
PH YSI CAL REVIEW VOLUME 123, NUMBER 2 JULY 15, 1961

Singularities of Scattering Amplitudes on Unphysical Sheets
and Their Interpretation
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Palmer Physical Laboratory, Princeton University, Princeton, Zero Jersey)

(Received March 1, 1961)

The analytic structure of two-particle scattering amplitudes on the unphysical sheet of the Riemann
surface reached by crossing the two-particle cut is discussed. The singularities of the amplitudes there are
shown to be poles and their physical interpretation is studied. The way in which bound states appear on
the physical sheet in the Mandelstam representation, both as isolated poles and as cuts, is traced in detail.
The properties of partial wave amplitudes and of the full amplitude as a function of energy and angle and
of energy and momentum transfer are discussed. Finally, , a few remarks are made in connection with unstable
states.

I. INTRODUCTION

NY systematic program to explore the analytic

~ ~

structure of a scattering amplitude which
restricts itself to the physical Riemann sheet in the
energy variables does not seem complete. The properties
on the physical sheet must be supplemented by a
knowledge of the analytic behavior on the second
Riemann sheet as well as some idea of the dependence
of the position of any singularities on the parameters
of the theory. For example, the simplest way in which
the analytic properties on the physical sheet can change
as some parameter of the theory is varied is that
singularities on the second sheet migrate to the physical
sheet through branch cuts already present.

Such a behavior occurs in the problem of anomalous
thresholds. '' It is found that as the external masses
increase, a branch cut moves through the normal cut
onto the physical sheet and extends the threshold below
the canonical value. As is demonstrated later, the
formation of bound states in field theory is also a
matter of poles and cuts moving to the physical sheet
as the interaction becomes more and more attractive.

The problem of unstable particles and the resulting
scattering resonances has also been discussed in terms
of poles on the second Riemann sheet. The conjecture
of Peierls' is that a pole on the second sheet is to be
identified with an unstable particle. These poles
depended strongly on details of the theory and their
physical interpretation is not clear. It is not clear to
us, for example, what characteristics the singularities
on the unphysical sheet defined by crossing the three-
particle branch cut must have in order to yield a
consistent physical. interpretation. These singularities

'

are discussed, and are shown to have a reasonable
interpretation in terms of an unstable particle. Due to
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our lack of knowledge of unitarity, we are unable to
make very definite statements in the inelastic case.
However, we prove that in the two-particle case, the
only additional singularities allowed on the unphysical
sheet are poles.

It is possible to discuss the many-channel problem
by utilizing the matrix formulation of Bjorken' and
Nauenberg. ' Only the one-channel problem is discussed
here, but most of the equations we develop are true in
the many-channel case if they are looked upon as
matrix equations.

We consider first the case of individual partial waves
because the application of unitarity is so simple in this
case. We further restrict our attention to the scattering
of scalar "nucleons" of mass M, exchanging pions of
mass p. It is a "simple" matter to extend the discussion
to more interesting cases.

In order to discuss the convergence of a partial wave
expansion on the second sheet, the full amplitude at
fixed angle must be considered. This is done by assuming
that a double dispersion relation holds on the physical
sheet and discussing the amplitude on the second sheet
by means of a Fredholm solution to the defining
integral equation. Finally, the full amplitude at Axed
momentum transfer is discussed.

The possibility that singularities originally on the
second sheet could produce singularities not found in
perturbation theory is discussed in the case of anoma-
lous thresholds in form factors and scattering ampli-
tudes. The problem of bound states is clarified by
showing in detail how the poles and cuts associated
with this mass state are produced on the physical sheet
as the interaction becomes sufficiently attractive.

II. PARTIAL WAVES

The analytic properties of the partial wave ampli-
tudes have been well discussed. ' The essential result is
that the function defined by

ftr(v+t'e) = expLib(v) j sinb(v)/p(o),

4 J. Bjorken, Phys. Rev. Letters 4, 473 {1960).
5 M. Nauenberg (unpublished thesis and to be published).' S. ¹ MacDowell, Phys. Rev. 116, 774 (1959).
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where p(v)=Lv/(v+M')]'* is an analytic function of
the square of the relative center-of-mass momentum,
v, with a cut along the entire positive real axis and
along the negative real axis from minus infinity to
(—p'/4) where 1/p, is the range of the effective potentiaL
The superscript one is to emphasize that this equation
is defined on the physical sheet.

