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When the amplitude 3' is formed, there occurs a
factor of expLE*), which must be rewritten as
expt hjS '(W'-'). Now we further restrict our at;tention
to the pole term in S ', which occurs at M~'. The other
singularities need not be discussed further. Then the
pole contribution to the absorptive part can be written
as

A" (s) = I d W(W' —4Ms) &L(W' —s —tt')' —4stt']'*

I
dQ

X (W' —Mo') —' —J*(s,W,QI,Q)
2s-:

&&X(s,WQ, Q;) exp(25(W')j. (5.12)

We now need to discuss the analyticity of A" as a
function of s. The singularity which is of interest to us
is one of the endpoint singularities due to the pole at
Me'. These occur at (s&—tt)'=Me'. The branch point
closest to the physical cut is s'*=tt+Me. If the coupling
is now increased, this branch point moves in a path
shown as the solid line in Fig. 7 (see also Fig. 6). Then
the line integral over A" from (2M+tt)' to infinity
must be deformed to the dotted line in Fig. 7 to avoid
this oncoming branch cut. When this deformed integral
is collapsed to the real axis, it can be rewritten as a
line integral from (M&+tt)' to infinity. Thus the correct

two particle cut has been generated in the same manner
as an anomalous threshoM.

Similar statements hold for a,ll. the higher inelastic
states. Thus, if our assumptions about the structure of
production amplitudes are true, a new particle of mass
M~ has been added to the mass spectrum.

This argument concerning bound states can also be
used to clarify the problem of unstable particles. First,
assume that Sg has a complex zero at M*', which is
near the physical cut and produces a scattering reso-
nance. We have seen that if such a pole exists on the
second sheet across the elastic cut, then there is a
branch cut starting at s= (M*+tt)' on the unphysical
sheet across the three-particle branch line. This cut
can be drawn parallel to the real axis toward plus
infinity, if we like. One possible interpretation which is
consistent with the identification of 3f*' as a pole due
to a one (unstable) particle state is that this latter
branch line singularity represents the rescattering of a
pion with the unstable particle in the intermediate state.
If there is a resonance in the three-particle system
(rt+p+sr), then it should show up in the s dependence
of the function J. One would like J* to have a simple
pole in order to be consistent with the interpretation in
the two-particle case. It still is not clear that this is a
consistent andt'or unique interpretation of these types
of singularities.
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When only two-body correlations are fully taken into account, there appears an energy gap in the excitation
spectrum for many-boson systems as shown by Girardeau and Arnowitt and confirmed by Wentzel. This
energy gap is shown to disappear and the spectrum to become phononlike again and proportional to the
momentum for small momentum, if we construct the eigenmodes of excitations (collective excitations),
taking into consideration appropriate higher-order terms.

1. INTRODUCTION
'
ANY authors have studied the many-boson system

-- and showed the presence of the phonon-roton
type excitation spectrum as in the actual system of
liquid helium. Especially, Bogoliubov noticed the fact
that the occupation number of the zero-momentum
state was macroscopically large, and treated the
quantum amplitude for this state aot, a-0 as a classical
number To''. He couM get, then, the phononlike
spectrum by diagonalizing the quadratic terms of
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i N. N. Bogoliuhov, J. Phys. (U.S.S.R.) 9, 23 (1947).

at,t, its(~k~/0) in the Hamiltonian. Brueckner and
Sawada' used essentially the same method and con-
firmed this result.

Recently, Girardeau and Arnowitt. ' showed that
there appeared an energy gap in the excitation spectrum
if one used the best trial function which fully took into
consideration two-body correlations. This result was
confirmed by Wentzel4 who used a slightly diRerent
method.

Though they obtained a better ground-state energy

~ K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117, 1128
(1957).' M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959).

