
PH YSI CAL REVIEW VOLUME 123, &UMBER 2 JITLY 15, 1961

Angular Asymmetry Theorems for Decay Products*
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The method of Eberhard and Good, for using decay angular distributions to determine the spins of
unstable systems, is developed. Their inequality, which expresses the impossibility of getting too symmetric
a decay pattern from an asymmetric initial state, is tightened. The results are generalized to include spin-
ning decay products. The Adair analysis is generalized in the same framework.

1(ttA)= Z Z (L,il'-f)I'. (0A),

where
Z&2s. (1.2)

However, there is no direct. path from the measured

I(8,$) to s, unless the distribution of initial spin
orientations is known and not isotropic. Otherwise,
possible "accidental" vanishing of many a(L,M) leaves
open the inequality (1.2).

Recently, Eberhard and Good' have proposed an
ingenious way of bounding s from above, in a special
case. They consider the angular distribution of w+ from

Ko + ir++~, —

where the K" emerge in a fixed direction from

(1 3)

+p ~ h"+K', . (1.4)

as a means of determining the E' spin. The essence of
their observations is that the orientation distribution of
the K' sample from (1.4) contains too few pure quantum
states to result, in isotropic decay if s~&4 (or s&~2 if the
A spin is observed). Quantitatively, they obtain an
inequality which, in our notation, reads

1 2
~
a(L,M) ('—( —+2 P'

Q 2s+1 &, »& Go(sL)'
(1.5)

where Q' denotes the exclusion of L, =O, Go(s,L) is

given by (3.11), and Q is the number of spin states, of
particles other than the K', which enter (1.4). Thus

Q =4 if the pro tons are unpolarized and the A' spin
direction is not selected, and Q=2 for unpolarized
protons but selected tV spin direction. Inequality (1.5)
can be used to eliminate too high s if the measured 2
is nonzero. If 2 is possibly zero, but the statistics are

*XVork performed under the auspices of the U. S. Atomic
Energy Commission.

' P. Eberhard and M. I,. Good, Phys. Rev. 120, 1442 (1.960).

1. INTRODUCTION

XGULAR distributions of decay products have

~ ~

long provided an important, but seriously
limited, means of investigating the spins of unstable
systems. Suppose an object of spin s decays into two
parts. In the rest frame of the unstable object, the
angular distribution of either product has the form

poor, the sum in (1.5) provides a quantitative sta-
tistical test which may be used to reject some or all
of the values of s that are equal to or greater than Q.

Our principal purpose is to extend the method of
Eberhard and Good to cover spinning decay products,
and to tighten the inequality (1.5) in their special case.
We hope, in addition, to elucidate their idea by our
more geometric approach.

In Sec. 2, we describe the distribution of spin orien-
tations of the unstable objects in terms of the statistical
ma, trix p. The limitation to Q spin states is expressed as
an inequality between p and Q. In Sec. 3, we analyze

p into irreducible tensor components. These are ex-
pressed in terms of the measured angular distribution,
for spinless decay products, to give two asymmetry
theorems. Section 4 contains the generalization to
spinning decay products. In Sec. 5, we specialize to
consider the cylindrically symmetric case, obtaining a
slight generalization of the Adair analysis. The possi-
bilities for extending the present work are remarked
upon in Sec. 6.

Our notation for angular momentum quantities is
that of Rose. ' In statistical matrix matters, we follow
Pano. 4

2. THE SPIN DISTRIBUTION

g(q) =Q B(q,m)K, , (2.2)

where q replaces n and p. The different g states are not

R. K. Adair) Phys. Rev. 100, 1540 (1955).
e M. E. Rose, Ttlememtary Theory of Attgnlar ilrIoirtenttum lJohn

alley 8z Sons, Inc. , New York, 1957).
4 U. Pano, Revs. Modern Phys. 29, 74 (1957).

For economy of language, we continue to refer to the
particles in (1.4), but we regard the spins as arbitrary.
The final state of (1.4) is an incoherent mixture of pure
states o, corresponding to the different initial spin states
of ir

—+p. The wave functions have asymptotic form

f(n) =Q„, A (ot, tt, m)A. „K,„,. (2.1)

A „and IC, , are spin wave functions for spins 0- and s,
and for magnetic quantum numbers p, and m. &1 depends
upon the orbital variables. Since different p, states do
not interfere when measurements are made on the IC'
or its decay products, the "beam" of K' mesons in a
Axed direction may be described as an incoherent
mixture of pure states q whose spin wave functions are
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necessarily orthogonal, and they need not enter the
beam with equal weights.