Below the onset of inelastic channels, tile phase shift
is real along the physical cut and the unitarity relation
takes the usual form. We next remark that by trivial
manipulation

Fro. 1. S matrix with no
bound state.

S

p V

where
fir(v —ie) =f('(v+ee)Si '(v+ee), (2.2)

S~(v+ee) = expI 2i8i(v)]= 1+2ep(v) ft'(v+ee). (2.3)

part of the Yukawa-type Born term approaches

A f p, ) ( 4v)
fi'(v)= —~iI 1+—

I »I 1+—
I

2v ( 2v i & p')

The scattering amplitude on the second sheet is
introduced as the continuation across the positive
branch cut below the inelastic threshold in a counter-
clockwise direction:

fir'(v+ee) = fir(v —ee) = fir(v+ee)Sir(v+ee). (2.4)

It is immediately obvious that fP(v) has the same
region of analyticity as fir(v) except that there may be
poles due to zeroes of the 5 matrix and the trivial
kinematic cut coming from the factor of p(v).

The lth partial cross section, which is defined as

a) v = )" v )' v, (2.5)

is easily seen to enjoy analyticity in the v plane cut
along the negative axis to (—p,'/4) with poles due to
the zeroes of S~. The fact that 0-~ has no positive cut in
the elastic region is easily demonstrated. Similar
statements hold for the functions p Imfi and Refi. An
interesting and amusing fact, which can be demon-
strated readily by writing

is that
Ref/= f,'S, '$1+epf r'j-

Ref —+ f—(2.6)

wherever fP approaches infinity.
I.et us now see whether or not S~ has zeroes close to

the physical region. The simplest place to look for a
zero is in the gap between the positive and negative
cut where Sg is real. The complex zeroes of the S
matrix which might lead to scattering resonances are
strongly dependent upon the details of the theory and
are therefore dificult to discuss in general. It can be
shown that S~ has at least one zero between v=0 and

(—p'/4) for every other / if there is a one-particle
exchange contribution to the negative cut and no
bound states.

Since there are no bound states present, S~ is bounded
in the gap. Further, if there is no zero-energy resonance
or anomalous threshold, the 8 matrix is unity at zero
kinetic energy. As v approaches (—p'/4), the singular

(2.7)

FIG. 2. S matrix with a
bound state.

l
\

1

Q v

where ) is negative for an attractive potential. Thus,
if / is odd, the Born term has the sign of the potential,
), and approaches infinity. On the other hand, if l is
even, the sign is reversed. In the gap, the S matrix is
Si——1—2fiL —v/(v+M')]'*. The two possibilities are
shown io Fig. 1. These curves, of course, could cross
the axis several times. It is obvious in any case that the
function S~ must have at least one zero in the gap for
every other l. If there is a bound state present then S
is not bounded in the gap. The Born term discussion
is not changed and since the residue of a bound-state
pole in S must be positive, the two possibilities are as
shown in Fig. 2.

To summarize the situation with an example, we
consider the l=0 partial wave for the case of an attrac-
tive potential. We have seen that if there is no bound
state, then So must have at least one zero in the gap.
If the potential is made attractive enough to produce
a bound state, the zeroes may disappear from the gap.
We return later to an instance of this sort.

The discussion of a theory in which there is no
one-particle exchange, or Born term (for example,
m-m. scattering), is less conclusive. One trivial statement
which can be made is that if the scattering amplitude
is positive near the negative cut, which starts at
v= —p,', S& must have a zero. The infinity in this case
comes from the phase-space factor p.
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Let us turn to a discussion of the nature of the cuts
of a partial wave amplitude. Consider the general
problem of the type of singularity at s= a of the function

1 i
" W(s')

J'(s) =—
~ ds'

S S

On the unphysical Riemann sheets, defined by cross-
ing the cut in the neighborhood of a, we have, for
example,

I"(s+ie) =J'(s+ie) —2iW'(s+ic),
and

J"'(s+i~)= j'(s+ie) —2il W'(s+i&)+ W" (s+is) 5,

where, if the point a is a branch point of 5', we choose
the cut to run towards +~. Thus if W'(s) has a,

square-root type of singularity at s=c, then J'"=J'
and J also has a square-root type of branch cut.
However, if 8' is analytic in the neighborhood of s=a,
then J has a logarithmic singularity.

