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Domains of Definition for Feynman Integrals over Real Feynman Parameters
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The Instate for Adearlced Study, Primcetoe, Peur Jersey

(Received March 1, 1961)

Given a Feynman diagram, the corresponding integral over real Feynman parameters is meaningful and
analytic in a certain domain in the space of the Lorentz invariants formed from the external momenta,
each of which is on the mass shell. In the case where all the masses are equal, the intersection of these
domains for all proper convergent diagrams is studied. For the cases of four and five external lines, the
real intersections are explicitly found; for the case of six, seven, and eight external lines, procedures for
finding the real intersections are given. A knowledge of the real intersection makes it possible to construct
geometrically a subset of the complex intersection. Generalization to unequal external masses is briefly
considered.

I. INTRODUCTION

'N order to study the analytic property of scattering.. and production amplitudes in perturbation theory,
the first step is to express the contribution Iio from a
given Feynman diagram as the limiting value of an
integral over Feynman parameters. Here the external
particles are on their respective mass shells, and hence
Ii 0 is a function of the remaining independent Lorentz
invariants formed from the external momenta. In the
case of the two-particle scattering amplitude, there are
two such invariants. Furthermore, the integral is over
non-negative values of the Feynman parameters. One
can then de6ne a function Ii of complex variables by
formally the same integral over Feynman parameters
but allowing the independent invariants to take on
complex values. In the definition of F, the integral is
still over non-negative values of the Feynman param-
eters. Thus it is a well-de6ned problem to find the
conditions under which the integral is meaningful. It is
the purpose of the present paper to study the region in
the complex space of the invariants where the integral
is meaningful and analytic for every proper convergent
Feynman diagram. Of course complex values of the
Feynman parameters are needed for the purpose of
analytically continuing F as defined above, but through-
out the present paper these parameters remain real and
non-negative.

When there are selection rules, the Feynman dia-
grams must be constructed in accordance with these
rules. For example, it is not permissible to have a three-
nucleon vertex. Even in the simplest case where each
of the diagrams has four external lines, the presence
of the selection rules complicates the problem enor-
mously. In the present paper, it is assumed throughout
that there is no selection rule at all, and that three-
point vertices are allowed. Furthermore, for simplicity
it is also assumed that the particles involved all have
no internal degrees of freedom, i.e., all propagators are
of the form (p'+no' —ie) ', and that all the masses, both
internal and external, are equal to 1. This last assump-
tion can be relaxed, as discussed in Sec. 8. It should be

emphasized that all questions concerning divergence
and renorma, lization are to be ignored, and hence
basically only convergent Feynman diagrams can be
considered. It seems to be a very interesting but
difficult problem to And the analytic property of various
amplitudes after renormalization.

The method of studying the region mentioned above
makes use of the close relation between a Feynman
diagram and the corresponding electric circuit. Since
the problem is algebraic in nature and it is certainly
possible to work with the algebraic expressions directly,
there is no necessity of introducing electric circuits.
However, this analog proves to be very convenient. Of
course, any linear system, for example a system of
elastic rods, can serve equally well. The choice of electric
circuits is made only for the sake of definiteness.

Consider the case e&4, where e is the number of
external lines, or the number of four-momenta from
which invariants can be formed. In this case, the number
of independent invariants is 3e—10. The case +=4 is
by far the simplest and probably the most familiar one;
this case is treated in Sec. 2. In Sec. 3, some properties
of electric circuits are written down as a preparation
for the general case treated in Secs. 4—7. In Sec. 4, the
relevance of the electric circuit to the Feynman dia-
gram is established. In Sec. 5, the problem of the
majorization of Feynman diagrams is discussed. Section
6 is devoted to the method of calculation for e between
5 and 8, and in Sec. 7, the calculation is explicitly
carried through for the case m=5. It may be noted
that there is no necessity of ever referring to the so-
called "Euclidean region. "

and

pr+ p2+ ps+ p4= o,

2. THE CASE n=4

Consider a Feynman diagram with four external lines.
Let pr, p2, pa, and p4 be the four-momenta associated
with these external lines, all pointing inward. Then

p2 p2 p2 p2 (2.2)
*Alfred P. Sloan Foundation Fellow. On leave from Harvard

University, Cambridge, Massachusetts. where the metric used is (1, —1, —1, —1).Let s, 1, and
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u be the Mandelstam variables'

s=-- (pi+p, )', t= (p=t+ps)', aud u=-: (pi+ p4)', (2.3)

in n;, i.e., for positive Z,

Q(s, t,u; Zn, )=ZQ(s, t,u; ~,),

the condition (2.9) may be expressed as

(2.[0)

s+t+u=4. (2.4) Q(s, t,u; rr, )W1 (2 11)

Let the r internal lines of the diagram be labeled by
i=1, 2, r, and p; be the four-momentum associated
with the internal line i. As shown by Symanzik' and
Nambu, ' a convergent Feynman diagram gives the
following contribution to the scattering amplitude,
except for a multiplicative constant,

Fp(s, t,u)

f—lln1 JQ|y
Jp 4p

X[Q(s,t,u; ~,)—(1—fe) Q'& ] ' +"+' (2.5)

s&4, 1&0, and m&0. (2 6)

Since P, n,P s is a quadratic form, Q must be linear
in the variables s, t, and u. In view of (2.4), Q can be
expressed uniquely in the following way

Q(s, t,u; n, ) = ', [sP.(n~)+tP, -(n,)+uP (cr,)j. (2.7)

If (2.7) is used to define Q(s, t,u; n, ) for complex values
of s, t, and u that satisfy (2.4), then it is possible to
define P analogous to (2.5) as a function of two com-
plex variables:

F (s,t,u)

where E is the number of vertices, d(n;) is a non-nega-
tive function of n; and is of no concern here, and Q is
the extreme value of P, n,P s under the constraint of
the conservation of momentum at each vertex. Equa-
tion (2.5) holds in each of the three physical regions,
i.e., the regions in the (s,t,u) space where the scattering
processes 1+2 3+4, 1+3:2+4,and 1+4 2+3 are
respectively possible kinematically. For example, the s
physical region, corresponding to the first process, is
given by

for all non-negative n; for which P, n, =1. Let D4 be
subset of Q4 where s, t, and u are all real.