4 G. Wentzel, Phys. Rev. 120, 1572 (1960).
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than the previous authors, tj&e existence -of an energy

gap in the excitation spectrum does not agree with tlute

phonon spectrum in liquid helium, and moreover, is in
contradiction to the theorem by Hugenholtz and
Pines, ' which states that the excitation spectrum of
many-boson systems with repulsive interactions should
vanish at the origin (k=0). Therefore, as Girardeau'
suggested, this energy gap should vanish in a higher
approximation in which more than two-body corre-
lations are taken into consideration.

The purpose of this paper is to show that this energy

gap does in fact vanish in a higher approximation.
In Sec. 2, we show that the results of Girardeau and
Arnowitt' can be obtained in a simple generalization of
Bogoliubov's method. In Sec. 3, we include higher
approximations in that we construct the eigenmodes
for collective excitations. We solve the secular equation
in the vicinity of zero momentum and show that the
energy spectrum is linear in momentum (phonon
spectrum).

TheII, llle Hanlllloniall (1) call be WIIflen ds

II= Uo+II4+II4+II4,
where

Uo ———,
' Vo)V

~s=Zkjfek+&Vk7aktak+-'&Uk(ak"a —k'+a kak)),

HO ———', Qk Qk (.V—Q aktak)'*(Uk+ Vk )
X/ak+k' akak'+ak ak' ak+k']) (4'a)

~4 0 ZqZkZk' Uqak+q ak' —q ak'ak
—

0 Zk Qk j(VO+Vk+Vk)ak'akak'ak
+Uk(ak a k+—a kak—)ak' ak'} ~

The diagonalization of H2 can be easily achieved by
the Bogoliubov transformation,

ak +k&k &ko —k )

a k=Q~ k —'VI~O'k,

Sk —'Vk = 1,

where nk and vk are given by
2. ENERGY GAP

The Hamiltonian for a many-boson system is of the
form

H= Qk ekak ak+ 0 Zq Qk Qk' Vqak+q ak' qak'akim — (1)

where ek is the kinetic energy,

uk'= 0 [(ek+&Uk/Ek)+ 1),
vk' 0$(0k+IV——Vk/Ek) 1j, —

I k
——pek(ek+cVUk) g'

The part of the Hamiltonian labeled II2 becomes

(6)

ek
——5'k'/2m, (2)

~2 0 Qk(Ek (0k+~~ Uk))+QkEk~k&k (g)

The symbols ak~, ak denote the usual creation and
annihilation operators

fakyak j &4,k') j=0.
We can expect that the occupation number of the

zero-momentum state lVo=ao~ao is very large, and so
the commutator )as, aOI] can be neglected compared
with ao~ao itself. Noting that we are dealing with the
system with constant number of particles, we can
replace aoI and aO by an operator (1V—pk~oaktak)', as
was done by Brueckner and Sawada' and Wentzel. ' The
verification of this procedure will be given in the
Appendix.

and V~ is the Fourier transform of the interaction
potential,

V, = (1/0) V(r)e'q'dsr

Thus, Ak, the excitation energy of the quasi-particles,
gives the excitation spectrum of the whole system in
this approximation. As is seen from (7), for small

~k[, Ek~ ~k[, and for large ~k~, Ek" ek, similar be-
havior as for the phonon-roton spectrum in liquid
helium. This is the result given by Bogoliubov' and
Brueckner and Sawada. '

The transformation (5), however, affects the term
IIO, H4 in the Hamiltonian (4); especially, if we re-
arrange every term into normal products with respect
to nt and o, there appear extra terms from H4 in-
dependent of and quadratic in ot and n. Thus, a better
approximation may be obtained by taking into con-
sideration these extra terms in the determination of
Nk and vk.

