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Simple pion production in nucleon-nucleon collisions in the Bev energy region is studied by means of the
picture due to Weiszacker-Williams (peripheral interaction model) and in the (-„-,) resonance approximation
for the Anal state pion-nucleon interaction. The excitation curve for the reaction P+P —+ p+n+m+, nucleon
momentum distributions, and Q-value distributions in the center-of-mass system are calculated and com-
pared with the published experimental data as well as with the work of Lindenbaum and Sternheimer.
Agreement is reasonable with both, thus indicating that these particular distributions are insensitive to the
isobar production mechanism (single pion exchange), though more recent experiments seem to have indicated
clearly a preference for the theory developed here.

I. INTRODUCTION
I'

+ION production in nucleon-nucleon collisions is one
of the most familiar phenomena in the Bev energy

region. Thus a number of works' have been published
attacking this problem from a variety of aspects. In
particular, Belenki and Nikishov' and Lindenbaum and
Sternheimer' have extensively analyzed the single and
the double production in nucleon-nucleon collisions by
means of the isobar model and they have found good
agreement between their results and the experimental
data.

From a completely theoretical viewpoint, Henley
and Lee4 have proposed an approach based on the
intermediate coupling meson theory and the Lewis,
Oppenheimer, and Wouthuysen theory' of multiple pion
production in the cosmic-ray energy region.

More recently the conviction has grown that the
Weiszacker-Williams picture or the peripheral inter-
action model may well describe the Sev pion phe-
nomena. In fact, Kobayashi' has studied the excitation

* Supported in part by the U. S. Atomic Energy Commission.
t Note added iN proof Owing to an erro. r in the normalization of

the initial state vector, the total cross section given in Eq. (8)
and plotted in Fig. 2 should each be multiplied by a factor of 2,
thus destroying the quantitative agreement with experiment. The
remaining results of the paper which involve only comparison of
shapes are unchanged. Neither the previous agreement nor the
present disagreement can be said to be well understood in view
of the many approximations made. We are indebted to Dr. G. C.
Wick and Dr. F. Salzman for pointing out the error to us, which
appears also to have been made in the works of Kobayashi and
Seleri referred to in the text.

t Present address: Enrico Fermi institute for Nuclear Studies,
University of Chicago, Chicago, Illinois.

' For the kinematical analysis, see A. H. Rosenfeld, Phys. Rev.
96, 139 (1954); M. Gell-Mann and K. M. Watson, Ann. Rev.
Nuclear Sci. 4, 219, (1954); D. Ito and S. Minani, Progr. Theoret.
Phys. (Kyoto) 14, 108 (1954); D. Ito, S. Minani, and H. Tanaka,
Nuovo cimento 8, 135; and 9, 20g (1958). For the isobar model,
see D. C. Peaslee, Phys. Rev. 94, 1085; and 95, 1580 (1954);J. S.
Kovacs, ibQ'. 101, 397 (1956); S. Barshay, ibid'. 106, 572 (1957);
S. Mandelstam, Proc. Roy. Soc. (London) A244, 492 (1958).' S. Z. Belenki and A. I. Nikishov, Soviet Phys. —JETP 1, 593
(1955).

'S. J. Lindenbaum and R. M. Sternheimer, Phys. Rev. 105,
1874 (1957).

4 E. M. Henley and T. D. Lee, Phys. Rev. 101, 1536 (1956).' H. V. Lewis, J.R. Oppenheimer, and A. S. Wouthuysen, Phys.
Rev. 73, 127 (1948).

6 T. Kobayashi, Progr. Theoret. Phys. (Kyoto) 18, 318 (L)
{1957).

curve of the reaction p+ p —+ p+e+z+ and has
obtained reasonable agreement with the experimental
data of Fowler et al.' Quite recently Selleri' has also
produced striking evidence in favor of this model by
studying the neutron kinetic energy spectrum of the
above reaction in the laboratory system.

In these circumstances, we consider it worthwhile
to re-examine the implications of the (s,—',) resonance
model as modified by the peripheral interaction idea,
and in particular to compare the results both with
experiment and with the more schematic model of
Lindenbaum and Sternheimer. Toward this end we shall
study the aforementioned reaction in the c.m. system
and calculate the nucleon momentum distribution, the
Q-value distribution, the neutron recoil distribution,
and the cross section.