The number of q states is not greater than. Q, the
number of admitted o states times the number of
admitted p states.

The E.' spin distribution, for the beam in a fixed
direction, is described by the statistical matrix p, whose
elements are

Since p is Hermit. ean,

b(L, M)—==(—-1)Mb(L, M)'i',

Trfp2}=g, ,~If(L,M) I2.

a(I.,M) = V„,y,y) r(e,y)dn

(3 &)

(3.8)

p ..=Q, P(q)B(q, ~n)'"8(q,n)'. (2.3)

The quantity P(q) is the weight of state q in the
mixture, normalized to one, so that

'I'rfp) =1 (2.4)

The purity of the beam is measured by Tr{p'). We
now prove that when Q~&2s+1,

Tr{p') & 1/Q (2.5)

The states x(q) lie in a Q-dimensional subspace of the
(2s+1)-dimensional spin space. A unitary transfor-
mation will then change the statistical matrix into p',
a matrix with nonzero elements in only the first Q
rows and columns.

Trfp') -Tr{(p')') =Z(ppp')'

Since the p&&' are Q positive numbers whose sum is

one, (2.6) implies (2.5).
Equation (2.5) simply says that the E' spin distri-

bution is not less pure than a mixture of Q orthogonal
states with equal weights.

p= 2 2 &(I- M)TI.»I'
I. 0 I'lf.

(3 1)

where T~.,~I is defined by its matrix elements, "

(2L+1l '
I

G(~Ls'nM)~ +»I'
(2s+1)

The vector coefficients C are the usual orthogonal
transformation coefficients, with the Condon-Shortley
phase convent. ion. "'

(3.3)

(3.4)

(3 5)

(3 6)

T I.hl ( 1) TI.;kIq. —

rf TI3lTI'ill' } fiII. 'figil3I')

b(L,M) =Tr fpTI. ,alt),

b(0,0) = (2s+1) '.
'The TI~ are discussed further hy M. Peshkin, Phys. Rev.

121, 636 (1961).The normalization is clifferent. Equations (2.16)
shouM read Q =25:2——,'J'.

3. THE ASYMMETRY THEOREMS

We now wish to relate (2.5) to the measurable
intensity coefficients a(L,M). For clarity, we first
assume that the decay products are spinless, In that
case, (2s+1) is odd.

The statistical matrix may be written in terms of
irreducible tensor operators as

2s

=Tr{pI'I.ii')

(2s+1) l

I
(~III'I. ll~)t (I- M) (3 9)

(2I+1

where

a(L,M) =Go(s,L)b(L,M),

(2$+1) '
Go(s, L) =-

I

—
I

C(sI.s; 00).

(3.10)

The quantity Go(s, L) vanishes for integral values of s
with odd values of J.

Ke define the even-I and odd-I. part. s of p, called
p' and p", accorcling to (3.1). The intensity coe%cients
completely determine p' through (3.10):

a(L, m n)—
p.„,'= Q I. — -(sm

I
T I. ,„ I

sn) (3.1. 2)
Gii(s, I.)

While there is no way to measure p", its contribution
to (3.8) can be given an upper bound. The bound can
be understood from the condition that p is a non-
negative matrix, whose even and odd parts under time
inversion~ are p' and p'. Then p' must be smaller than
p' in the sense that: (u I

p'
I
u) «& (u I

p'
I u) for every spin

function u. Otherwise, even if (ulp'Iu) is positive, it,

can be reversed by replacing I with its time-inverted
spin function, to make (ul p I u) negative.

Quantitatively, the nonnegative condition yields

Tr{(p')') &2(piiii2+iil3p4+ +@~, i@~,), (3.13)

where the p~„. are the eigenvalues of the measured p',
writ. ten in descending order, i.e.,

~ ~~Pl ~~ P2/~ ' ' ' ~~ P2s~~ P2x+I ~~0 (3.14)

This is proved in the Appendix. While formal use is
made of time inversion, no dynamical assumptions are
introduced.

Inequality (3.13) leads directly to the first asym-
metry theorem,

1SQ&("+.) +(.+.)+
+ (@28 1+928) +p2s+1 (—3 15)~

Reference 3, p 89
7 A. R. Edmoncls, Angsftar lVomeetuns in Quantqfm illechanics

(Princeton University Press, Princeton, New Jersey, 19S7), p. 5&.