The general form of the partial wave amplitude for
the process depicted in Fig. 3, i.e., 2M, ~ 2M' through
a state of 2p's, is

,a(s') 1 ~" &(s')
G(s) =— ~ ds' +— ' ds'

7I ~ ~ s s 7I ~4 ' s s

I'zG. 3. Scattering graph.

S=O. In fact, it is easily seen that

g (s)=& (—1)~o'( —s)'

where Qp ls the S-wave scattering length. In addition,
g~(s) has a logarithmic cut starting at s=4p'. The
square-root behavior at s=0 implies that the negative
cut in G~(s) from two-particle exchange connects two
Riemann sheets. This result is true in more general
circumstances. For example, in nucleon-nucleon scat-
tering, the two-pion exchange contribution is easily
shown to be two-sheeted in character.

I.et us now turn to a discussion of the scattering
amplitude without expanding in partial waves.

III. FIXED ANGLE

In order to discuss the analyticity of the scattering
amplitude at a fixed angle, we assume that a Mandel-
stam representation holds in the physical sheet. This
then allows a determination of the radius of convergence
of a partial wave expansion on the second sheet.

The scattering amplitude F is written in the form

where

B(s)=p(s)H. (s)Hp(s)L1 —2ip(s) f. .(s)5
—', )=

I'
d 'A (

'
)/I: +2 (1+ )5

arid JIf,Q] is the partial wave annihilation amplitude
for the process 231~,~~

—+ 2p, .
Since B(s) has a, square-root singularity at s=4y'

coming from the explicit factor of p(s), the positive
branch cut in G(s) connects only two Riemann sheets.
It is clear that this two-sheetedness property holds for
each two-particle singularity in a multichannel situ-
ation.

If there is a one-particle exchange diagram, then its
contribution to g(s) has singularities of the form

L(s—4)V,')(s—4M&')5 '*. Thus g(s) is analytic in the
neighborhood of s=a and the left-hand cut of G is
logarithmic in nature.

The discussion in the cases that have no one-particle
exchange graph is more involved. Iet us consider for
definiteness the case of pion-pioii scattering. If the
complications due to isotopic spin are neglected, the
results of Chew and Mandelstam are that a=0, and

—(I+I) ( v+p
gi(s) =- dv' &~l 1+2

P 0 p v )
v+V')

& «Pvl 1+2, I
fmG, .(v'),

l'=0 L v

+ ~I dt'A, (t', r)/I t'+2v(1 z)5. —(3.1)
2

Subtractions do not affect our general conclusions
and are therefore suppressed. The only property of the
weight functions A2 and A3 that is needed is that they
are analytic functions of r with a cut along the positive
real axis.

dO'
lmP'(v, s) =p(v) " F'(v+ie, x)P'(v —ie, s')) (3.2)

where
@=as'+L(1 —s') (1—a")5' cosp'.

In exact analogy with the partial-wave discussion,
the scattering amplitude on the second sheet is intro-
duced as

~
dQ'

P"(v,s) =P'(v, a) —2ip(v) P'(v, x)F"(v,s'). (3.3)

It is convenient to transform this into a nonsingular
integral equation of the form

1

F"(v,s) =F'(v, z) 2iJ ds' E(s,s',—v)F" (v,s'), (3.4)
—1

where
where v= (s—4p,')/4. Since we have just shown that
ImG~ (v') has a square-root singularity at v'=0, this
implies g&(s) has a square-root type of singularity at

p(v) p
K(s,s', v)=, ~'F'(v, g).
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This azimuthal integration is carried out readily and
the result is

p(v) ~
K(z,z', v) = du' Ag(u', v)[(1+zz'+u'/2v)'

p(v) ~,—(1—z') (1—z"))-'*+ dt' A, (t', )v

4x ~

XL(1—zz'+t'/2v)' —(1—z') (1—z")] & (3 5)

where Ã and D are the usual Fredholm determinants.
Since the region of integration is finite, it follows

from standard arguments that the analyticity domain
of P"(v,z) in v is at least as large as that of P'(v, z') for
all z', except that there are the cuts from p(v) and the
possibility of zeroes of D(v).