In our treatment of the problem the following
approximations will be made:

(i) One pion exchange process between nucleons is
mainly responsible for the phenomenon.

(ii) The virtual scattering amplitude, which appears
in this problem, is dominantly large in the (s, ss) state
of the c.m. pion-nucleon system.

(iii) The (s zs) virtual scattering amplitude is well
approximated by the corresponding energy shell
amplitude.

We shall give the kinematical considerations and the
analytic formulas for the observable quantities in
Sec. II. In Sec. III we shall give our numerical calcu-
lations and comparison with the experimental results
as well as with previous theoretical work. Finally the
last section is given over to a summary and conclusions.

II. OUTLINE OF THE THEORY

Let us take the 4-momenta of the initial nucleons to be
pi and ps, and those of the final nucleons and of the
pion to be pi', ps', and q, respectively, (see Fig. 1).The

'W. B. Fowler et ul. , Phys. Rev. 103, 1476, 1484, and 1489
(1956).

F. Selleri, Phys. Rev. Letters 6, 64 (1960). Selleri's basic
approach is essentially the same as ours. We are indebted to
Professor V. Nambu for showing us a prepublication copy of
Selleri's work.
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where n and P denote the isospin indices and A (v, vs, t')-
and B(v,vs, /) are the now familiar invariant functions
for pion-nucleon scattering. "The invariant parameters
v, vg, and P are defined as follows:

FxG, 1. The diagrammatical representation of T(1). E(P) was introduced by Federbush e/ a/. 12 and is
related to the vertex function Fo(P) by the equation

S matrix for the process is given as follows:

((—)Pi'P2'@ IP1P2(+))

=—(2~) ~'(Pi'+P '+q Pi P—)—
3f4

X
-2qoplo p20 plop20-

2qoPio Poo PioP2o *

E(P) =A p '(P)~ p'(P)I'2(P). (4b)

M
u(p,')(A+iy qB]N(p;)4'

= Q (2l+1){Pfi~+I(x)fi'r(W, P)
L, T

yPf, &
—

&(x)fi '(W P)) (5)

x= q'I= (2M ps+qp/0)/qI,

We next define the partial wave amplitudes fi'~ as
follows:

x{((—)p, 'ql j(0) I p, )(A, (p,—p, '))

X~z' '(p2 p2)(p, 'I j(0)lp, )

+((—)P 'ql j(o) IP )(A (P —P ')'A ' '(P —P ')

X(P1'I j(0) I Pi) —(the same expression with

where go, to, q, and t are the energies and the momenta
of the final and of the virtual pion in the c.m. final
pion-nucleon system with the total energy W(p and
q). Pfi&+&(x) is the eigenfunction of the total angular
momentum J=l&—,'. ™eans the total isospin of the
pion-nucleon system. In the (2,2) resonance model, we
take

Pi P2)} —(M/4n-W)u(p )(A+iy qB]n(p;).
=3fi+'*(W,P)P;, ,&+&(x),

(6)
f, I(W,P)=p( ,')f, (W,P), -
~;,1'+&(x)=x—-'oe. qe. i,

where T( ) with e& 2 denotes the contribution to T~;
from the m-pion exchange process between nucleons.
le(—)) is the incoming state with character e and we
have omitted the isospin index in the above equations.
j(0) is defined by the Heisenberg equation for the
pion field,

( —u')4 (x) = j(*)
where p(2) is the projection operator for 7=2, and

(2) q—=q/I ql. Furthermore, the energy shell approximation
means that

The above expression for the T matrix can be obtained
from the extension of the method due to Klein and
McCormick' in the nuclear force problem.