It follows from (2.7) that

P, (n;) =Q(4,0,0; n;). (2.12)

pl+ps+ps+p4 (2.13)

then P, (n~) is the power dissipated in the circuit when

pi =ps = —ps = —p4 = 1. Tlius

P, (n,))0. (2.14)

Furthermore, since the Feynman diagram is proper,
for any j&r

P.(~ ~)=o. (2.15)

In the language of circuit theory, when only one
resistance is positive, all the vertices are short-circuited
together. Similarly P&(n,) and P„(n,) are the amounts
of power dissipated in the same circuit when pi= —ps

rh=ps ———p4 ——1 and pi ———ps ———p, =p4 ——1, respec-
tively. Thus it follows from (2.15) that for any j(r

Q (s,t,u; 8;;)=0. (2.16)

Since Q is a continuous function of n; for non-negative
n;, (2.16) immediately gives the following condition for
D4 as a consequence of (2.11).A set of real (s, t,u}QD4
if and only if

In particular, P, (n;) is the extremal value of p; o,',pp
when pi ——ps ———ps ———p4

——(1,0,0,0). This extremal
value is the same as the extremal value of g;o.',P,s'

under the same circumstances, where p, s is the zeroth
component of p, . If an electric circuit is constructed
from the Feynman diagram by replacing each internal
line i by a resistor with resistance o,;, and replacing the
four-momenta pi, ps, ps, and p4 by currents pi, ps, ps,
and p4 which are scalars that satisfy

F00

g~ o ~ ~

Jo "o
dn„6(1—g, n, )[d(n, )1 '

&&[ (Qts, ucr, )-Q ni —"+"+'. (2.8)

Q(s, t,u; n~) (1 (2.17)

for all non-negative n, such that P; n, = 1. If s)4, then
consider the self-energy diagram shown in Fig. 1(a). In
that case P, (n,)=P.(cr,)= 0 and thus

The problem is to study 24, defined as the set of com-
plex fs, t,u} satisfying (2.4) such that for all proper
convergent Feynman diagrams

Q(s)t)u i cx,)= scriQs) (2.18)

when o.r+rrs ——1. This is incompatible with (2.17). Ac-
cordingly, D4 is contained in the triangle4

Q(s, t,u; cr,)WP, cr; (2.9) s&4, t&4, and I&4. (2.19)

for all non-negative a;. Since Q is by definition linear

' S. Mandelstam, Phys. Rev. 112, 1344 (1958).
s K. Symanzik, Progr. Theoret. Phys. (Kyoto) 20, 690 (1958).' Y. Nambu, Nuovo cimento 6, 1064 (1957).

4 Strictly speaking, the derivation of (2.19) from (2.17) should
be modified as folio~vs. A necessary condition for a E'eynman
integral to converge is that 2%&r+3. This is not satisfied by the
diagram of E ig. 1(a). To satisfy this condition, consider instead
the diagram of Fig. 1(b).When +3=0, (2.18) holds and a contradic-
tion with (2.17) is obtained.



Po

Pp

FIG. 2. The construction of Q4'.

(b)

I'IG. 1. Two simple Feynman diagrams.

Let Qis be the power dissipated in the circuit when

pi ———ps ——1 and p, =p4 ——0, then Qis is the resistance
between the two points where the two external lines are
attached. Under the constraint g; n, = 1, it is intuitively
obvious that Qrs is largest among all proper Feynman
diagrams for the diagram of Fig. 1 with o.~

——o,2
———,'.Thus,

Qrs&s (2.20)

for P; n, = 1. A formal proof in a more general case is

given in Sec. 3. Similarly Q», Q», etc. may be defined.

I.et

Q.=2(Qrz+Qs4), Qi=2(Qrs+Qz4),
and Q„=2(Qi4+Qzs); (2.21)

then it follows from (2.20) that

Q, &1, Q,&1, and Q„&1, (2.22)

and furthermore, it follows from the linearity of the
circuit that

(2.23)& =s(—Q+Q~+Q )

and hence by (2.14)

Q &Q+Q., Q«Q.+Q, and Q-&Q.+Q (2 24)

Kith (2.22) and (2.24) it can immediately be verified

that (2.19) implies (2.17). Hence D4 is given by the
triangle (2.19). This result is not new, and has indeed
been used by Eden' and I andshoff, Polkinghorne, and
Taylor' in their proofs of the Mandelstam representa-
tion in perturbation theory. However, the present proof
seems to be more direct and conceptually simpler.

Consider next a set of complex numbers {s,t,u) that
satisfy (2.4). Let their real and imaginary parts be
represented by s', t', u', s", t", and u". If {s',t',u'}PD4,
then clearly {s,t,u) QZ)4. If {s,t,u) fZ)4, then there exists

a Feynman diagram and non-negative numbers o.; such
that Q(s, t,u; n;)=1. By (2.7) this implies that

Hence, for any real X, Q (s'+As", t'+) t",u'+Au"; n, ) = 1,
which means that the real point {s'+As", t'+At",
u'+Au")gD4. Take {s',t',u'}QD4, carry out the geo-
metric construction as shown in Fig. 2, where the lines
l~" and l2" are parallel to the lines l~' and l2', respectively.
If {s",t", u"} are in the shaded region in the imagi-

nary plane as shown, then by the above argument

{s,t,u) QX)4. This result may be stated alternatively as
follows: define a regime Z4' in the complex {s,t,u) space

by the requirement that {s,t,u) gX)4' if and only if there
exists a real number X such that {s'+As", t'+At",
u'+Au") &D4, then '24 contains Z4'. Algebraically, '24'

may be characterized as follows. Let 24e be the set
defined by the inequalities

t/)0 ~llyo fI~0

ImL(u —4)/(s —4)j)0,

Imf(u —4)/(t —4)])0, (2.25)

then Z4' is the union of D4 with the six sets obtained
from Z4' by permutations of s, t, and u and complex
conjugations. An alternative method of getting (2.25)
is given in the Appendix, where it is shown that Z)4—X)4

is not empty. It may be of some interest to note that
the envelope of holomorphy of 'Z4' is P4' itself.