By use of the reduced matrix elements (sll I'Ills) given

by Rose, " this becomes
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It is advantageous for some purposes to isolate the
isotropic contribution to (3.15) by introducing

vi-, =- itii, —(2s+1) '.
1 4s+1 2v2 +i

+ (vi+ v2)'+
Q (2s+1)' 2s+1

(3.16)

1/Q ~~2»{6&')') u2 +i' (3.18)

and again. by discarding the last term to leave the
inequality (1.5) of Eberharcl and Good.

The only characteristic of the E' spin distribution
used so far is (2.5). A stronger result than (3.15) can
be obtained when p possesses a mirror symmetry. Ke
choose the quantization (z) axis perpendicular to the
production plane in (1.4). Then, if any polarization of
the initial state of (1.4) is in the z direction, that state
is invariant under space inversion followed by 180'
rotation about the s axis. If the production reaction
conserves parity, and if additionally any selection of
the A' spin is made with reference to the s axis, then p
must share the invariance property of the initial state.
Since p deals only with angular momentum, it is
automatically invariant under space inversion. Under
the rotation,

TIKI + ( 1) TI.~ll (3 19)

Then the invariance requires that only even 3I con-
tribut:e to p in (3.1).

Because of this mirror symmetry of p', its eigenspin
functions contain only even or only odd m, and the
equally mirror-symmetric p' does not mix the two kinds,
Ke caH the eigenvalues of the odd-m functions K~ ~ z„
in descending order, and those of the even-m functions
A:,+~ ~ ~~,+~, in separately descending order. The proof
given in the Appendix applies separately to the two
sets, and results in the second asymmetry theorem,

1/Q& (Ki+K2)2+ +(K2, 2+K2,)'+K2,~22 (3.20)

for even s, or

1/Q ~, (Ki+K2) + ' ' '+ (K8 2+Kg i) +K8

+ (Km+1+K@+2) + ' ' ' + (K2a+K2 +I) (83.21)

for odd s. The second theorem can be written in. a
form analogous to (3.17), through the analog of (3.16).

As a practical matter, it is evident that the asym-
metry theorems are stronger than the inequality (1.5)
of Kberhard and Good, but more troublesome. The
second theorem, when applicable, is stronger than the
first, and less troublesome, since it involves diagonal-
izing smaller matrices. If I(e,g) is isotropic with good

+(v, i+ v2.)'+ v .+P. (3.17)

The right-hancl side of (3.17) vanishes for isotropic
I(g,p), and is otherwise positive.

Theorem (3.15) can be weakened by using the
Cauchy inequality to obtain

statistical accuracy, (1.5) gives s(Q, and (3.17) shows
that the asymmetry theorems do no better. In case of
isotropic I(8,&) with poor statistical accuracy, the
asymmetry theore1Ils llave a quantitative advantage.
Suppose, for example, that b(2,0) appears to be negative
in the Q=2 experiment, and that all other nonisotropic
terms are negligible. Then the maximum probable
value of fb(2,0)l' which still rejects s=2 is 0.05 by
use of the Eberhard-Good inequality, 0.08 by use of
the first asymmetry theorem, and 0.11 by use of the
second asymmetry theorem.

4. SPINNING DECAY PRODUCTS

The asymmetry theorems are easily generalized to
include spinning decay products, provided that the
resultant spin r and the orbital angular momentum /

of the decay products are both definite. These conditions
are necessarily met. in the important case where one
decay product has spin one-half and the other is
spinless, if the decay process conserves parity. An
interesting example is the Q=2 experiment,

E +P ~ 2r+ I'",
followed by

P':2 ~ AO+~ (4 2)

(4.1)

to determine the V~ spin. " Ke again consider all the
spins to be arbitrary, but refer to this special case for
brevity. Q always refers to t:he production process, and
does not include the 22.+1 states of the decay products.

The even-L reduced matrix elements are given in
t.he coupling scheme 1+2 =s by'

«+r=slll'Ill~+r=s)=( —1)'+' 'f.(»+1)(2s+1)]-'
XW(lsls; L)«flV. fly), (4.3)

where 1V is the Racah coefficient, and G2(s, I.) is
replaced by

G, (s,I)= (—1)'+' '(2s+1)W(lsls; 2L)

(2l+1i l

l
cga; oo).

42r

In particular,
2s+ 1

G;(s,L)=
(f+ +-')(f+ +-')

(21+1)(f+s+L+-', ) (l+s—I.+-,') - lX—
4n.