The virtual pion-nucleon scattering" and the vertex
parts in Eq. (1) can be shown to have the form

ap. =(( )p, 'qp
I g. (0)

I p, )(2—q,p, ,'p, ,/M')',
=&(P) (p'')LA(, ",P)+'v qB(,",P)j (p;), (3)

(P''I j-(o) IP )(P'o'P o/M')'=&(P) (p'') gv - (p),

' A. Klein and B. H. McCormick, Phys. Rev. 104, 1749 (1956).
For details see J. Iizuka, Ph. D. thesis, University of Pennsylvania,
1961 (unpublished).' S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329
{1958);J. Iizuka and A. Klein, Progr. Theoret. Phys. (to be
published).

f2, 2(W,P) = sin533, (7)

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957)."P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys.
Rev. 112, 642 (1958).

where 633 is the phase of the real pion-nucleon scattering
at the c.m. system total energy TV. Other possible
approximations for fp, p(W, P) will be discussed in
Sec. IV.

Now let us consider more specifically the cross
section for the reaction p+p —+p+m+~+. ln the
peripheral interaction model with the (-20'22) resonance
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0.= (22r)4-',
sp1n 0 f 2+0

where

X &'(pi'+ P2'+q pi —p2) —I
2'(i) I'dJ (g)

~J

[(plp20 p2P10) (pl Xp2) ]')
M d'pi' M d'p2' 1 d'q

dJ
(22r)2 pi0' (22r)2 p.0' (22r)2 2q0

and the energy shell approximations, we have" without scattering between itself and pion q may not
have the same phase, and as a consequence ~(c) may be
expected to be quite small. Thus if we neglect this term,
we reach the branching ratios of the isobar model, i.e.,

0 (p+p ~ p+n+2r+)/lr(p+p ~ p+p+2r0) =5,
(11)

0 (p+p —& p+n+2r+)/0(p+n . ~ p+p+2r )=10.

We shall adhere to this approximation throughout the
remainder of this work.

We next turn to a detailed discussion" of the o(i).
We have in the center of mass of the initial system,

The spin average and sum in the initial and the Anal
state is indicated by 4 p,0;„;,r and the factor —', comes
from the initial Aux normalization.

We may write Eq. (g) as follows:

20 10 2
rr = a(a)+ —0(b) —0(r), —-

9 9 3
(9)

where 0 (a) is given by Eq. (8) with the replacement of
T(» by its first term as given in Eq. (1), in which Pl'
and P2' refer to the proton and the neutron state,
respectively. o(b) com. es from the interference between
the first and the third term, while a(c) comes from the
interference between the erst and the fourth term. The
coeKcients of 0(i) in .Eq. (9) can be easily understood
if we remark that in a(i), the matrix element corre-
sponding to the virtual-pion nucleon scattering part is
always taken as that of 2r+p scattering. For reference,
we shall give the relations similar to Eq. (9) for the
other reactions:

4 2 2
(p+p p+ p+ ') = ()+ (b)+-(),--

9 9 9

1 g f
(a)=, b'(Pl'+P '+q Pl P—)A-

(22r)2 2p.W. &

12
t Wq'

l

—
l

sin2522(3x2+1),
(V+I)'& q)

1 g'
&4 (Pi'+P2'+q Pi P2) dj— —

(2 ) 2P,W, ~

1 (Wq'
X sin2822

(12+1)(t '+1) ( q j

X (12)
DEl,+M) (L~'2, +M)]2

BR= -', (W+M) (pi. I22,)xx,+—,', (W+M) Pi,P.,(x'+x,')

+(—'xx ——'(P", P„))(W—M)(El,+M)

X (E2,+M) ,', (W+M) pi,p2„——

8 4 4
o(p+ n ~. p+ n+2r0) =—o.(a)+—0 (b) ——0.(C),

9 9 9

2 1 2
(P+n P+P+ ) =- (a)+ (b)+ (), --

9 9 9

=o.(p+n —&n+n+lr+).

(10)

where the following notation is used:

dPi dp2 dq
dj=

P10 P20 q0

pl+q pl p2 p2 ) 1e pl p2~

Before going into the details of the evaluation of the
0 (i), we discuss the branching ratios predicted by the
(22, 20) resonance model. The familiar branching ratios
do not naturally follow from Eqs. (9) and (10) because
of the existence of the interference term 0(c). But, as
discussed by Henley and Lee,' in order that o.(c) be
large, two Anal nucleons must emerge essentially in the
same direction with the same energy (see Fig. 1), which
is an unlikely event. Physically speaking this also means
that the wave function of the final nucleon P2' with and

'3 C. Mufller, Kgl. Danske Videnskab. Selskab, Mat-fys. Medd.
23, 1 (1945).

x,=j t„

and p;, and E,, are the momentum and the energy of the
initial nucleon i in the c.m. system of pl' and q. p, and
W, are the momentum of the initial nucleon and the
total energy of the initial system in its own c.m. system.