From the knowledge of Z4', a connection between F
and Fs can be found. Given {s,t,u) so that (2.6) is

satisfied, choose real {B,t,u} so that

{s+XB,t+Xt, u+Xu) QD4 (2.26)

for some X&0. Given a Feynman diagram and a set
of non-negative numbers {u;) with g; cr;=1 such that

Q(s, t,u; n,))1,

then it follows from (2,26) that for e)0,

IrnQ(s+zes, t+zet, u+zeu; n;)
= (e/X)LQ(s+XB, t+M, u+Xu; n,)

—Q (s,t,u; n, )j)0. (2.27)

and
—,'LsV', (n,)+t'F, (n,)y u'F. (u;)]= 1

—', (s'V, (n~)+ t'V, (n,)+u"F„(n;)j= 0.

Thus, a comparison of (2.5) and (2.8) gives that

Fs(s, t,u) = lim F(s+ieB, t+iet, u+ieu). (2.28)
e-+0

6 p. V. Land'shof'f, J. C. Polkinghorne, and J. C. Taylor (to be In other wor, Fo is a boundary. value of F restricted' R. J. Eden, Phys. Rev. 121, 1567 (1961).

published). See also reference 9. 'to Z4 .
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3. PROPERTIES OF AN ELECTRIC CIRCUIT

It has been seen in the last section how electric
quantities can be used conveniently in obtaining proper-
ties of the scattering amplitude. In this section, relevent
properties of an electric circuit are written down and a
generalization of (2.20) is proved.

Consider a direct current circuit of E nodes and r
resistances denoted by 0. s. Let the indices i, j, etc. be
used to indicate the resistances, and the indices a, b, etc.
to indicate the nodes. If the resistance i is connected
between the nodes a and b, then there is a correspondence
i c-+ (a,b, i0) where the index ~ distinguishes the possi-
bility of more than one resistance between the two
nodes.

Let the current I be injected at node a, where I, is
real. To be consistent, it is necessary that

sidered to be a function of I, and o.;,

BP/Bn, = IP (3.11)

Pab P ba Vaa b. (3.12)

The reciprocity theorem for electric circuits states that

V.,b= V,b, (3.13)

and the linearity of the circuit implies that in general

and hence,

Va —Vb= Pc IcVacb, (3.14)

Let a and b be two fixed nodes; consider the case
I,= —Ib=1 with I,=O for all c/u, b. Define V, b to
be the value of V,—Ub, P b the value of P, and I; b the
value of I; in this case. Then

P= Q IJ,V, b.
a, c

P..=P.b+Pb. 2V,.b. —

The substitution of (3.16) into (3.15) gives

Q.I.=O. (3.1)

Under (3.1), let Vb be the voltage at node b. Note that » p»ticu»r
Vb is not dehned to an additive constant independent
of b. lf i ~ (a,b,(d), let

(3.15)

(3.16)

and
I.b =n' '(V. Vb), —

Ii Ia beg ~

(3.2)

(3.3)

P=-,' Q I I,[P,b+Pb, P,„]. — ,
a, c

Here I b„ is the current in the resistance o,; from node
a to node b. Also note that e;&0 and that the sign of
I; is not defined. The equation of continuity for current is P= —-,'Q I,I,P„=—Q I,IbP, b. (3.17)

But it is a consequence of (3.1) that the first two terms
here are zero. Thus,

P I„b„—I,. — (3.4)
Since

a, c

Equations (3.2) and (3.4) can be used to 6nd Vb in
terms of I . De6ne

V-b& V..b& Vb.b=o,

it follows from (3.16) that

(3.18)

P=Q, I,V, (3.5) P„&P.b+P „ (3.19)
as the power dissipated in the circuit. It follows from
(3.2) that I,b„has the symmetry

I b„=—Ib,„,
and thus the substitution of (3.4) into (3.5) gives

and in particular the three quantities P,b+P, d,

P„+Pbbs, and Paz+Pb, satisfy triangular inequalities.
(3.6) Note also that, if V„b——V„b for abc, then c and b are

disconnected when a is removed, and that

P=g, nj,2. (3 7) II;.bl &1. (3.20)

then (3.2) is identical with

BP'/BI b„——0. (3.9)

Now consider n; for a Axed i and all J b„as variables.
Then it follows from (3.9) tha, t

Under the constraint (3.4), (3.2) is the condition such
that P is stationary as given by (3.7), provided that
the Lagrangian multipliers are identified with —2V
In other words, if

(3.8)

ni= (ni Pab) ni (3.21)

for i+-+ (a,b,&u) Electrically, .n; is the resistance seen

by a generator inserted in the resistance branch i.
Suppose the resistance n; is increased to nq+An;, then
this change may be compensated by adding a voltage
generator with voltage I;An; in this branch. Suppose
AU, is the voltage at node a due to this generator; then
the change in P due to An, is given by

d P= —Q„I,AV, . - .(3.22)

Next the effect of changing one o. on P is to be con-
sidered. First define

dl"/(ln, = BP'/Bn; =I i, (3.10) FurthellTlore, the change lii I;, is

provided that all I are fixed. Therefore, when J' is con- AI, b„= —(n,+An, ) 'An;I, b„ (3.23)
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The AV, can also be produced by the following external where P, ' means summation over those i that satisfies
currents i ~ (a,b,co) with a+ 0', i and b+ Cg. Let

Thus

AIa = —AI b
—— Iab„.

n;(n, +An, )

—o.;Do.,
6Vc = Iabco Vcab'

n.;(n,+An;)

(3.24)

(3.25)

and it follows from (3.13), (3.14), and (3.22) that

AP= I,'
Acr;

(3.26)

AP' —+ I,'n;. (3.27)

This gives the increase in power dissipation when a
resistance is increased to infinity, or "removed. "

Finally, the following question is considered. Let I
be given; what is the maximum value of P under a
single constraint of the form

P, E,n;=1, '
(3.28)

where E;&0 for all i? Actually, only the case where all
E;=1 is needed in the present paper. The procedure is
to find the extreme value of P first. Call it P'i,' then P'~

is the extremal value of P, n;I 2 under the constraints
(3.28), (3.2), and (3.4) with the prescribed I . By (3.9),
the constraint (3.2) can be removed. But the con-
straint (3.4) does not involve n;; therefore, for each i
either

This is the required result. Note that (3.26) is con-
sistant with (3.23) and that, when 5n„—& ~,

I= P I.,.E &i

I=7(l(Q, ' (E,)!$.

(3.33)

(3.34)

maXPab =~ab
—2 (3.36)

where r b is the minimum number of resistances to be
removed to disconnect a and b.