After carrying out the transformation (5) and re-
arranging each term, the Hamiltonian (4) becomes

H= Uo'+Ks+'XO jK4,
where

UO'= 0 UOA"+pkLvk'(0k+2&Uk) —2&Uk(») kj+gk gk (VO+ Vk k )vk'vk'

0 Qk Qk'(UO+ Vk+ Vk')Vk Vk' Qk Qk'Uk —k'(uv)k(uv)k'+Qk Qk'Vk(uv) kvk' )1 (9a)

K =Q j(uk'+vk')f( +1VV)+Q (Vo+U .)v' —Q (U+V+V )v„'+Q U (uv)

2(uv)kLEVk Qk' Vk k'(uv)k' Vk Qk' vk'])Ak Rk+Qkj (uv)k((0k++Uk)+Qk'(Vs+ Vk—k')Vk'
—Qk (VO+Uk+Vk)vk'+Qk Vk (uv)k j+-,'(uk'+vk')LEVk —Qk Vk k (uv)k —Vk Qk vk'j)

XL-.I —.t+ —.-.3 (»)
4 N. M. Hngenholtz and D. Pines, Phys. Rev. 116, 489 (1959).

M. Gira, nleau, Phys. Rev. 115) 1.090 (1959).
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The explicit expressions for X3 and X4 are not necessary
here, and will be shown when necessary.

We determine the parameters Nk and ek so as to
eliminate the nondiagonal term 44k n k +n ~k in Kp.
It is to be noted that this procedure is nothing but
"the principle of elimination of the dangerous terms"
proposed by Bogoliubov' in his theory of super-
conductivity.

In order to simplify the expression, we introduce the
following quantities:

and

k' &k'
y

Jk Ek' Vk—k'&k'
p

Jk= Qk' Vk—k'(44')k'y

fk = 4k+ (&——&)Vk+ (&k &p) +J—p&

gk= (&& &)V) —Jk. —

Then, the equation determining Nk and vk can be
written as

44k'= 2 [(fk/&k')+1j,
~k'= -', [(fk/&k') —1],

(44&) k =gk/2+k,

(12)

~k'= [fk' —gk'] . (13)

~2 Zk ~k &k &k. (14)

Therefore, Ek' expresses the energy of the quasi-

Since fk and gk involve the summation of vk' and
(m)k, Eq. (12) is a complicated integral equation for
uk and mk.

%hen mk and ek are thus determined, 3C2 becomes

particle in this approximation, but this does not vanish
even if IkI ~0. That is, if IkI ~ 0,

fk ~ Vp(1V K—)+Jp,

gk —+ Vp($ —X)—Jp,
and

Ek' ~ [4Vp(cV E)Jpj'*.

This gives the magnitude of the energy gap.
It is to be noted that the condition for the minimum

ground-state energy gives the same equations for Nk and
~k as (12). Thus, the ground-state energy in this case
is lower than that of the previous case, Eq. (6). This
result is essentially the same as that of Girardeau and
Arnowitt, ' who employed the variational method. The
method employed by Wentzel is almost the same as
ours, but his Hamiltonian is restricted and cannot be
used in higher approximations as will be shown in the
next section.

3. COLLECTIVE EXCITATIONS

Secular Equation

The purpose of this note is to point out that the result
of the previous section, namely the appearance of an
energy gap, is a consequence of the inclusion of only
two-body correlations, and hence it is not sufhcient
to explain the phonon spectrum in liquid helium. The
occurrence of an energy gap is in contradiction with a
theorem by Hugenholtz and Pines, ' as mentioned. in the
introduction. We show that the energy gap does
vanish when appropriate higher-order terms in the
Hamiltonian are taken into consideration.

The remaining terms in our Hamiltonian are K3 and
3C4, which are of the form

X,=-,' Pk Pk (X—Pk aktak)i{A(k', k+k')(uk+vk) Vk+L(k, k+k')(44k. +vk ) Vk

M(k)k ) (Nk+k'+&k+k') Vk+k') (&k+k' ~k&k'+&k p4k' &k+k') p Qk Qk'(+ Qk +k 44k) *jM(k 1 k+k) (Uk+4k) Vk