The integration'0 of Eq. (12) can be carried out for

'4 In the following we shall neglect the correction coming from
the vertex and pion propagator modihcation, i.e.,

r, (42)r ~ &(42)r ~'(22)r, (22) =1-
'5 Formulas equivalent to Eq. (13) have been worked out by

F. Selleri, reference 8. For details, see reference 9.
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the variables pi' and q;

da(a, p„') g' 1 (W)
sin'Boo (W)

dpop' 2or p,W, ( q )
-

1 I'W, Pop' —2M'+1+2P,P&'q

- p. E Wepoo' —2M'+1 —2p,p, ')
/

)

(W,p, p' 2M'—+1)' 4p 'p—p'-'.

(13)
whereda (b,pop') g'

dpoo 2

1 )Wq
~

—
~

sin'Boo(W) dQ~, ~,
or'4P. W, ( q )

1 1

a= W,p, p'+1 —2M',

b =W'+M' 1 —2p—,o'(Wc —p'o'),
W'= W '+M' —2W P p' W"=W '+M' —2W P o'

P= ((W'+M)o —1)L(W'—M)' —1]/4W",
I'.~= {(W,—p;p') (W'+ M' —1)

+p, 't (W'+M' —1)(W' —3M' —1)]-*)/2W'

X
(P+1)(&.'+ 1) L(1-'i.+M) (&0 +M) j'

&({(W M) (I".„—+M) (L,+M) (p„p,),
+k(W+M) p~.p"L3(pi. P2 )'—1)).

In the integrals the range of pop' is

distribution from the Iirst term of T&i&, the Po' and II
integrations must be carried out 6rst. This order of
integrations is quite complex and we have used the fol-
lowing approximate form for o (a) which will be justified
in the Appendix:

do. (a,P,o') go 1 I
~+

P ( W') '
dp;0'—

~ ~

sin'8 (W')
dp, p' 2x- p.W, ~z p, ( q' )

1 (p a+p, bl 2p,'p„
X -»~

I
— (Ig)

6 Ep a p.b)—(p a)' —(p,b)'

do (pi') pz' 2 do (a,pio') 1 do (b,pio')+-
dpi pro -9 dpio 9 dpio

do. (a,pip') do (b,pip')
+2 +

dplo
do. (Q„+) W

{the above expression),
dQ .' W„,

Q .+=W—M —1.

(14)

(15)

LM, (W,'—2M —1)/2W, ).
Momentum and Q-value distributions are obtained

from Eqs. (12) and (13) with the help of elementary
isospin considerations. Here we shall give only the
results:

(i) The proton momentum distribution and the
Q-value distribution of the neutron-pion pair are (see
below for definitions)

da(p, 'Q, ) g-'1 p,"(W)
[ sin boo

dPp'dQp 20r' P,W, Pop' E q )
P &,' —

da(b, Q,)
X + +-

(8+1)' (I '+1)' dp, 'dQ,

1 da(a, po', Qo) da(a, pp', Qo)
+—— +

9 dpo dQp dpp dQ2

1 da(b, pp', Q.)+——
9 dpo dQo

(19)

Although we could not obtain any simple expression for
do (b,p;0')/dp, p', we shall see in the next section that this
interference term is quite small. Thus we shall neglect
do (b,p;p')/dp;p' in the discussion of the momentum and
of the Q-value distributions.

(iii) In the same way, we have for the neutron recoil
spectrum

The interpretation of Eq. (19) will be clear from the
above discussion. In the actual computation of the
neutron recoil spectrum we have dropped the last two
terms, whose contributions are again expected to be
quite small (see next section).