XC(lLl; 00). (4.5)

For integral values of s, (4.4) replaces (3.11), but
the asymmetry theorems and the Eberhard-Good
inequality are otherwise unchanged. For half-integral

This experiment has a1so been considered by R. H. Capps,
Phys, Rev. 122, 929 (1961), and private communication, and
by R. Gatto and H. P. Stapp, Phys. Rev. 121, 1553 (1961).' Reference 3, p. 119.
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1/Q & (Kr+ K2)'+ + (K2,yK2, +r)'

for even (s+2'), and

(4.7)

1/Q» (K,+K2)'+ . +(K, .+Kg .)'yK,+.'

+ (K~+t+K~+2') + ' ' '+ (K2a 1+K2g) +K2s+1 (4 g)

for odd (s+2). Inequality (4.7) is stronger than (4.6)
because all the ~A, are not in descending order.

The results in this section may be used to test l as
well as s in some cases, as may the condition

x&21,

which replaces (1.7). I'or example, suppose reactions
(4.1) and (4.2) are observed with polarized protons,
so that Q= 1, and that the decay distribution is isotropic
except for a suspected I.=2 contribution. Then,

+2r i a(1)M) i
2&1/202r (4.10)

eliminates s=-'2. The unpolarized Q=2 experiment can
only eliminate spin —,'.

5. THE CASE OF CYLINDRICAL SYMMETRY

Adair' pointed out some time ago that there is an
advantage to taking the unstable particles in the
forward or backward direction. In the reaction (1.4),
for example, the magnetic quantum number of the A'
is determined by those of the proton and the K', if the
beam direction is taken as the quantization axis. Quite
generally, Q is reduced to Q, , that of the initial state of
the production process, as long as any polarization is
in the direction of the beam.

The cylindrical symmetry of the problem guarantees
that only M=O terms contribute to the statistical
matrix. Then p' and p' are simultaneously diagonal in
the representation (2.3), i.e. ,

e e
p—m, —m pmm )

0— 0
p—m, —m pmm ~

The non-negative condition reduces to

and the first asymmetry theorem becomes

1/Q'&»2»((p')'} —(poo')'

(5.1)

(5.2)

(5.3)

(5 4)

for integral values of s, For half-integral values of s,
the last term is absent.

values of s, (1.5) is again unchanged except. that Ge is
replaced by 6;, but the first asymmetry theorem
becomes

1/Q»&( r+u2)'+ + (t 2,-l-p2.+r)' (4 6)

For half-integral values of s, the spin eigenfunctions
of p' separate according to even and odd values of
(m+ 2). In case of mirror symmetry, the second
theorem gives

where again P' excludes I.=O. Restriction (5.5) is
evidently much stronger than any of the previous
results. If Q, =2, the equality holds in (5.5).

6. POSSIBLE EXTENSIONS

It is natural to inquire whether the asymmetry
theorems presented here can be tightened further.
Since p' is constructed in (A. 12) of the Appendix to
realize the equality, they plainly cannot be improved
upon without additional physical assumptions about p".

Somewhat different theorems can be constructed in
the same spirit by using 1/Q'&»Tr(p'}. These, however,
involve p' in a complicated way, and the chance of
obtaining an improvement over the present results
seems remote. Expression (5.5), which applies when p'
vanishes, is not improved by using p4.

Finally, if the decay goes through more than one l
value, or into more than two particles, we anticipate
that the asymmetry theorems will be weakened, but.
still useful. Analogous results for the charge distribution
in isospin-invariant processes" encourage this expec-
tation.
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APPENDIX

I or given non-negative p', it is desired to choose p'
so as to maximize Tr((p')2}, subject, to the constraint
that p be non-negative.

The antilinear "time reversal" operator I is defined
by

IIV,„=(—1)'+ E,
I(nu+Pe) =n'Iu+P'Ie,

where n, P are numbers and u, e spin functions.

IpeI pe

Jp I= p

(A 1)

(A.2)

(A.3)

(A.4)

From (A.3), the eigenfunctions of p' can be chosen to
be even under I. Then, if N and v are eigenfunctions of

'0 Reference 5, Eq. (4.12).

The qualit. ative advantage of (5.4) over (3.15) or
(4.6) lies in the reduction of Q. For integral values of s,
there is an additional quantitative advantage if poo is
not the smallest matrix element of p".

In case of mirror symmetry, p' vanishes. Then the
second asymmetry theorem becomes

I
~(I.,O) ~2

1/Q'& Tr((p')'} =— +r ~'—,(5 5)
2s+1 G, (s,I.)2
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p', (A.4) results in numbers H;, = —H, ;, so as to maximize

Tri(p')'} =ZJ,»~ p~ l»r I',
(A.5)

subject to the constraiI&ts

(A.9)

Thus, p' is skew symmetric in a diagonal representation
of p'.