+M(kl k+k ) (Nk'+pk') Vk' M(k)k ) (44k+k'+~k+k') Vk+k') (44k &k' &—k—k' +p4—k—k'&k'&k)y

x4——-', p, pk pk U,M(k, k+q)M(k', k'jq)(nk+, n k. ,&nk, ta kt+n k4k.n k. ,nk+, )
+-,' P, Pk Pk U,M (k, k+q) M(k', k'+q)ak+ Jn»nk+, n k +-', P, Pk Pk V,L(k, k+q) L, (k', k'+q)

X&k+ptc4 —k J&k.nk+B—C4 & (17)

where we write
M(k, k )=Nk8k~+pk44k~,

I (k,k )= Nkgk~+'VkVk~,

where q&Q, XQ, g(K; Q) and q(K; Q) are coefficients to
be determined and satisfy the normalization equation,

18

and 3C4' expresses all the terms of the fourth power
corresponding to the second and third terms in H4,
Eq. (4a). It is not necessary to consider the quantity
BC4' further.

Now, we shall. look for the eigenmodes of excitation
of the form

PQ O'Q&Q +XQo'—Q

+2K'(5(K; 0)~K+Q'~ K'+n(K; 0-)~K Q~K)) (1&)

+2K'(16(K; 0) I'—In(K; 0) I') =1 (19a)

[H,PQt] =QQPQt. (20)

The prime on the summation means that each pair of
n~n~ or nn must appear only once. The coeS.cients are
to be determined by the condition that pQt satisfies the
equation

7 N. N. Bogoliubov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 58
(i958). To get this equation, some approximations are neces-
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sary, i.e., linearization of the equation of motion. This procedure is familiar in the various calculations
of collective excitations. '

In our case, we get the linearized equation of motion as follows":

PH, nQt)=EQ nQ+Zx {C(K;Q)nx+Qtn xt+D(K; Q)n x Qnx},

(H, n Qf= —EQ'n Q
—Px'{D(K; Q)nx+Qtn xt+C(K; Q)n x Qnx},

EH, nx+Q n x 3= (Ex+Q'+I»')nx+Qtn xt+C(K; Q)nQt+D(K; Q)n Q

+Qx'{A(K,K', Q)nx+Qtn „.t+8(K,K'; Q)n „.Qn„,},
pH n—x—Qnx] (Ex+Q +Ex )n—x—Qnx —D(K; Q)nQ —C(K; Q)n Q

—Qx {8(K,K'; Q)nx+Qtn x t+A(K, K', Q)n x Qnx. },
where A, 8, C, and D are given by the following expressions.

A (K,K'; Q) = VQM(K, K+Q)M(K', K'+Q)+ Vx x L, (K,K')I.(K+Q, K'+Q)
+Vx+x+QI. (K, K+Q)I.(K', K'+Q),

8(K,K', Q) = VQM(K, K+Q)M(K', K'+Q)+ V» ».M (K,K')M(K+ Q, K'+Q)
+Vx~x+QM(K, K+Q)M(K', K'+Q),

C(K; Q) = (N)i{Vx(ux —vx)I (Q, K+Q)+Vx+Q(u»~Q —v»+Q)I (K,Q) —VQ(uQ —vQ)M(K, K+Q)},
D(K; Q) = —(g)l{V„(ux—v»)M(Q, K+Q)+ Vx+Q(u»~Q —vx+Q)M(K, Q)+ VQ(uQ —vQ)M(K, K+Q) },

(21)

gg—= ra —Xa~

X(K; Q)
—=~(K; Q)+~(K; Q),

Y(K; Q)—=&(K; Q)-~(K; Q).

(23)

Then, the equations can be written

QQxQ
——EQ'yQ+px'(C+D) (K; Q) Y(K; Q),

nQX(K; Q) = (E»~Q'+Ex') Y(K; Q)+ (C+D) (K; Q)

XyQ+Qx '(A+8) (K,K'; Q) Y(K'; Q), (24a)

Generally, pH, pot) contains higher-order terms which can be
written as products of two operators, one appearing in the defini-
tion of Pqt and the other not. Linearization can be achieved by
replacing this latter operator by its ground-state expectation value.
In our notation, this procedure corresponds to writing )H,put) as
a normal product form and picking up only the linear terms in
a+, a, o,~a~, and o,a.