Let the currents I, be injected from e "external
lines, "which are numbered by n, P, etc. The number of
these external lines attached to a node may be any-
where between zero and m. Let a=A(n) denote the
node to which the o.th external line is attached; then
if I is the current carried in the line n,

Ib= Q Iab())A(a) ~ (3.37)

Let

Therefore, it follows from (3.29), (3.31), and (3.32) that

Pi ——I't Q,' (E,)l]—'. (3.35)

The maximum value of P is thus to be found as follows.
1. Split the circuit into two disjoint connected pieces by
removing a number of resistances. 2. Define I by (3.33)
and let E~ be the sum of (E;)' over the resistances re-
moved. 3. The maximum value of P is the maximum
of P/E over all possible ways of carrying out step 1.

In the special case where all E;=1 with I,= —Ib ——1
and I,=O for all c/a, b, the result is that

i.e.,
(()/()n;) (Q, n,IP—XP; E,n,)=0 or n, =0,

I 2=RE, or n;=0.

alld

then (3.36) gives

Qa() I A (a), A ())) )

~aP= ~A(a), A(P) j

(3.38)

(3.39)

(3.40)gap ra))Since only rational functions are involved, P& can be
correctly obtained if all (E,)' are approximated by
rational numbers and I approximated by numbers
mutually irrational and finally a limit is taken. But
with these approximations, (3.29) cannot be satisfied
unless the situation is as follows. The set 0', of all nodes
a is split into disjoint sets 0",

& and 82 such that all
nodes in 0'„, i= 1 or 2, are short circuited to each other.
This means that if the nodes a and b both belong to
Oi or both belong to ()'2, i~ (((,,bM), then n, =0. If ag (1'i,

bC Ou, and i ~ (a,b,~), then there exists a number C
independent of i such that

which is a generalization of (2.20).

4. CIRCUIT ANALOG OF A FEYNMAN DIAGRAM

Some of the considerations in Sec. 2 are now to be
generalized to the case e&4. Consider a Feynman
diagram with n external lines and the associated four
momenta p, n=1, 2, n, that satisfy

(4.1)P.P.=o,
alld

ng. ),„——C.
p '=1 (4.2)

(3 30) for each n. It is found convenient to use the invariants

Since all I,b„are of the same sign, it follows from (3.29)
and (3.30) that

The substitution of (3.31) into (3.28) gives

~a))= ~8a =Pap)i (4 3)

for ning. It follows from (4.1) and (4.2) that these in-
variants satisfy

(4.4)

C=X'LQ, ' (E,) lj—', (3.32) for each n In additio. n, when )))5, there are nonlinear
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relations between the t's

Tt(t g)=0, (4 5)

because there are only four space-time dimensions. The
number of such relations is —',(I—4)(e—5). As stated
in the Introduction, the number of independent t's is
3e—10; but, if an arbitrarily large number of space-
time dimensions is allowed so that (4.5) can be disre-
garded, the number of independent t's becomes-,'n(e —3).

Associated with a Feynman diagram, there is a corre-
sponding electric circuit obtained by calling the vertices
nodes and by assigning a resistance n, to each internal
line. The labeling for the electric circuit used in the last
section can then be taken over for the Feynman
diagram also. Then, also shown by Symanzik' and
Nambu, ' (2.5) can be generalized to

Po(t-p)

analogous to (3.37). If p, ' were a scalar equal to I.,
then as shown in the last section it would be possible
to define P in terms of p, ' and n;. But P is a quadratic
form in I, as seen from (3.17); thus, formally P can
still be defined even when each p, ' is a four-vector. The
result is precisely the Q of (4.6). Therefore, by (3.17)
and (3.38),

(4.12)Q= —& p'p~'P ~

By (4.11) and (4.3), (4.12) gives

Q(t p,n') = —P t pQ p(u')
a(P

(4.13)

If (4.13) is used to define Q(t p,n, ) for complex values
of t p which may or may not satisfy (4.5), then as a
generalization of (2.8), F may be defined as a function
of —,'e(e —3) complex variables

F00 00

= hm ) dn, . . . I du„b(1 P, n, )Pd(n.)]—2

0 0

XLQ(t pu') —(1—t~) Z u] ' +~' (4.6)

Explicitly, d(n, ) may be written as an (lV —1)X (A —1)
determinant,

(4 7)
where

(n. ~ ) ' for aWb,

—P 8„ for a= b,
cga

(4 8)

t p&1,

if both n and P are in Si or both are in A2, and

t p&0,

(4.9)

(4.10)

if n+Ai, P+Aq. Therefore, if Ai/Ai', then the (Ai, A2)
and the (Ai', A2') physical regions are disjoint.

The next step is to de6ne P. Let

with a, b&cV 1and n. g
———n, if i&-+ ( ba, (o). In (4.6),

Q is again the extremal value of p; n;pp under the con-
straint of the conservation of momentum at each vertex.
Equation (4.6) holds in the many physical regions,
which may be characterized as follows. Let the e
external momenta p be segregated into two disjoint
sets A~ and A2 and consider the reaction written
symbolically as Ai A&, then the (A&,A2) physical
region is the set in the real t ~ space such that there
exist p satisfying (4.3) for which this reaction is
kinematically possible. Because of momentum con-
servation, the physical region is empty unless each of
the sets A ~ and A2 consists of at least two elements. The
(A&,A2) physical region is contained in the set of (t p)
satisfying

dui dn„b(1 —P, n;)(d(n, )]—'
0

XLQ(t~p, n, )—P'n'] ' + '. (4.14)

As a generalization of Z)4, let Zl„be the region in the
complex (t p} spa, ce where, for every proper convergent
Feynman diagram with e external lines,

Q(t-p n') &1 (4.15)

for all non-negative n, satisfying Q,n, =i. Strictly
speaking, the regions with n =4 is not 24 because the
variables used are diferent, but this point should not
cause undue confusion. Since Q p is a well-defined

quantity within the framework of electric circuits, Q„
can be studied in this framework. Let (R„be the set
where all t's are real, and S„be the set where (4.5) is
satisded. Berne

and

D„=Z„Q5t„,

Q„=Z„Ps.,

D„=X)„QR„P8„;

(4.16)

(4»)

(4.18)

then the problem posed in the Introduction is to
study X)„.