Now, at this stage, we shall compare our expressions
with those of Lindenbaum and Sternheimer. As is well
known, the Lindenbaum-Sternheimer picture for the
production mechanism consists of the following three
points: (i) An isobar can be treated as a real unstable
particle. (ii) The isobar production rate is proportional
to the phase volume of the isobar-nucleon system and to
the total cross section of the 0r+p system. (iii) Angular
distributions for the formation and decay of the isobar
are arranged so as to fit the experimental data. Thus
they have combined the features of Fermi's statistical
model and the fact of the strong (Pp, oo) pion-nucleon

(ii) The neutron momentum distribution and the
Q-value distribution of the proton-pion pair are

da (p,') pz' da(a) poo') da (b)pop')
2 +

dpo' ppo' dpoo' dpoo'

2 do (a,pop ) 1 do'(b pop )+— +—
9 dp pp' 9 dppp'

(16)

do(Q~ +) W
{the above expression). (17)

dQ... W.

In Eqs. (14) to (17), do (a,p'o')/dp;o' or do(b, p*o')/dp;o'. .

mean that these quantities are calculated from Eq. (12)
by a change of the order of integration, i.e., by inter-
changing the roles of the two final nucleons; for example,
to calculate the contribution to the proton momentum
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interaction. Because of this combined viewpoint, they
were forced to make various assumptions. In particular
their angular momentum considerations are quite
ambiguous. On the other hand, in our treatment the
one-pion-exchange approximation completely elimi-
nates a series of assumptions made by them.

From the above comparison, we may expect that
differences between our results and those of Linden-
baum-Sternheimer will appear in the quantities
including strong angular dependences like the neutron
recoil spectrum.

A. Energy Dependence of the Cross Section for
the Reaction p+p —& p+n+pp+

Figure 2 compares the theoretical and the experi-
mental results. "Our curves (a) and (b) are obtained
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III. NUMERICAL CALCULATIONS AND DISCUSSION

Before going into the details of the numerical
calculations, we shall make a remark concerning the
pion-nucleon scattering part, sin'8pp/q'. For thi~

quantity we have taken experimental data" and for the
sake of comparison have also used the Chew-Low
formula' which has the form

sin'5„(ce „/qp) 9Pq'
(20)

q' (qp
—pp, )'+ (rp, /qp)'X'qp

where pp, (=1 91) is the pion energy at the (ss, ss) reso-
nance and X'= (-', f')' f'=0.08.

Numerical calculations were made with a desk
computer by means of Simpson's formula, with the
range of integration for p, p', (3f, (WP —2M' —1)/2Wej,
divided into ten intervals for each case.

1

Cl
LE
~fP
D

~ 5-

( Proton)
.88ev

by the substitution of experimental data and the
Chew-Low formula, Eq. (20), for the pion-nucleon
scattering part, respectively. The curve (a) is quite
similar to that obtained by Kobayashi. In Eq. (9), the
contribution a (b), which is the interference term
between the first and third diagrams of Fig. (1),
decreases from about a fourth at 0.6 Bev to about a
tweUth of a (a) at 3 Bev. Considering the factor coming
from isospin considerations in Eq. (9), the term a(b)
does not therefore contribute signi6cantly to the
reaction p+p —& p+e+pr+. This is the reason for
agreement between our curve (a) and that of Kobayashi,
who did not include this term.

The experimental data in the region 0.8 to 1.2 Bev
are not all consistent, as we see from Fig. 2. This also
seems to be true for the momentum distribution of the
proton. Thus it is dificult to say whether or not the
theoretical results "agree" with the experimental data
in this energy region. If the work of Hughes et ul."
turned out to be correct, the interpretation of the extra
9 mb would be an important problem. On the other
hand, our curve slightly exceeds the result of Batson
et al." For the tail of the excitation curve, we have
reasonable agreement, although the theoretical values
seem to exceed the experimental one at around j..7
Bev. This tendency has also appeared in the work of
Kobayashi. "The most probable reason for the largeness

0 $00 200 300 400 500 600
Mev/c

FIG. 3. Proton momentum distribution at 0.8 Bev. In Figs. 3—18,
histograms give the experimental values; where they occur, the
dashed curves refer to the theory of Lindenbaum and Stern-
heimer, the solid curves to the present theory.

E 15—

b
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I I l I
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Kinetic Energy in Lob System (Bev)

FIG. 2. The excitation curve for the reaction p+p ~ p+e+m. .
"H. L. Anderson, W. C. Davidson, and U. E. Kruse, Phys. Rev.