The connection between these poles and the ones
discussed earlier in the partial wave amplitudes is made
apparent by considering the eigenfunctions of the
kernel. If we write

It (z,z' v) =2(2t+1)Pi(z)Pi(z') p(v)f~(v), (3 7)

then it follows from general arguments' that

D(v) = II L1+26 (v)f~(v) j.
l=o

(3.8)

From these results it is possible to discuss the
analyticity in Z for fixed complex v. In particular, we
are interested in the possibility of making a partial-
wave expansion of F"(v, z). If the nearest singularities
in s are either complex or real but a finite distance
outside the interval (—1, 1), it is possible to pass an
ellipse inside these points enclosing the physical region.
Then an expansion in a Legendre series is convergent
within this region.

From the expression for the kernal E(z,z'; v), it is
readily seen that for fixed ~ there is analyticity in s
except when

z'+z"+ (1+@/2v)'&2zz'(1+x/2v) = 1 (3.9)

Our next task is to solve the integral Eq. (3.3) for
P"(v, z) and to discuss its analyticity in v and z. Even
if Ii did not satisfy a Mandelstam representation, it is
clear from the integral equation that the domain of
analyticity of F" is closely connected with that of F',
except for poles arising from the homogeneous equation
and the trivial kinematical cut from the explicit p(v)
factor. The Fredholm solution to this equation can be
examined readily. This solution can be written in the
canonical form

1

P"(v, z) =P'(v, z)+ dz' E(z,z', v)1'(v, z'), (3.6)
D(v) ]

The condition that this singularity lie in the physical
region of z is v~&—p'/4. Thus, as long as v is not on
the negative cut, a Legendre expansion is valid for
F"(v,z). Of course, if v is in the neighborhood of a
point where one of the S&(v) has a zero, say at v&, then
a singular term in the expansion, of the I"~P~(z)/(v —v~),

is present.

where the subscripts on the momentum transfer mean

t,,= —2v(l —z;,). (4 2)

Now assuming that a two-dimensional representation
holds on the physical sheet, the azimuthal integration
can be carried out as in the previous section. One
obtains the integral equation given previously, Eq.
(3.4), with the understanding that z is to be expressed
in terms of v and tra. Since for fixed zz, F"(v,z2) is
analytic in the cut plane, this integral equation repre-
sentation implies that F"(v, t) is analytic in a region
bounded by the vanishing of one of the denominators:

() '~~z, ) —( '2 —1)() —1)=O,
where

) '=1+t'/2v, X=1+t/2v.

Solving for v, we find

(43)

v = —{t+ t'a L2tt'(1& z2)]'*}/2(1&z2). (4.4)

Since in the physical region, t&0, and also t') 0, these
roots are complex;

(4 3)~= x+iy,
where

x = —(t+t')/2(1&z2) y'= —tt'(1&z2)/2 (1az2)'

For fixed t' this point moves on a branch of a hyperbola
as s2 varies. Eliminating s2, we get

y'= tt'x(4x+ t+t')—/(t+t')'

The boundary of the region of analyticity occurs when
t' reaches its minimum value p,'. The equation of the
boundary curve is

y'= tu'&(4~+I '+t)/(t+—p')'. (4.6)

Dt'. FIXED MOMENTUM TRANSFER

We take up now the analytic properties of the
scattering amplitude on the second sheet as a function
of the energy at fixed momentum transfer. We content
ourselves with a brief discussion, since a more complete
treatment has been given by Zimmerman. The integral
equation for the second sheet amplitude is evidently