See, for example, K. Sawada, Phys. Rev. 119, 2090 (1960) for
general formulations; K. Sawada, Phys. Rev, 106, 372 (1957) for
plasma excitations in the free electron gas; P. W. Anderson, Phys,
Rev. 112, 1900 (1958); K. Yosida, Pro gr. Theoret. Phys.
(Kyoto) 21, 731 (1959); and G. Rickayzen, Phys. Rev. 115, 795
(1959) for collective excitations ig. superconductors.IH H contains the quadratic nondiagonal terms of n+n+, that
is, if Nk, ek were not determined as in $2, there appear constant
terms in LH, n+n+j and )H, ncaa j, which means these modes are
unstable. This is the reason why we should have eliminated the
"dangerous" terms in $2.

Ilt'—=cV—Qa vg' X E. —— —

364' contributes to A and 8 only in lower-order terms
in 0 (normalization volume) than those given by (22),
and the commutator with the factor LlV —P~ a~ up]' in

BC3 is also of lower order in Q.

From Eq. (20), we obtain the secular equation for
the coefficients io, y, $ and ti. It is more convenient to
introduce the following quantities:

xQ= &PQ+XQ~

QQyQ ——EQ'xQ+px'(C —D) (K; Q)X(K; Q),

~IQ Y(K Q) = (Ex+Q'+Ex')X(K Q)+(c—D)(K Q)

XxQ+px '(A —8) (K,K'; Q)X(K'; Q), (24b)

where the prime on the summation means that only one
pair of (—K, K+Q) should appear.

As seen from (22), A, 8 and C, D are symmetric for
the replacements of K+-+ —K—Q and K'~ —K' —Q
and K ~ K'. Thus, only the symmetric parts of
X(K; Q) and Y(K; Q) for the replacement K ~—K—Q
have nonvanishing contributions to the summations,
and we can take X(K; Q) and Y(K; Q) as symmetric
for this replacement. That is, we can replace the
summation P' by the unrestricted summation -', P.

Solution of Secular Equation for Small Q

Since our interest is in the vicinity of Q=o, we can
expand all quantities in power series of Q; for example,

A(K,K'; Q) =A(K,K'; 0)+st'lA(K, K'; Q)
+6&'lA (K K' Q)+. . ., (25)

X(K; Q) =X(K; 0)+X&'l (K; Q)+X&» (K; Q)+
where each term is constant, linear, and quadratic in

Q, respectively.
The zero-order equation can be written as

Qpxp
——Ep'yp+-,' Px(c+D) (K; 0)Y(K; 0),

QpX(K; 0)= 2E»'Y(K; 0)+ (C+D) (K; 0)yp (26a)
+-,' Qx. (A+8) (K,K'; 0)Y(K'; 0),

noyo=E '*o+-,'p (c—D)(K; o)x(K; o),

Qp Y(K; 0) = 2E»'X(E; 0)+ (C—D) (K; 0)xp (26b)
+-', gx (A —8) (K,K', 0)X(K'; 0).
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Here each coeAicient has the following value,

(A+B)(K,K', 0) =- (2Vo+ V»+ V». )M(K,K)&V(K',K')

+ (V». » +V»+».)L(K,K)L(K',K'),

(C+D) (K; 0)= 2(X)'*(uo—i&o)[(Vo+ V»)M(KK)
+V»I. (K,K)], (27a)

O=Ep'xylo&+-', Q»(C —D)(K;0)x&'&(K' Q)
+8"&Fax+-'- Q 6"&(C—D)(K Q)X(K 0)

0=-2F» X~'&(K; Q)+(C—D)(K; 0)aii&'&+-'; P»
x (A —B)(K,K'; 0)x&'&(K'; Q)+&&»E „,'

XX(K;0)+ho& (C—D) (K; Q)xo+-', P»
Xb&'& (A —B)(K K' Q)X(K'; 0),

where

(A —B)(K,K';0)= V»»+V»+»,
(C—D)(K; 0)= 2(g)i(up+i&p) V».