100, 339 (1955).
'7 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).
's See reference

utron)
Bev8~ lO—

0 l00 BOO 300 400 500 600 700
Mev/C

F1G. 4. Neutron momentum distribution at 0.8 Sev.

"I. S. Hughes et al. , Phil. Mag. 2, 215 (1957).
~A. P. Batson et al , Proc. Roy. Soc. .(London) A251, 2I8

(1959).
"According to Kobayashi's work, this critical energy is about

1.4 Bev. This diBerence might be based on diR'erent analytic
formula for 0-, i.e., because of the different approximation.
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FIG. 5. Proton mo-
mentum distribution
at 0.925 Bev.

feature of the isobar model, as we easily see from Eqs.
(13) and (16). In this respect we notice that do. (a,p)/dp
strongly rejects the shape of the pion-nucleon scattering
cross section; on the other hand, do(a, p)/dp behaves
more or less like the phase volume below 1.5 Bev with a
broad maximum at a value at about half that of
da(a, p)/dp. do. (b,p)/dp has a shape similar to do.(a,p)/dp,
but is in magnitude at most less than one-tenth of the
latter beyond 0.8 Bev. do (b,p)/dp is expected to have
the same behavior as that of do (a,p)/dp. Considering
these facts, we can approximate the momentum distri-
bution well by neglecting do(b, p)/dp. This term can
only contribute a few percent to the Oat background of
the distributions (actually do(b, p)/dp. as well as
do(b, p)/. dp yield negative values).

Now the values of the momentum, p, of the nucleon
at the maxima of the curves are determined by the
relation

I I I I

0 i00 200 300 400 500 600 TCK)
Mev/C

FIG. 6. Neutron momentum distribution at 0.925 Bev.

of the theoretical curve is the inadequacy of the energy
shell approximation, i.e., if the virtual pion is far off the
energy shell (I!2) a few 3E), f3,3(W,P) cannot be
reasonably equated with the energy shell amplitude,
Eq. (7). The curve (b) in Fig. 2 shows the result of
adopting the Chew-Low formula, Eq. (10),for sin'533/q'.
This does not give any damping feature up to 3 Bev,
although the cross section is expected to decrease faster
than (1/Wc') inwit at high energies. This result may
not be surprising, because the Chew-Low formula
would be only appropriate in the low-energy region
)at most up to the (32/) resonance energy'.

B. Momentum and Kinetic Energy Distributions
of the Nucleon

Figures 3 to 12 show the momentum and the kinetic
energy distributions of the nucleons. Our theoretical
curves (solid lines) as well as the experimental ones
(histograms) are normalized so as to give 138.1 times
the theoretical cross section at each energy, when
integrated over the momentum which forms the abscissa.

Ke 6rst remark that our curves are quite similar to
those (dashed lines) obtained by Lindenbaum and
Sternheimer. However, for the proton distribution at
0.8 Bev the maximum is appreciably shifted" (about
90 Mev/c). The similarity among these curves means
that the matrix elements, except for the pion-nucleon
scattering part, do not differ significantly compared
to the product of phase volume and Lorentz trans-
formation factor taken by the above authors.

Secondly the sharp maximum in the neutron distri-
bution, compared to the proton case, is a characteristic

22 See the discussion of the recoil neutron spectrum in the later
section.

I I

E 10-

Jl
0 100 200 300 400 500 600 700

Mev/Q

I

(Proton)
f.0 gev

FIG. 7. Proton momentum distribution at 1.0 Bev.
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E~i0—
(
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Q ~ P
i ) )" '4 ioo zoo Mo ~oo soo soo roo

Mev/c

)

(Neutron)
1.0 Bev

I'IG. 8. Neutron momentum distribution at 1.0 Bev.

7-= L(W.+~) —W):((W.—~) —Wq-:/2W. ,

where W is the total energy of the pion-nucleon scatter-
ing at resonance. The failure of the above relation at
0.8 Bev comes from the destructive interference between
the pion-nucleon scattering part and the rest of the
matrix element.

