux is

f S?(t)dt=—reov02wp—2f dtj wEoe— 9 e

X f k(o)) Eweiv"de.

Changing the order of integration and performing the
integration on ¢ gives

0

f Sp(i)dt=-r27reovo2w,,_2f wk(—w)EoE_odw

—0

0

= rdmego’wy 2 f wk(w)EoEo*dw,
0
since E_,=E,* and k(—w)=—Fk(w). The latter is
necessary if we are to have outgoing waves. Substitution
for k(w) now gives Eq. (5.6).