(27b)

and

8&'&(C—D)(K Q)= (Ã)l(up+i&p)b&'&V» p&

(31)
tI&'&(A —B)(K,K', Q) =i&'&V»„»~u,

We can easily show that Eqs. (26a) and (26b) have a
solution Qo

——0, yp
——F'(K; 0) =0; that is, we can show

that the equations

Ep xo+ (E) (up+ vp) P» V»X(K 0) —0

2E»'X(K; 0)+2 (E)1(up+ i&p) V»xp

+-,' Q» (V»». +V»+». )X(K', 0)=0
(28)

can be satis6. ed by the following solution

X(K; 0) =n(ui&)»,

xo= n(E)'(u—o+i&o)Jo/Eo',
(29)

0.o&..=E.'y. ~ &+!E (C+D)(K; o)
X 7'~»(K; Q),

Qo&&'&X(K; 0)= 2E»'V&'& (K Q)+ (C+D) (K ' 0)
xy, & &+-' P», (A+B)(K K' o) v~'&(K' Q)

where o. is an arbitrary parameter to be determined by
the normalization condition (19a). This is easily
verified by substituting (29) into (28) and using
Eqs. (10)—(13).

Thus, the excitation energy Du vanishes when Q & 0;
that is, there appears no energy gap. The next step is
to show that Qp& is linear in Q for small Q. To do so, we
must investigate the erst- and second-order terms of
Eq. (24). The first-order terms in Q of Eq. (24) can be
written as

g(~)p~&~ —0

since Eg' is an even function of Q. Substituting these
values and the zero-order solution (29) into (30b), we
can see that Eq. (30b) has a solution

g(&) —0
(32)

X"&(K; Q) = -', nb &'& (ui&)»+p&.

The value of Qp&o& can be determined from Eq. (30a)
and the second-order equation of (24b), which can be
written as

QQ yQ —E xQ + Q»(C D) (K 0)—
XX"'(K Q)+p

0 o&F~'&(K. Q) =2E»'X&'&(K; Q)+(C—D)(K; 0) (33)
Xxu&'&+-,' P» (A —B)(K,K', 0)

xx~»(K' Q)+r(K Q)

where p and P(K; Q) are given by

p=b"'Eu'xp+-, ' Q»fb"'(C —D)(K Q)
XX"'(K.Q)+8 "(C—D)(K) Q)X(K 0)}

P(K; Q) =5&'&E»~u'X&'&(K; Q)+8'P&E»+g'X(K; 0)
+S"'(C—D)(K)0)xo+-', Q» (8"'(A —B)

X(K,K'; Q)X (K'Q)+S (A B)—
X (K,K', Q)x(K' 0)}. (34)

Solving the first equation of (33) and (30a) with
respect to xq") and yq(') and substituting them into
the second equation of (33) and (30a), we obtain

2E»'X "&(K Q) —[(C—D) (K; 0)/2Ep']P» (C—D) (K'; 0)xn& (K' Q)+-,' P» (A —B)(K K' 0)x&'& (K' Q)

=Qg&'&[Vo& (K Q)+[(C—D) (K; 0)/2Ep"]P» (C+D) (K' 0) V&'& (K' Q)]

and

(C—D)(K;0) (Qq&'&q '
—P(K; Q) — p+i i (C—D)(K; 0)xp, (35)

+0 ( Ep')

2E»'V&'& (K; Q) —[(C+D)(K) 0)/2Ep'jg» (C+D) (K' 0) Yo& (K' Q)+-' P» (A+8) (KK'i 0)Vo& (K' Q)