Let t p' and t p" be the real and imaginary parts of t p,
respectively. As a generalization for Q4', define a region
'71„' in the complex {tp) space by the requirement that
(t p)QZ)„' if and only if there exists a real number li

uch that (t p'+At p")QD„. Since all Q p are real, it
follows from the identity

Q(t p,n, )= Q(t p'+At, p", n~) (X —t) ImQ(t —
p,n;), (4.19)

that, if {tp}QQ„', (4.15) is satisfied. Accordingly,

(4.20)

pb 2 pabb)A(a )
e

(4 11)
In the present paper, only the subset '.P„' ol Z,„ is to be
considered. This gives a subset of Z„. For the purpose
of studying P„', it is only necessary to And D„, and
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g~gp Q~ s~ j~~gp~) (5.3)Q-p(~')=0 Q(t-p, ~'s)=0, (421)

thus all t p may be considered to be real. The reasoning defined with an indefinite metric, i.e., if q „are the com-
in Sec. 2 can be immediately generalized to give that ponents of q, then
for j&r

and hence {tp) QD„ if and only if t,p are all real and for
all proper convergent Feynman diagrams with e ex-
ternal lines

Q(t p,n,)&1 (4.22)

where s„equals +1 or —1 for each ti. The choice of s„
depends on the prescribed numbers t p. For example,
suppose that there is a correspondence ti ~ (n,p) with
n&p, then the quantities q„defined by

for all non-negative n, satisfying P, n, = 1.
It is also an immediate generalization from the case

n=4 that if {tp}PD„, then for any Ai
satisfy (5.1) and (5.2) when s„are chosen to be

s„= t pl I
t—p I

.

(5 4)

(5.5)
Q t p&2 ——,'n(Ai), (4.23)

where the sum is over all u&P such that n and P are in

Ai, and N(Ai) is the number of elements in Ai. If Ai
consists of two elements n and p, then (4.23) gives

(4.24)

for all u and P. Thus, D„does not intersect any physical
region. Given {tp) in any physical region, then choose
{tp} so that {tp+Xt p) QD„ for some X&0. This is
always possible if D„ is not empty. Note that {tp} has to
satisfy the constraints Ppt p= 0. Then

gb Q ga~b, A(a)) (5.6)

and define the vectors J; and J ~„such that J;„and
J~~„„are the values of I, and I,~„when I =

q „'.It then
follows from (4.13) and (5.2) that

Other possible representations of q may be obtained by
applying a transformation that preserves the indefinite
metric with s„.

With q, define q,
' analogous to (4.11) by

Fo(t p) = lim F(t.p+iet. p) (4.25) (5 7)

where
This means that Ii0 is a boundary value of P restricted
toZ)~ .

J,2= P„s„J,„'. (5.8)

5. MAJORIZATION OF FEYNMAN DIAGRAMS

In the case v=4 considered above, all proper Feyn-
man diagrams are studied simultaneously. This does
not seem feasible when e is larger. Instead, in this
section a result of the following type is to be obtained:
if t p are all real, then (3.24) is satisfied for all proper
Feynman diagrams if and only if (3.24) is satisfied for
a particular subset 5 of proper I'"eynman diagrams. This
procedure of eliminating from consideration all Feyn-
man diagrams except a small number of them has been
called majorization. Problems of this type have been
studied by Nambu, ' Symanzik, ' and more recently by
Chernikov, Logunov, and Todorov. ' The present treat-
ment is somewhat different. It may be worth re-
emphasizing that no reference to the "Euclidean region"
need ever be made here.

Given a set of real numbers t p that satisfy (4.3) but
may or may not satisfy (4.5), there exist real vectors

q such that
(5.1)

For a given Feynman diagram G and real t p, let Q(t,p, G)
be the maximum value of Q(t p,e,) for non-negative n,
with P, n;=1. It follows from (4.21) that

Q(t.p, G) & 0 (5.9)

Q(t.p G) = Q(t-p, ~f) (5.11)

If n,b=0, then. (5.10) follows trivially. If n, )0bthen,
with the Lagrangian multiplier r, it follows from (3.11)
and

for all G and all t„p. If G is proper, let G' be the diagram
obtained from G by removing the internal line i, and G;
be the diagram obtained from G' by identifying a and b

if i ~ (a,b,(o).
Lemma l. For all t p and all proper Feynman dia-

gram G,

Q(t p,G) &maxLQ(t p,G'),Q(t„p,G;)], (5.10)

where i is any prescribed integer less than r+1.
Proof. Since the set of allowed values of u, is compact,

there exist allowed e,' such that

and

g'asap=

tap

(~/~ ')[Q(t )—
(5 2) at e, =o.;" that

(5.12)

provided that the number of components of each vector
is allowed to be sufficiently large. The product. q,„qp is

N. A. Chernikov, A. A. l.o unov, @nd I, Todorov (to be
published).

J2—T.

The value of 7= is easily found to be

r=Q(t p,G).

(5.13)

(5.14)
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Thus, by (5.9),
J,-P 0,

Equation (3.27) then implies that
(5.26)

(5.27)
)ckP j Al ) A2 p +5—1 y +'tI& +s+1 ' ' '

y
&r0 0, . . . 0 . . 0. . . Oi

&igloo

—Q(t p, neo) =J,2n, o&0. (5.16)

Proof If. n,"&0, then the proof of. lemma 3 apphes

(5, 15) here. Thus, it is sufficient to consider the special case
b= c. In this case, it follows from

Equation (5.10) then follows from (5.9) and (5.16).
The following result is a direct consequence of (5.7).
I-emma Z. Suppose that G becomes disconnected when

the vertex u is removed. Let Q,„(v=1,2, v) be the
sets of vertices connected to each other after the removal
of a, S„be the corresponding sets of internal lines, and
G, be the Feynman diagram obtained from G by remov-
ing all o.; except those with i&8„and identifying all
vertices in 0'„with a for u'/s. Then

Q(t p,G)=max Q(t p, G„)

that
qy+q8 ~ha+~«q (5.28)

(J&.—q,)'+(J«—q,)'=Q(t p,G) —t». (5.29)

If Q(t, p,G) &1, then either

or
(Jg.—q )'& 0

(J«—q„)'&0.

