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planes:
I'Pl: (?'=Q4+V.
I~Ps: Q4=Q +Q
l.~.: e-=e.+e,

((P4 .'(),—"= 1,
(6'4' Q~=1,
f(Po: Q„=1.

Furthermore, define g to be the set where Q„Q4, and
Q„satisfy the three triangular inequalities. If g and the
planes are projected along the line Q, =Q4 ——Q, the
resulting situation is shown in Fig. 4. If (A2) is satisfied
and Bg is the boundary of g, then the intersections
(PA5' ABQ and (PA5'oABQ each consist of the two
points (0,0,0) and (1,1,1) only. With this knowledge, it
is straightforward to compute the four vertices of (PA &:

{O,t, i

{-l 0

{i,o, -i)

(s",t",u")
1 tPA6 A6. :

2. GAPA(P4A(Ps.
'

3 6'A6 A6:

e.=e =Q.=0,

This immediately gives (2.25).

Q =Qi=e-=1
Q, = 1, Q4= t"/(u"—1"), —

and Q =u"/(u" —1"),
4. (PA(PrA(Po. Q, = —s"/(u" —s"), Q, =1,

and Q„=u"/(u" —s").
'0 at vertex 1,

at vertex 2,

4 (u'&"—&'u")/(1"—u") at vertex 3,
.4(u~ —&u )/(& —u ) at vertex 4.

(A6)
y{o,I,-l)

FIG. 4. Geometry for 4'.

The important point here is that, contrary to the
case of D4, the vertices 3 and 4 are in general not on
the boundary of g', where g' is the set of (Q,„e~,e.„)

(A7) that can be realized with non-negative u; satisfying
P;n, =1. Therefore, the requirement tha, t the four
values in (A7) are each less than 1 is su%cient but. not
necessary for Z4, i.e. , Z4 —X)4' is not empty.
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Properties of Normal Thresholds in Perturbation Theory
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Making use of the relation between a Feynman diagram and. the corresponding electric circuit, several
properties of the normal thresholds are established.

' 'N the proof of the Mandelstam representation for
~ ~ scattering amplitude in perturbation theory by
either Eden' or I.andshoG, Polkinghorne, and Taylor, '
the following statements are needed: (1) In the physical
region on the boundary of the first sheet, the only
singularities of the scattering amplitude are the normal
thresholds. (2) A normal threshold and another Landau
curve cannot have any finite effective intersection. " It
is the purpose of this note to give, for these statements, an
alternative proof which is entirely algebraic. Only the
case of equal masses and no internal degree of freedom
is considered.
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The not. ations of reference 3 are to be used. The scat-
tering amplitude F for a given proper Feynman diagram
Go with four external lines is expressed as a function of
the Mandelstam variables s, t, and I, :

F(s,t,u)= t dn, " dn„b(1 P, ir;)L—d(cr;)]-
o ~o

where
XLQ(S,f,u; n;) —Q 4r,g

'~+"+' (1)
r

Q(S,t,u; 4r ) = 4E~P. (rr')+~Pi(4r')+uP (&')j. (2)

The symbol G ~ Go shall be used to denote that G is a
reduced graph of Go, i.e., there exist a set 8'(G) of
indices 4,, j, such that G= (Go);; . In the follow-
ing, G is to be studied in detail; for simplicity of nota-

4T. T. Wn, preceding paper LPhys. Rev. 123, 678 (1961)j.
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Hut. (11) is not possible. Thus every point on 2 satisfies
a polynomial equation R(s, t) =0, where R is not identi-
cally zero.

The following convention is also convenient. Given
G, label the nodes in a definite way. If i+-+ (43,b,co) with
a&b, then defined Ii to be the I b„.Let this convention
be applied to Ii p, dehned as Ii ~( ~ ~{p~, then relabeling
the nodes can change the sign of Ii p, but not that of
Ii,pIi». In the following, Ii», for example, always
means I; p with n=1 and P=2. Let I;, be the value of
Ii when I =1 for ca=i, 2 and = —1 for o.=3, 4. Then,
with the above convention

FIG. 1.An example of a Feynman diagram G with nonempty X,(G).

I;,=I;13+I,24
——I;14+I,„. (12)

Similarly,

Iit Ii12+Ii34 Ii14 Ii23~ (13)
(8/Bn;)Q(s, t,24; n, ) = 1 (3)

and

tion, the conventions are used that if iE8(G) then
43,=0, and that the indices i, j, . fEd(G) unless other-
wise noted. With this convention, the values of P„P„
P„, and Q are the same for G and Gp. Stric'tly speaking,
the numbering of nodes are diGerent for G and for Gp,
in the following the numbering always refers to G.
Given G, let K, (G) be the set of all {s,t,l} for which
there exist positive n, such that P, n;= 1 and for each i

for all t and I that satisfy

s+t+'g =s+t+I =4. (4) Note that
Iiu =Ii» Ii34 = Ii13 Ii24

Iiap — Iipa)
The normal thresholds in the s variable are then the
connected components of

x,= U x, (G). I; p+I;p, =I, „. (16)

Similarly, K&(G), K„(G), K„, and K„may be defined;
-d ~=kU~ U~..