P"(.,t„)=P'(, t„)
—2ip(v) d02 F'(v, t»)F" (v, t»), (4.1)

where
—1&a'&1. If t) —p,', then the left-hand branch of this hyperbola

is the boundary, whereas if t& —p, ', the right-hand
7 See, for example, W. V. I.ovitt, Linear Integral Equations

(McGraw-Hi11 Book Company, Inc., New York, 1924). ' W. Zimmerman (private communication).
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Iy (—2zrz—p—) dto d4dso. d4 r w(p, to 4r)

and

X[(&zing —sy r)' —(j,g' —1) (X'—1)] '*

y[(XPsr —sp)' —(XP—1)(sP—1)] '(X —s ) '

X,=1+t,/2v

The weight function m is an analytic function of v in
the plane cut along the positive real axis. Any permu-
tation of the X's in the integrand is permissible, since
it becomes a symmetric function after the s; integrations
are performed.

The integration over so can be done immediately and
the result can be studied as a function of s~, for v in
the physical region, the integral over zo can be written
in the form

f
dhr'[y (Xp,X„X,')]-'(X,' —s,)-',"~i'(~)

where

and
s, '(v) =Xp).r+[(Xp' —1) (XP—1)j-'*,

x(~,y, s) = [*'+y'+s' —2xys —1]-:.

Now introduce the variable p& given by

X,'= Xp) r+rtr[(Xp' —1)P,P —1)j'*.

The integral becomes

J drll(gl 1) *(~1 sl)
1

Now the integral over si can be performed and the
above argument repeated successively. The final
representation for I~ that we consider is

Ig= (—2zrzp) dtp' ' 'dtN w(p, tp' ' 'ty)

where

X ~

~ ~ ~

(rl~' —1)* (ztP —1)& X~' —s

X,'= X;X; r'+pl, [P;s—1)(X; z's —1)lit.

This function has branch points in the v plane for
X,'=1, or v= t;/4 and a=po, w—here Izv becomes
logarithmically divergent. In addition, there is a branch

branch takes over. This analyticity region is, of course,
not the largest possible since we have not used any
analytic properties of the kernels in the integral
equation. Thus we consider the iterated solution to
see if a larger region emerges.

Using our previous results, the solution can be
written as

Ii"(v t) = Ii'(v)t)+g~ I~,
where

point when
X~'—a=0,

with p, =1 for all i. This equation is symmetric in all
the X's and may be written

s=cosh(po+$r+ 'b)=1+t/2v,
where

cosh/, =X,.
The roots of this equation are, in general, complex.
Therefore, one concludes that for a fixed momentum
transfer, Ii" has complex singularities.

V. APPLICATIONS

The simplest applications of these results seem to be
in discussions involving individual partial waves. We
are interested in those processes in which the singu-
larities on the second sheet should be quite important.
The most obvious example is one in which the singu-
larities on the physical sheet conspire in such a manner
as to force S& to have a zero in the gap just below the
physical cut. The resulting pole on the second sheet
has a dramatic effect on low-energy scattering. This
can easily occur even if there are no nearby singularities
on the physical sheet. A nearby pole on the second
sheet can be just as important as a bona fide bound-
state pole. A second example is found in the problem
of the anomalous thresholds. In this case, we know that
one is forced to extend the physical cut into the gap
region. Thus, if one of these poles were present in the
integrand, it might cause a breakdown of the dispersion
representation ' which could not be discerned from
perturbation theory. We now turn to a detailed discus-
sion of these problems.

A. Anomalous Thresholds

As a first application of the previous results, consider
the form factor for a scalar particle of mass 3f, which
interacts with a scalar photon through a pair of scalar
particles of mass p as illustrated in Fig. 4. For this
discussion it proves illuminating to follow the procedure
developed by Mandelstam' instead of the equivalent
method described by Blankenbecler and Nambu, ' since
in the former method, the di%culty with poles on the
second sheet seem superficially more dangerous. The
latter authors introduce a representation of the form
factor which has only normal cuts and then they
continue to the physical sheet. The Mandelstam
procedure makes use of the analyticity of the Green's
functions in the masses and continues from the normal
to the anomalous case. In both of these methods one
is forced to continue certain functions to their second
Riemann sheet and it is this aspect of the problem
which is of interest here.