(5.30a)

(5.30b)

In the case of (5.30b), it follows from (2.27) that either

0(t.p G) =Q(t-p, G"~), (5.31)
(5.17) or

Lemma 3. Suppose that @=A (y) and that A(0.)Wa
for ugly. Also suppose that i~ (u, b) and j+-+ (a,c)
with no ~ needed, and that if k~ (a,d, cv), then k=i
or j. If G is proper, and if

Q(t.p,G;~) &1, Q(t.p,G ) &1,

Q(t,p, G) &n,+np+ (1—n;—nI,)Q(t p, G g,). (5.32)

This is a contradiction. Since the same argument applies
in the case of (5.30a), lemma 4 is proved.

From the inequality

(5.33)Q(t. ,G) &Q(t-,G.)

Q(t-p, G't) &1,

where G,~= (G;) t etc., then

Q(t-p, G) &1. (5.20)

Proof. Under the circumstances, by (5.11), if either
n,'=0 or e,'=0, then this lemma is a direct conse-
quence of lemma 1. If n,o&0 and eP &0, then by (5.11)

Q(t p,G)&lim Q(t, .
, pQ, ion; io, n;, n;+io, . n„')

«/+(1 —~P)Q(t-p, G ') (5 21)

In (5.21) the first equality sign holds only for
Q(t p,G)=0. Equation (5.20) then follows from (5.21)
with (5.18).

Lemma 4. Suppose that b=A(y), c=A(b), and that
A (a) Wb or c for nAy or b. Also suppose that i ~ (a,b),j~ (b,c), and k~ (c,d) with no &u needed, and that if
l~ (b,e,cd) or /, ~ (c,e,&u), then /=i, j, or k. If G is
proper, let G&, be the Feynman diagram obtained from
G by removing i, j, and k, and identifying the nodes a
and c and the nodes b and d. If, with G;;~= (G,,)" etc. ,

Q(t p, G;;p) &1, Q(t p,G,;")&1,
(5.22)

Q(t.p,G;,*)&1, Q(t.p,G„~)&1,

e=3f= r. (5.34)

Only the cases e&3 are to be considered in order to
avoid divergence. The above consideration yields in
particular the following theorem.

Theorem l. (t p}QD„ if and only if

Q(t-p G) &1 (5.35)

and the above four lemmas, together with (4.24), it is
seen that in 5 it is sufhcient to include only proper
diagrams G that satisfy the following conditions:

(i) For all i, G' is not proper.
(ii) For any vertex a, the removal of a does not make

the diagram disconnected.
(iii) In the situation prescribed in lemma 3, G, &' is

not proper.
(iv) In the situation prescribed in lemma 4, G;; is

not proper.
(v) There does not exist GQP such that G=G, .

Define a loop diagram I-„as a proper Feynman diagram
with e external lines satisfying the conditions that
A(a)WA(P) for +WE, and that for each i there exists
a=8(i) such that i~ (a, a+1) with the interpretation
(X, 1V+1)= (1V,1). For L„,

then

provided that

Q(t.p,Gg.) &1,

Q(t-p, G) & 1,

(q~+q~)'&4

(5.23)

(5.24)

(5.25)

for all GQP„, where F„consists of loop diagrams only
for 4& n & 8, F9 contains the diagram shown in Fig. 3(a)
besides the loop diagrams, and %~0 contains the one in
Fig. 3(b) besides the loop diagrams, where the crosses
denote the places where the external lines are attached.

This theorem is supplemented by the following.
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Theorem 3. D '=D„".
J'roaj. Consider a point {t p} on the boundary dD„'

of. D„' Fo. r this {t s}., there exists an A such that

Q(~-s,L.)=1

For this L, it is possible to choose o.,' such that

Q(~-s,~.') =1

(6.3)

(6.4)

Let J be the value of J.; for this choice of o,,', then
(b)

FIG. 3. Feynman diagrams for Sp and gyp.

„'n PJP=O, (6.5)

Theorem Z. ' If rI& 11, D is empty.
Proof. It follows from (4.13) and (4.22) that D„ is

convex. Also D„ is symmetrical under permutations of
the index n. Thus if D„ is not empty, then

where the sum is taken over those z such that n /0, and
the convention is used that J,=J, , +r for i ~ (a, a+1).
I'or each j, either n,"=0 or

(6.6)

Thus,
{t~p= —(rs —1) '}QD„.

(e—1)—' P Q.p(n;) &1. (5.3"I) Q 'n'J'=0, (6.7)

If there exist numbers 0. not proportional to n, that
satisfies

For the case of L„with all n, = rI, ', it is found that

(n —1) ' P Q s= (I+1)/12. (5.38)

where
Q, nP'J, '=0,

nP' =Er[n P —Esnr' j,

(6.8)

(6.9)

Therefore, when n&11, (5.37) and (5.38) are not con-
sistent. This proves the theorem.

M, ,=M, ,= 1——', (Q q )', (6 2)

where the sum is over those n satisfying min(f, j)&A (n)
&max(i, j).Note that M& is completely determined by
t p. Let Mq"(v=1, 2, 2"—1) be a principal minor of
M&. Define a set S&" in the I, p space by the requirement
that on S~" detMg" ——0 and all cofactors of M~" are of
the same sign, i.e., either all positive or all negative.
If S is the union of S~" for all v and all A, and S' the
complement of S, then D„" is defined to be the con-
nected component of 8' tha t contains the point
{tp= —(ps —1)—'}.

This result is due to Professor C. N. Vane, (private communi-
cation).

6. LOOP DIAGRAMS

In view of theorem 1, the loop diagrams L„are to be
studied in some detail here. Because of (5.34), the
function A(n) is a permutation and the function B(s)
can be chosen to be the identity, i.e., s =a p-+ (a, a+1).
Define a region D„' by the requirement that {t„s}QD'

if and only if
Q(t p,L„)&1 (6.1)

for all permutations A. Also define a region D " in the
following way. Let M& be an ePe matrix given by

M;,=1,
M, „+~——M,+~„——M,„=M„,= —,'-,

and otherwise,

with E& is determined by the requirement P, ' n,"=1
a,nd Es is the minimum value of n,'/rr, ' taken over the
set of i where pre/0. Then the set {nP'} can be chosen
instead of {prP}.Therefore, without loss of generality,
it may be assumed that the set {n,r} does not exist,
i.e., if

Q, ' n,J,'=0, (6.10)

JJ„=g„s„'J,„J„„,
and S be the matrix with elements

S,y=S '5 y,

then
Mg"= JSJ~.