Next let us turn to the comparison with experimental
data. The histograms shown in Figs. 3, 4, 11, and 12
are quoted from the works of Fowler et al. ,

7 while in
Figs. 7 to 10 works of Batson et al." (0.97 Bev) are
quoted. In particular the histograms of Figs. 7 and 8
are calculated from the energy spectra given by Batson
et al. by assuming that the transformation factor p/po
between the two distributions is approximated by the
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ratio hpo/Ap for each interval in Figs. 7 to 10.We have
made this transformation for the sake of comparison
with the works of Hughes et al."at 0.925&0.030 Bev,
Figs. 5 and 6.

As discussed by Lindenbaum and Sternheimer, the
theoretical curves are in good agreement with the
experimental data at 0.8 and 1.5 Bev, if we keep in
mind that the experimental data is rather crude at
these energies. At about 1.0 Bev, the experimental
information is rather poor. Although Figs. 7 to 10 show
good agreement, this may not be taken seriously, as we
see from Figs. 5 and 6. In particular, the proton
momentum distribution seems to show the possible
existence of a peak at around 200 Mev/c (Figs. 5 and 6).
Although this experiment has been done at proton
energy 925&30 Mev, it would be surprising if the
50-Mev difference between this and the neighboring
experiment at 970 Mev gives this marked difference in
the proton distributions. To give a proton momentum
distribution similar to Fig. 5 at 970 Mev it would be
necessary that the kinetic energy distribution have a
rather sharp peak at around 28 Mev and a minimum
at around 60 Mev. But Fig. 9 seems to show no such
tendency. The discrepancies in the experimental data
at this energy were also mentioned in connection with
the excitation curve of the reaction p+p ~ p+e+m+.

C. Q-Value Distribution of the
Pion-Nucleon Pairs

FIG. 9. Proton
kinetic energy dis-
tribution at 1.0 Sev.

50

y 25-

/20
r

~ 15—~
b

ld
fl)

I I I I I

(Proton)
1.0 Bev

II t I I I

0 30 60 90 120 150 &80 210 240
Kinetic energy(Mevj

The discussion of the Q-value distributions can be
carried out in parallel with that of the nucleon rno-
mentum distributions. Figs. 13 to 18 show the Q-value
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FIG. 11. Proton momentum distribution at 1,5 Bev.
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Fro. 12. Neutron momentum distribution at 1.5 Bev.

distributions for the nucleon-pion pairs, the normali-
zations in these figures being the same as those of the
momentum distribution cases. The histograms in the
figures are quoted from the works mentioned in the
momentum distribution case.

Again our curves (solid lines) are similar to those
(dashed lines) of Lindenbaum and Sternheimer, though
slight differences are observed for the em.+-pair at 0.8 and
1.5 Bev.

As the counterpart of the neutron momentum distri-
bution, we have sharp distributions for the pm+-pair
and the values of Q, Q, at the maxima of the curves
are given by Q=S'—M —1, with the exception of the
0.8-Bev case. Although the agreement between the
theoretical curves and the experimental results seems to
be bad at 0.8 and 1.5 Bev, whether or not this disagree-
ment is serious would be determined by much more
accurate experimental data, because at 1.0 Bev the
agreement is very good and we believe this is not the
accidental one.

FIG. 10. Neutron
kinetic energy distri-
bution at 1.0 Bev.
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D. Recoil Nucleon Spectrum

For these quantities, we have only studied the neutron
case at 1.0 Bev. Although we have no experimental data
with which to compare, we have included this spectrum
for the following reason. As we see from Eq. (19), only
this quantity seems to emphasize the main distinguish-
ing feature of the peripheral interaction model among
various quantities in the c.rn. system, and the interesting
fact is that the matrix element, except for the factor
sin 8»/q, has a peak in the high momentum side, which
corresponds to low 4-momentum transfer at a certain
fixed angle. This behavior is diGerent from the phase
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volume argument. Thus it is expected that decisive
differences between our calculations and those of
Lindenbaum-Sternheimer will appear in the shape, and
the value of the momentum at the maximum will be
shifted between the two calculations, unless in their
model a forward preference for isobar production is
assumed; namely, in their treatment the change of the
isobar production angular distribution at high energies
from isotropic to a forward preference might correspond
to the evidence for the peripheral interaction model.

approximation for the virtual-pion scattering part. As
another possible approximation we might use the
off-the-energy shell form of the Chew-Low static meson
theory. But this is not suitable in our case. Let us take
this approximation and consider the cross section
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Fto. 15. Q-value distribution of nm+ pair at 1.0 Bev.