FoHowing Frazer and Fulco, ' the form factor in the
normal case (M, small) can be written in the form

' W. R. Frazer aud J. R. Fulco, Phys. Rev. 117, 1609 (1960).
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p4+
I&'(s) = - -- ds'(s' s) —'8 (s')

+— ds'(s' —s) 'C(s'),
~ ~4„

FIG. 4. Form factor graph.

(5 4)
' I",

- ~( )=- d" [A("))/L"—),
X "4„&

(5.1) where
&(s)=2~ip(s)~(s) exp[~(s))

a

C(s) =p(s) exp[de+6) t dh(t —s)—'n(t) exp[ —6(t))

p4+

where

A()=.() ~P*()+~())

X dt(t —) ' (t) pL
—~(h)) (5 2)

FIG. 5. Anomalous thresh-
old behavior.

4p

Here n(t) is the discontinuity across the negative cut
in the partial wave amplitude for the annihilation
process and h(s) is the usual line integral over the
relevant phase shift of p-p, scattering, J4„2"ds'h(s')/
(s' —s).

If an analytic continuation to larger values of the
external mass M, is made by giving it a small negative
imaginary part, the point a moves in the path illustrated

by the solid line in Fig. 5. The line integral from 4p' to
infinity in F(s) must be deformed to avoid this pro-
truding branch cut of A (s) as indicated by the dotted
line. In order to perform these continuations, one must
introduce the S matrix in the form

exp[~*(s))= exp[~(s))~ '(s),

and also continue the factor exp[ —D(t)) in the inte-
grand of A onto its second sheet as the upper limit u

moves around the point 4p,'. These continuations yield

()=.()"[ ~()) -'()
4hth2 —i g

X dt(t —s) 'n(t) exp[ —A(t))
—00—'b 71

a+i rf

dh(h —s) "n(t)5(t) exp[ —A(t)), (5.3)
4P, +iaaf

where we have used the fact that the function n(t) has
a square-root type cut starting at 4p'.

One might superficially expect that when the anoma-
lous threshold a reaches the point where S~ has a zero,
the continuation would break down in a manner
foreign to perturbation theory. This is rot the case,
since from the integral over n(t) a factor of 8 appears
to cancel any such pole. The final result after collapsing
the line integral to the real axis is'""

+ dt(t —s) 'n(t) exp[ —A(t))[1+$(t))

XexP[—D(t))[a(t),p(t)),

if M, and Mb are sufficiently small. First consider the
case where only M, is large enough for an anomalous
threshold. By the same procedure as before, the
scattering amplitude G(s) is found to be

1
G(s) =— dh(t —s)

—'J(t), (5.5)

where the imaginary part of G in the anomalous region,
Q4$(4p, is

J(s)= 27rip(s)n(s)Hb(s). (5.6)

Now if the mass M~ is increased until b &a, which can
obviously occur even if Hb(s) has a normal threshold,
then J becomes complex. The condition b&a is just
the condition found in perturbation theory by Karplus,
Sommerfield, and Wichmann" for the "super" anoma-
lous case. There is no ambiguity or difFiculty in con-
tinuing past this point if all the masses are given
negative imaginary parts as required by the definition
of the Green's function of interest. The essential point
here for our purposes is again that the superficially
dangerous factor of S ' cancels. It would seem that in
any approximate evaluation of a scattering amplitude
with anomalous thresholds, one must make sure that
the approximations made do not destroy this cancel-
lation.

B. Bound States

Results similar to the form factor case hold also for
the anomalous scattering situation depicted in Fig. 3.
The absorptive part of the scattering matrix G has the
form

ImG(s) =p(s)Hb*(s)H, (s),
where

HL. , b)(s)=exp[A(s)) dt(t —s) '

"This result was also obtained by R. Oehme (to be published).' For an application of this procedure to the vector magnetic
moment of the sigma particle, see R. Marr, L. Landovitz, and
R. Blankenbecler, Bull. Am. Phys. Soc. 6, 80 (1961) (also, to be
published).