(C+D) (K; 0)
=On "& X(K' 0)— —xo (36)

+0
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Lquatioil (35) is an integral equation for r"'(K; Q),
whose homogeneous part vanishes if we put I"'(K; Q)
~ (up)», as is seen from the discussion of the zeroth-
order equation (28). If we put 2E»'X"'(K; Q) = f(K),
the left-hand side of Eq. (35) can be written as

f(K)—P» r(K,K')f(K'),

where the integral kernel F (K,K') is of the form

I'(K,K') = —$(C—D) (K; 0) (C—D) (K'; 0)/4Eo'E». 'j
+L(A —8) (K,K'; 0)/4E» '$.

The integral equation with the transposed kernel

f(K)—g» r(K', K)f(K') =0

has an eigenfunction f(K)= (up)». Therefore, the
right-hand side of Eq. (35) should be orthogonal to this
eigenfunction, in order that the inhomogeneous equation
(35) has a solution. Thus, we derive a relation between
Qq&'& and Y&'&(K; Q):

QQ o~ {P» (zp)» P' ~» (K ~ Q) + (1/2Eo')P» (C—D) (K 0)

X (up)» P» (C+D) (K' 0)I'"' (K' Q) )

(Q~(»&
=Q»(Np)»P(K; Q)+

~

—p ~E,'I. E,'

vanishes i n higher approximations and the excitation
spectrum i*s a phononlike one.

C. CONCI. USIONS

We have shown that the energy gap obtained by
Girardeau and Arnowitt is only an apparent one, and
the energy spectrum is proportional to momentum for
small momentum without an energy gap. We have
constructed the eigenmodes of excitations using the
approximation of linearization of equation of motion,
in which the third- and fourth-power terms with
respect to the quasi-particles are taken into considera-
tion appropriately.

We can show that the excitation energy for this mode
becomes zero when the momentum Q tends to zero, and
is proportional to Q for small Q, although the propor-
tionality constant cannot be evaluated.

We have not discussed the ground-state energy
which must be modified in this method; the calculation
of it is an interesting problem and will require knowl-
edge of the excitation spectrum for all momenta. This
appears complex even if we employ some approxi-
mations such as the low-density limit used by Girardeau
in his calculation of the ground-state energy Uo', (9a).
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XP»(C—D) (K; 0) (np)». (37)

It is easily seen from (36) that I " (K; Q) is propor-
tional to Q@"&, and if we put I'"'(K; Q)=Qua'&»'
(the Q dependence of I'»' is unnecessary), Eqs. (36)
and (37) become

APPENDIX"

and

We want to show that in the Hamiltonian (1) one
2E»'I'»' —L(C+D) (K; 0)/2Eo']P» (C+D) can put P —Pp~pap a~jl for ap or ap in the case of

X(K';0)I' '+-'P» (A+8)(K,K';0)I'»'
First, we consider the following complete orthonormal

set of wave functions in which the total number 1V of
particles is fixed,

(Qu ' ) {P»(gp)»F»'+ (1/2Eo')Z»(C —D) (K; 0)
X ( ) P (C+D) (K'; 0)F '—(1/Eo')P

X (C—D) (K; 0) (Nv)») =P»(np)»P(K; Q)
—(p/Ep') Q»(C —D) (K; 0) (Nv)». (37')

If we solve (36') with respect to I'» ' and substitute it
into (37'), we get the value of Qu&'&. The right-hand
side of (37') has a nonvanishing value, which is very
complicated, but is proportional to Q', and so we can
say that Qu&'& does not vanish and is proportional to Q.
Since Qg=Qo+Qg ' +Qg&"+ . and Qp ——0, Q@ is
proportional to Q for small Q; thus, we obtain a phonon
spectrum again. The numerical value of the proportion-
ality constant, which corresponds to the value of the
sound velocity, can in principle be obtained from a
solution of the integral equation for F»', (36'). Un-
fortunately, however, this cannot be done in practice
and need not be done if we are satisfied with the quali-
tative result that the energy gap appearing in $2

("t)"' ic„„!=g—0 I,
ago (q„!)'*

(A2)

which is in one-to-one correspondence to %~., ~„„~if
Ppgq~&X. This is complete in the space V which is

"Pote udded in proof. This procedure was given by N. Fukuda
in an article published in 37ucleur Physics (Kyoritsu, Tokyo,
Japan, 1959), Vol. 1. Because this article is written in Japanese,
we present the essential argument briefly.