Accordingly,
detM~" ——0.

(6.13)

(6.14)

(6.15)

(6.16)

It then follows from deterrninent expansion and sym-

then o., is proportional to 0.,'.
Choose v so that M&" is obtained from M& by deleting

those rows and columns of Mg that correspond to n, =0.
Let M~" be an e„&(e„matrix, let the elements of
M~" be (M~")„„and the cofactors be (M~")*", where

x, y=1, . e„.Let J be the same as J for n,'&0 and
o. the same as n,'&0 except a renumbering of the index.
Choose a representation such that

J„=O, (6.11)

for p&e„. Let J be the e„gsz„matrix formed from J,„
with p&ps, ; then by (6.5)J is singular. On the other
hand, by (6.2) and (6.6),

(M~")*,=JJ, (6 12)
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metry that
P„(M~"),„(M~")"&=0, (6.17)

which leads to, by (6.12),

Q„J„(Mg")"i'=0, (6.18)

and hence to the existence of a real number Co/0
so that

Therefore,
(M~")*"=Cow~„.

(t.p}Qsg" (6.20)

with this particular choice of A and v, or

BD.'QS. (6.21)

Q(t-p ~")=1 (6.22)

for the graph t.„with the permutation A. Accordingly,

Conversely, by the same type of argument, it can be
shown that given (t p}QS~", it is possible to choose
n,' such that

Consider the situation where A (n) =n, and write M~ as

1
1
2

M~= —tp3
—t51

1
2

1
2

1
1
2

t12

—t23
1
2

1
2

t4S

t51
—t34

1
2

1
1
2

2

—t4g
1
2

(7.1)

Let the rows and columns
M~', for example,

kept be used as the index for

—t34

—t34

1
1
2

1
2 (7 2)

'I he case where v„=2 gives the following planes:
s& t45 1 j s& t&p 1 j s 4 t34 1 j s& tp] 1 j and
Sg". t23=1. By permutation, S contains the following
planes:

(7 3)
for all n and P.

Consider next the case n„=3. For example, (7.2) gives
fOr g 245

D Egal (6.23) ti2 +t34 —
ti2tq4

—
~
= 0, (7 4)

Theorem 3 then follows from (6.21), (6.23) and the
convexity of D„'.

Corollary 1.Let D "' be constructed in the same way
as D„"except that only those M&" with n, &5 are con-
sidered; then

D."ng. =D.'ng. .

Corollary Z. For 3 &e&8,

provided that
t34 —2ti~& o,

tip —
~ td4& 0. (7.5)

Thus S~"' is the segment of the ellipse (7.4) with
t»+t34) 2. By permutation, for n, p, &, and 6 all un-
equal, S contains the segment of the ellipse

(6.25)
where

t p'+t, P t pt, i ,' 0—, ————(7.6)

At least in the four cases 5&m&8, this gives in
principle an explicit prescription to construct D„. The
following result gives the geometry of S.

Theorem 4. At every point on the boundary BS&", at
least one principal cofactor of M~" is zero. Furthermore,
BS~"QS

Proof. If (6.16) is satisfied, then it is always possible
to find Co and n, so that (6.19) is satisfied and P~,= 1.
Let ft p'}QBSg", then as (t p} ~ (t p'} in S~", at least
one n approaches zero. Suppose ni —& 0, and all other
n s remain positive. Let Mg"' be the matrix obtained
from M&" by deleting the first row and first column, then

and
detMg"'= 0

(M,"')*~=(M&")"

(6.26)

(6.27)

for x, y)1. Thus, (t p'}QS~"' The case w. here more
than one n approach zero simultaneously can be
similarly treated.

7'. THE CASE n=s

As an application of the results of the last section,
Dp I defined to be the real region in the space of the
invariants where the Feynman integral is defined in
terms of real Feynman parameters, see (4.16) and the
paragraph preceding iti is to be found explicitly here.

4p+t~s) $. (7.7)

and furthermore,
t p&1, (7 g)

t„p —t~g' —t pt~g —4&0,

provided that (7.7) is satisfied; then

Dg= D5'.

(7.9)

(7.10)

1'roof. It is clear that Dit Dp. In Dpo, it follows from
(7.8) that

Q, (Mg);, )0. (7.11)

Therefore, S~'"" does not intersect D5'. Similar con-
siderations give the result that on S~"4'

and either
12+t4)t32 y 12+t5 t42)y

t34& —,
' or t45&-,'.

(7.12)

(7.13)

(7.14)

But detM~"4 and detMg'4' must have the same sign;
thus (7.12) and (7.14) may be replaced by

t»& -'„ t34& —,', and t45) —,'. (7.15)

Theorem 5. Let D~' be the region in the t space where,
for o., P, p, and h unequal,
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By theorem 4, on BS&"4', either

detMg 5=0 or detM~3 =0
even when the external masses m are not equal. The
internal masses are still assumed to be 1.

Theorem 6. If
In the former case, (7.4) holds and m &V2 (8.2)

t„(1+4t45)—2t34(1+t45) =-,'. (7.17)

Given t45, (7.4) and (7.17) cannot have a double root
in the region where (7.15) is satisfied. When ti2 ———,',
(7.4) and (7.17) give t34= ——,

' and t4~=0; when t34 t45,
——

(7.4) and (7.17) give either ti& ———1, t34 2 or ti2= —2,
334

———1 or t~2
——1, )~4

———,'. Thus BS~'"' cannot intersect
BD5, since D5 is convex. Theorem 5 then follows.

In conventional terminology, (7.3) gives the normal
thresholds, while (7.6) and (7.7) give the anomalous
thresholds. The boundary of D5 consists of thresholds
only. Finally the geometrical construction of 'Z&' from
Ds is entirely analogous to the case +=4.

for all o,, then lemmas 1—4 and theorem 1 are still valid.
Also D4 is still given by (2.19).