Another interesting application of the analytic prop-
erties of the scattering amplitude on the second sheet

"R.Karplus, C. M. Sommer6eld, and E. H. Wichmann, Phys.
Rev. 111, 1187 (1958).
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J
4M

Qs

I'xo. 6. Bound-state
pole behavior.

where f(s) is the 1=0 partial wave amplitude. Therefore

Imf(s) =p (s)f(s)f(s)5 '(s), —(5.8)

in the elastic region.
The essential point is to recall now that if there are

no bound states and the effective potential is attractive,
S has a zero for s in the gap. As the potential strength
increases, this zero is expected to move towards the
physical region, s&4M'. Guided by what does occur
in potential scattering, we assume that this zero moves
in the path illustrated in Fig. 6 and that the scattering
amplitude is an analytic function of the position of

is found in the problem of bound states. One may
entertain the question of whether any calculational
program based on unitarity and analyticity is complete
in the sense that it yields the masses and coupling
constants of bound states in terms of more fundamental
constants. The difficulty is that the bound state must
be present in the sum over states in the unitarity
condition. This seems to introduce arbitrary constants.
We show that by making very reasonable assumptions
about the analyticity of the production amplitudes, the
bound-state problem can be solved completely within
such a framework.

A physical example is found in nucleon-nucleon

scattering. If one applies the standard iV/D procedure
without explicitly putting in the deuteron pole, then
it is reasonable to expect D to develop a zero at the
deuteron mass. This can even be demonstrated rigor-

ously in the case of potential scattering. However, in
field theory a new problem arises. The entire mass
spectrum singularities due to the deuteron must be
generated. For example, the contribution to the
inelastic physical cut from the m+p+m intermediate
state must extend its threshold from (2M+@)' to
(Ms+@)', and this extra cut must have the two-

sheetedness properties associated with two-particle
cuts. The canonical explanation is that these extra
poles and cuts migrate from the second sheet. We show

in detail why this explanation is correct.
We consider scalar nucleon-nucleon scattering as an

example. The process nucleon-nucleon scattering is
called reaction one with energy s. The crossed processes,
nucleon-antinucleon scattering, have energies t and u.
The Mandelstam representation is written in the form

00

G(s, t,u) =—
~

ds'(s' —s) ' Imf(s')+G'(s, f,u), (5.7)
~ ~4M'

dQ dW M*(s,W,Qr, Q) M(s, W,Q,Q,)
2M

- (W2 g "2)2
&& (W' —4M') '* (5.10)

The general form for the production amplitude 3f must
now be discussed. Since the neutron and proton are in
a relative S state, perturbation-theoretic arguments
suggest that we can write

M(s, W,Q,Q,) =J(s,W,Q, Q,) exp[A(W') j, (5.11)

where A(W2) is the line integral over the neutron-proton
S-wave phase shift, and J is a very complicated complex
function which we cannot completely characterize at
the moment but it does cot have the physical cut in H/'.

We assume that whatever its properties, they do not
interfere with the following discussion.

(2M+@,)
Qs

FIG. 7. Inelastic cut behavior as a bound state develops.

this zero. We need rot assume analyticity in th c
coupling constant. This zero is trapped in the gap arid
on tlie real axis. Either it moves in the path shown or
it never reaches 4M'. In the latter case the analyticity
of the amplitude does not change. When the zero
passes around the point 4M', the line integral over
Imf(s) must be analytically deformed to avoid this
wandering pole. The deformed path can be shrunk to
a small circle about the pole plus the contribution from
4M' to in6nity. The small circle yields a contribution
to G of the form

r/(s —M, ')

where the pole has been placed at M~'. This is the
mechanism by which poles move from the second to
the first sheet of the scattering amplitude as true bound
states are formed.