(rs(a) —o.(a) = A(r

0'p(a) designating the quantity corresponding to o.(u) of'

the previous approximation. Then we have the
diff erence
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Thus the integral of Ao. is equal to that of o. (a) except
for the last factor in bracket. Since we have the relation

(P+1)[2W'+2M +P 1j P—+1) (23)
L(W+M)' —1)t (W—M)' —1j (W—M)' —1
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FIG. 14. Q-value distribution of p~+ pair at 0.8 Bev.

This point has also been discussed by Chadwick
et al.23 in connection with the recoil proton spectrum.
Figure 19 shows the result with the normalization of
138.1 times the actual value. We shall report, in future
work, on this quantity as well as the other observable
quantities in detail.

IV. CONCLUDING REMARKS AND SUMMARY

In this work, we have studied single pion production
by nucleon-nucleon collision by means of the picture
due to Weiszacker-Williams and the (-'„-,') resonance
approximation. In the course of the study we have made
several approximations, for which we gave plausibility
arguments. In particular we have made the energy shell

'3 CT. B. Chadwick et a/. , Phys. Rev. Letters 4, 611 (1960).
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FIG. 16. Q-value distribution of per pair at 1.0 Bev.

Eqs. (22) and (23) mean that (i) Do. is positive,
(ii) P can easily be larger than a few M, (iii) the
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interval of integration in the above equations, for which
P)a few M, becomes larger in the Bev energy region,
(iv) the rest of the matrix element is dominantly large
at W=W, where W is the total energy of the pion-
nucleon system at resonance. From these considerations,
we reach the conclusion that 60- is of the order of or
larger than o (a).

For a(b), the inclusion of the factor tt,/q' in Eq. (12)
does not have much effect compared to the case of o (a),
partly because this inclusion gives a smaller effect
than the factor (I/rj)', which is the corresponding factor
in oii(a), and partly because the rest of matrix element
in o.(b) is quite small as we have mentioned in the
preceding section. Thus we reach the conclusion that
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FIG. 19. Neutron recoil spectrum, da. (P,Q)/dPdn, at 1.0 Bev, as
predicted by the theory of this paper.
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the off-the-energy shell form of the Chew-Low theory
would give a much larger cross section than the energy
shell approximation. Since we have found reasonable
agreement between our theoretical results and the
experimental data, we can rule out the presently
considered approximation as untenable.

Next comparisons between our theory and the
phenomenological treatment of Lindenbaum and Stern-
heimer were made in the preceding section, and we
found good agreement between the two calculations,
though we mentioned slight differences in shapes of the
momentum and Q-value distributions. Furthermore, we
saw the reason for the change of the assumption made
concerning the isobar production angular distribution
at high energy as evidence for the peripheral interaction
model.

Finally we gave the result of the neutron recoil

spectrum, for which the above phenomenological model

may give a different result from ours.

APPENDIX

To obtain Eq. (18) from Eq. (12) we make the
following approximations. Let us consider

dsp I dsq p
I= ~e'(Pt'+Ps'+0 Pt Ps)—,

— (3x'+1),
P20 it0 (t +1)

Ps"iEPs' 1 t

p (3x'+1),
pso' 2p, 'p' & (ts+ I)'

x=j t,

where we take the coordinate system shown in Fig. 20.
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Pp

IA A A
~~ y=Zx&

A A AI A A,
x = (PgxP~)/ (Igx P~I)

Fn. 20. The coordinate system for the integral I.

FIG. 18. Q-value
distribution of pm+
pair at 1.5 Bev.
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The integrand of the second equation is a very complex
function of sing. Therefore we neglect y dependence
in the integrand and also make the approximation
3x'+1 —+ (3x'+1)=2. Then we have

P+ 1 Wcpsp +1 2M —2pcps cosP cos8&

= L( —P»' —P»')' —Pr"—Ps"—13/2P t'Ps'.

The integral range of p&' can then be obtained by the
600

condition ~costI~ &1.