+~V; ]~i I— (a T) x—zygo

L(&—2 ~ no)!]'*
(apt) pt

Xg 0 i, (A1)
~«(~')'

where j0) denotes the vacuum in which there are no
particles.

Next, we consider the following orthonormal set of
wave functions
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constructed by excluding the zero momentum state
from the original space.

If we construct the Hamiltonian H' (or any operator)
in this V space such that

(+N; } »k'}& ++N; l&&k}) (C j»k'}& + @j»k})& (A3)

the operator cot or ao in H can be seen to be replaced by
LiV—Qk &}k+ej', where e is a finite number. For
example,

f(ttk &ttk)tto tso ~ f(ak &ttk) (+ Qk &7k)

f(ttk &ttk)p Qk ak ttk]&

f(ak &ttk)tto ~ f(teak &ok)

X [(iV—Z k rtk) p' —Zk gk —I)j',
(ao ) f(ttk &ttk) ~ ((tV —2» rjk+I) (iV—Zk rtk+2) j*

Xf(isk &ttk).

In any case, e can be neglected compared with E—pk rtk

if f}7—pk &}k is of the order of iV, so that we obtain the
Hamiltonian (4), (4a).
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Test of Global Symmetry in Pion-Baryon Interactions by X +p Reactions*
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Under the hypothesis that the E-meson interactions do not mask the symmetries of the pion-baryon
interactions appreciably, the branching ratios of the X +p reactions are studied to test the validity of global
symmetry. The T '-matrix formalism of Matthews and Salam is adopted to calculate the branching ratios.
The new Dalitz-Tuan solutions for K7&i scattering lengths, which incorporate the (X+,Zo) mass difference
and the new branching ratios of the various E +p reactions, presented at Kiev, are adopted in the analysis.
The errors in the experimental branching ratios are so chosen as to satisfy the Amati-Vitale inequality. It
is found that the u and b+ (also u+, though poorly) Dalitz-Tuan solutions can explain the branching ratios
for E captured at rest. The extension of the analysis to 30-Mev incident E mesons under the zero-range
approximation leads to very poor agreement with experiments.

I. INTRODUCTION
' 'T is of great interest to ascertain whether the very
~ - strong pion-baryon interactions possess any sym-
metry higher than charge independence. It is now clear
that experiments exclude' the possibility of very high
symmetry in both pion and E-meson interactions. So
the symmetries of the pion interactions, even if they
exist in the bare Lagrangian, could be distorted badly
by the K-meson interactions. If so, such symmetries are
not useful (except, possibly, at very high energies),
since we cannot calculate accurately the consequences
of strong couplings. In order to test the usefulness of
the proposed symmetries of the pion interactions, we
would therefore consider the possibility that the E-
meson interactions may not be strong enough to break
the symmetries of the pion interactions appreciably,
even though, to some, this may be of academic interest
only. We would apply this hypothesis specifically to the
K—+p reactions.

* This work had its inception during the author's stay at the
Summer School of Theoretical Physics, University of Colorado,
Boulder, Colorado, in 1959, the stay made possible by the 6nancial
support of the U. S. Air Force through the Air Force Ofhce of
Scientific Research and Development Command.

f Now at the California, Institute of Technology, where this
work was completed in the present form and prepared for publi-
cation with support from the Richard C. Tolman postdoctoral
fellowship.
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