Now we examine the contribution of the e+p+~"
inelastic intermediate state before a bound state has
formed. The absorptive part of G probably cannot be
expanded in the relative angular momentum of the
two nucleons. However, we restrict our attention to
the configuration where the neutron and proton are in
an /=0 state without making such an expansion. This
particular contribution to the absorptive part of G
therefore can be written as an integration over the
center-of-mass energy of the nucleon pair and the angle
variables of the pion. The result, except for constant
factors, is
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When the amplitude 3' is formed, there occurs a
factor of expLE*), which must be rewritten as
expt hjS '(W'-'). Now we further restrict our at;tention
to the pole term in S ', which occurs at M~'. The other
singularities need not be discussed further. Then the
pole contribution to the absorptive part can be written
as

A" (s) = I d W(W' —4Ms) &L(W' —s —tt')' —4stt']'*

I
dQ

X (W' —Mo') —' —J*(s,W,QI,Q)
2s-:

&&X(s,WQ, Q;) exp(25(W')j. (5.12)

We now need to discuss the analyticity of A" as a
function of s. The singularity which is of interest to us
is one of the endpoint singularities due to the pole at
Me'. These occur at (s&—tt)'=Me'. The branch point
closest to the physical cut is s'*=tt+Me. If the coupling
is now increased, this branch point moves in a path
shown as the solid line in Fig. 7 (see also Fig. 6). Then
the line integral over A" from (2M+tt)' to infinity
must be deformed to the dotted line in Fig. 7 to avoid
this oncoming branch cut. When this deformed integral
is collapsed to the real axis, it can be rewritten as a
line integral from (M&+tt)' to infinity. Thus the correct

two particle cut has been generated in the same manner
as an anomalous threshoM.

Similar statements hold for a,ll. the higher inelastic
states. Thus, if our assumptions about the structure of
production amplitudes are true, a new particle of mass
M~ has been added to the mass spectrum.

This argument concerning bound states can also be
used to clarify the problem of unstable particles. First,
assume that Sg has a complex zero at M*', which is
near the physical cut and produces a scattering reso-
nance. We have seen that if such a pole exists on the
second sheet across the elastic cut, then there is a
branch cut starting at s= (M*+tt)' on the unphysical
sheet across the three-particle branch line. This cut
can be drawn parallel to the real axis toward plus
infinity, if we like. One possible interpretation which is
consistent with the identification of 3f*' as a pole due
to a one (unstable) particle state is that this latter
branch line singularity represents the rescattering of a
pion with the unstable particle in the intermediate state.
If there is a resonance in the three-particle system
(rt+p+sr), then it should show up in the s dependence
of the function J. One would like J* to have a simple
pole in order to be consistent with the interpretation in
the two-particle case. It still is not clear that this is a
consistent andt'or unique interpretation of these types
of singularities.
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Excitatton Spectrum in Many-Boson Systems*
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When only two-body correlations are fully taken into account, there appears an energy gap in the excitation
spectrum for many-boson systems as shown by Girardeau and Arnowitt and confirmed by Wentzel. This
energy gap is shown to disappear and the spectrum to become phononlike again and proportional to the
momentum for small momentum, if we construct the eigenmodes of excitations (collective excitations),
taking into consideration appropriate higher-order terms.

1. INTRODUCTION
'
ANY authors have studied the many-boson system

-- and showed the presence of the phonon-roton
type excitation spectrum as in the actual system of
liquid helium. Especially, Bogoliubov noticed the fact
that the occupation number of the zero-momentum
state was macroscopically large, and treated the
quantum amplitude for this state aot, a-0 as a classical
number To''. He couM get, then, the phononlike
spectrum by diagonalizing the quadratic terms of

* Supported in part by the Alfred P. Sloan Foundation.
f On leave of absence from Tokyo University of Education,

Tokyo, Japan.
i N. N. Bogoliuhov, J. Phys. (U.S.S.R.) 9, 23 (1947).

at,t, its(~k~/0) in the Hamiltonian. Brueckner and
Sawada' used essentially the same method and con-
firmed this result.

Recently, Girardeau and Arnowitt. ' showed that
there appeared an energy gap in the excitation spectrum
if one used the best trial function which fully took into
consideration two-body correlations. This result was
confirmed by Wentzel4 who used a slightly diRerent
method.

Though they obtained a better ground-state energy

~ K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117, 1128
(1957).' M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959).

4 G. Wentzel, Phys. Rev. 120, 1572 (1960).