Proof. The problem is to show that lemmas 3 and 4
hold under the condition (8.2). Equation (3.27) needs
to be used. For lemma 3, it is only necessary to replace
(5.21) by the following argument. Since

Q(t p,G)= lim Q(t p, nio. , , n; io, n;, n,~io, n„')
cubi +oo

—Q(t-p, G)n*", (8 3)
and

lim Q(t p, nio, .
, n, io, n;, n, +io, n,o)

igloo

&n,'m '+(1—n,')Q(t p, G ), (8.4)

8. DISCUSSIONS

The basic difference between the cases hz=4 and
v=5 is the presence of the condition (7.10) for Di,.
Since the boundary of D~ contains anomalous thresholds,
the appearance of complex singularities for the produc-
tion amplitude in perturbation theory cannot be
avoided. This point has been discussed by Eden,
I.andshoff, Polkinghorne, and Taylor. ' Furthermore,
since the proof of theorem 2 requires the consideration
of the eleven-point loop diagram with all o.'s nonzero, it
may be expected that the boundary of D„ for sz& 5 does
not consist of thresholds only.

It remains to discuss the possibility of different
masses, still under the assumption of the absence of
selection rules. It is further assumed that each one of
the finite number of admissible masses is positive; then
it is possible to choose units so that the smallest
admissible mass is 1. Consider a Feynman diagram G
where a mass m; is associated with the internal line z;
then (4.14) is replaced by

(5.10) follows from (8.2) and the inequality

(8.5)

Although somewhat more complicated, the modification
of the proof of lemma 4 is of the same nature.

The validity of theorem 2 requires an inequality on
m in the opposite direction. To generalize theorem 3,
a suitable modification in the definition of D„" is
needed. On the other hand, if (8.2) is violated for more
than two n's, the situation may become much more
complicated.
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F(t.p) = dn„b(1 —P; n,)Ld(n, )j—' APPENDIX

Equation (2.25) may be obtained alternatively as
yLQ(t p, n;) —P, m,'n, j ' +~+'. (8.1) follows. Let

On the one hand, it follows from m, )1 and (4.22) that
the right-hand side (8.1) is analytic in D„.On the other
hand, in the absence of selection rule it is necessary to
consider the Feynman diagram which is identical to G
except that a mass 1 is instead associated with the in-
ternal line z. Accordingly, so far as the problems treated
in the present paper are concerned, there is no loss of
generality in assuming all the internal masses to be 1.

A number of the results obtained so far are also valid

'R. J. Eden, P. V. Landshoff, J. C. Polkinghorne, and J. C.
Taylor, Proceedings of the 1960 Annual International Conference on
High-Energy Physics at Rochester (Interscience Publishers, Inc. ,
New York, 1960), pp. 227, 234.

s=s'+is", t=t'+it", and u=u'+iu". (A1)

(A2)

Consider such a fixed set of values satisfying

and

s"+t"+u"= 0

s"Q,+t"Q+u"Q =0.

(A3)

(A4)

Equation (A4) defines a plane in the space of Q„Qi,
and Q„. Call the plane (P. Define also the following

Since 7l4 is invariant under complex conjugation and
permutations of s, t, and I, it is sufficient to study the
case

s"&0, t"&0, and I"(0.
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planes:
I'Pl: (?'=Q4+V.
I~Ps: Q4=Q +Q
l.~.: e-=e.+e,

((P4 .'(),—"= 1,
(6'4' Q~=1,
f(Po: Q„=1.

Furthermore, define g to be the set where Q„Q4, and
Q„satisfy the three triangular inequalities. If g and the
planes are projected along the line Q, =Q4 ——Q, the
resulting situation is shown in Fig. 4. If (A2) is satisfied
and Bg is the boundary of g, then the intersections
(PA5' ABQ and (PA5'oABQ each consist of the two
points (0,0,0) and (1,1,1) only. With this knowledge, it
is straightforward to compute the four vertices of (PA &:

{O,t, i

{-l 0

{i,o, -i)

(s",t",u")
1 tPA6 A6. :

2. GAPA(P4A(Ps.
'

3 6'A6 A6:

e.=e =Q.=0,

This immediately gives (2.25).

Q =Qi=e-=1
Q, = 1, Q4= t"/(u"—1"), —

and Q =u"/(u" —1"),
4. (PA(PrA(Po. Q, = —s"/(u" —s"), Q, =1,

and Q„=u"/(u" —s").
'0 at vertex 1,

at vertex 2,

4 (u'&"—&'u")/(1"—u") at vertex 3,
.4(u~ —&u )/(& —u ) at vertex 4.

(A6)
y{o,I,-l)

FIG. 4. Geometry for 4'.

The important point here is that, contrary to the
case of D4, the vertices 3 and 4 are in general not on
the boundary of g', where g' is the set of (Q,„e~,e.„)

(A7) that can be realized with non-negative u; satisfying
P;n, =1. Therefore, the requirement tha, t the four
values in (A7) are each less than 1 is su%cient but. not
necessary for Z4, i.e. , Z4 —X)4' is not empty.
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Making use of the relation between a Feynman diagram and. the corresponding electric circuit, several
properties of the normal thresholds are established.

' 'N the proof of the Mandelstam representation for
~ ~ scattering amplitude in perturbation theory by
either Eden' or I.andshoG, Polkinghorne, and Taylor, '
the following statements are needed: (1) In the physical
region on the boundary of the first sheet, the only
singularities of the scattering amplitude are the normal
thresholds. (2) A normal threshold and another Landau
curve cannot have any finite effective intersection. " It
is the purpose of this note to give, for these statements, an
alternative proof which is entirely algebraic. Only the
case of equal masses and no internal degree of freedom
is considered.

~ Alfred P. Sloan Foundation Fellow. On leave from Harvard
University, Cambridge, Massachusetts.

' R. J. Eden, Phys. Rev. 119, 1763 (1960); Phys. Rev. Letters
5, 213 (1960); Phys. Rev. 121, 1567 (1961).

2 P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor (to be
published).

The not. ations of reference 3 are to be used. The scat-
tering amplitude F for a given proper Feynman diagram
Go with four external lines is expressed as a function of
the Mandelstam variables s, t, and I, :

F(s,t,u)= t dn, " dn„b(1 P, ir;)L—d(cr;)]-
o ~o

where
XLQ(S,f,u; n;) —Q 4r,g

'~+"+' (1)
r

Q(S,t,u; 4r ) = 4E~P. (rr')+~Pi(4r')+uP (&')j. (2)

The symbol G ~ Go shall be used to denote that G is a
reduced graph of Go, i.e., there exist a set 8'(G) of
indices 4,, j, such that G= (Go);; . In the follow-
ing, G is to be studied in detail; for simplicity of nota-

4T. T. Wn, preceding paper LPhys. Rev. 123, 678 (1961)j.