Since the physical regions are on the boundary of
where the right-hand side of (1) is defined, it is sufEcient
to consider only non-negative values of o.;. Given G, let
Z(G) be the set of all {s,t,l} for which there exist
positive u; such that g; n, = 1 and for each i

(8/Bei~)Q(s, t,l; n;) =1.

The real Landau signularities4 Z are then defined as

Theorerri I. If {,st,n}QX,( G), then for G A(1)
=A (2) =ii, A (3)=A(4) =b, and the internal lines con-
sist of r & distinct but possibly intersecting continuous
curves each joining A (1) and A (3). Furthermore,

s=rab .2 (17)

Proof. An example of G is given in Fig. 1. If {s,t,24)

CK, (G), then

sP, (n;)+tP, (43;)+44P (43;) =4

for all t and I satisfying (4). Thus,

z= U z(G). (7) P, (n,) =4/s, and P, (n;) =P„(a,) =0, (19)

on 2 that
Q(s, t,l,n;) = 1

ds P, (43,)—P„(n,)

dt P, (n,) P„(n;)— ,

Thus the slope is determined unless

P.( ') =P ( ') =P-( ') =1
4 L. D. Landau, Nuclear Phys. 13, 181 (1959),

By definition

K,QZ and K, (G)QZ(G). (8)

Note that 2 and X are both closed sets. Define 2' to be
the closure of 2—X.

Consider an infinitesimal increment ds, df, dl, dn; so
that {s,t, )Q24Z with 42; and {s, +ds, t+dt, 24+d24) gZ
with n~+d42;, then it follows from

which implies that A (1)=A (2) and A (3)=A (4). Fqua-
tion (3) then gives that for each i

I, 2=4/s,

and it follows from (19) and (12) that

Iis=2I13~

(20)

(21)

If 2~ (a,b,&o), label each internal line with an arrow
from a to b if Ii,)0 and from b to u if I;,(0. Starting
from A (1), trace a line along the direction of the arrows
until the arrival at A (3). Repeating this process without
tracing any internal line twice exhausts all the internal
lines. This proves the first part of the theorem, and (17)
follows directly from the conservation of I at A (1).

Cor. Given G, if K, (G) is not empty, then K, (G) and
K„(G) are empty and Z(G) =K, (G).

Theorem Z. If s&4, t(0, 24&0, and { t, s}Q24Z, then
{s,t,l)gK, .
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Proof. Since {s,t,u)gZ, there exist G~ Go such that
{s,t,u) g2(G). It is a consequence of (6) that for each i

sI„2+tI,P+uI, „'=4.

By using (12)—(14), (22) can be rewritten as

tIo4In3+»;wI;24 =I;.2 —1

(22)

Note that
II' e &1. rIG. 2. An example of a Feynman diagram 6 that

appears in connection with theorem 3.

If II,, I
)1, then it follows from (12) and (24) that

I;~4I,23&0 and I,~3I;24&0. Since t&0 and I&0, this
violates (23). Therefore for each i

(23)

With the help of (16), rewrite (23) in the form

(tI;&4+uI, ») (tI,»+»,24)

= (s—4) (1—I; 2)+ tuI, 34'. (26)

The right-hand side is non-negative. Therefore tI;~4
+»'i3 and tI;23+uI;24 must have the same sign or one
of them is zero. I.et A (1)=1 and 6, be the set of i with
the property that i~ (o,,b,co) with a=1. Then, if
A(1) ~A(2),

Proof. Assume the contrary, i.e., n, =o. for each i
Without loss of generality, let G' ~ Go such that {s,t,u}
QX, (G') with {n,). Since every point of 2 satisfies a
polynomial equation, 4' consists of a finite number of
branches of algebraic curves. There is a Feynman
diagram G +—Go such that G" gives a branch which
contains the point {s,t,u} with {u;).Then G'&—G". If
A "(1)=A"(2) and A "(3)=A "(4) for G", then P,=P„
=I,,=I;„=0, and thus Z(G") =K,(G"). Thus for G",
either A" (1)WA "(2) or A"(3)WA" (4). Assume that
A"(1)WA"(2). Then there exists G such that A(1)
WA(2), G~ G", and G'=G, with j~ (A(1), A(2)).
An example of G is shown in Fig. 2. If A(1) =1 and
A(2) =2, then

and

Thus,

and hence

Q I;gg&0, Q I,g4&0,
~~8, i~A,

g I,gg&0, g I;g4&0.
i&A i&8

tI,g4+uI;pa&0,

tI,23+uI, 24& 0,

(27)

(2g)

(29)

(30)

I;,=2/s', I,,=I;„=0 (32)

for either i~ (1,b, ~) or i~ (2,b,~) with b) 2. Since
Go is proper, the conservation of I gives

(33)

But {s,t,u) gZ, '; therefore it follows from (6) that

sI, 2+tI,P+uI;„'=4.
for i&6,. A comparison of (27) and (30) yields that
fori&O',

Since (33) and (34) are not consistent, this proves the
theorem.

I;23——I,,4
——0. (31) ACKNOWLEDGMENTS

Since this is not possible, the conclusion is reached that
A(1) =A(2). Similarly, A(3) =A(4). Therefore P&(n;)
=P„(n,) =0, I,,=I; =0, and (6) implies (3). This
proves theorem 2.

Theorem 3. If {s,t,u) gK with the set of numbers {n;),
and {s,t,u}gZ'with {a },then for at least one i, n;Wn .
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