Suppose erst that all the eigenvalues, pI„of p' are
positive. Then p can be expressed as

K~I@,al'&1,

This is achieved by taking

(A.10)

(A.11)

p = (p') 'L1+&j(p')'', (A.6)

where B is also skew symmetric in a diagonal repre-
sentation of p'. The eigenvalues of B, called ) I„appear
in equal, opposite pairs, so that for integer s at least
one of the A. ~ must vanish. The non-negative condition
results in

(A. 7)

. (A.g)

where U is a unitary. matrix.
In these terms, it is desired to choose imaginary

where 1;he pj„. are written in the descending order (3.14),
and taking all other independent II;; equal to. zero.
With this choice, Tr((p')'} is given by the equality in

(3.13).
If some p vanish, then the non-negative condition

requires that, in a diagonal representation of p',

pe~ =p~j =0 (A.13)

for such o. and all k. The rows and columns containing
such n can be removed from p without affecting the
remainder of the proof.
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Interactions of 1.0-, 2.0-, and 3.0-Bev Protons with Ag and Br in Nuclear Emulsion*

ELIzABKTH W. BAKER AND SEYMQUR KATcoI'7
Chemistry Department, Brookhaven Sational Laboratory, Upton, New York

(Received March 10, 1961)

Stars produced in insensitive nuclear emulsions by 1.0—3.0 Bev protons have been classified into different
groups depending on whether light fragments and/or fission fragments are emitted. Alpha particle spectra,
and angular distributions are presented for each of the various groups. The probability for light-fragment
emission increases rapidly with increasing beam energy up to 2,0 Bev. The angular distribution of the light
fragments is peaked forward but also shows a preference for emission at 90' to the beam. Fission events
increasefrom ~3% of theinteractions with Ag and Br at 1.0 Bev to ~11%at 3.0 Bev. Ranges and angular
distributions are also given for the recoil and 6ssion fragments.

INTRODUCTION

A SURVEY is presented of the various types of
nuclear interactions observed in silver and bro-

mine when emulsions of low sensitivity are irradiated
by 1.0—3.0 Bev protons, Numerous studies have been
made in the past with nuclear emulsions exposed to
cosmic rays' ' and to accelerator beams below the Bev
region. ' ' Recently, there have been several investiga-

* Research performed under the auspices of the U. S. Atomic
Energy Commission.

' J. B. Harding, S. Lattimore, and D. H. Perkins, Iroc. Roy.
Soc. (London) A196, 325 (1949).

U. Camerini, W. O. Lock, and D. H. Perkins, Progress in
Cosnzic Ray Physics, edited by J. G. Wilson (North-Holland
Publishing Company, Amsterdam, 1952), Vol. I, pp. 3—61.

'D. H. Perkins, Proc. Roy. Soc. (London) A203, 399 (1950).
'N. A. Perfilov, O. V. Lozhkin, and V. P. Shamov, Uspekhi

Fiz. Nauk. 60, 3 (1960) Ltranslation: Soviet Phys. —Uspekhi
3(60), 1 (1960)g.' V. I. Ostroumov, Soviet Phys. —JETP 5, 12 (1957).

6 G. F. Denisenko, N. S. Ivanova, N. R. Novik. ova, N. A.
Perfilov, E. I. Prokffieva, and V. P. Shamov, Phys. Rev. 109,
1779 (1958).

tions of similar nature in which emulsions have been
exposed to beams with energies up to 9 Bev.' '"

The emphasis in the present investigation is on events
of high excitation in which multi-charged particles are
produced. The distributions in energy and angle of 0,

particles, the distributions in range and angle of recoil
and 6ssion fragments, and angular distributions of
light fragments (2(Z&6) are presented. Data are also
given on the types of events observed, on o. and light-
fragment multiplicities, and on how both vary with
bombarding energy. These data are compared with
existing evaporation calculations when applicable. In

'E. W. Baker, S. Katcoff, and C. P. Baker, Phys. Rev. 117,
1352 (1960).' W. O. Lock, P. V. March, and R. McKeaque, Proc, Roy. Soc.
(London) A231, 368 (1955).' S. Nakagawa, E. Tamai, and S. Nomoto, Nuovo cimento (1.0)
9, 780 (1958)."N. A. Perfilov, N. S. Ivanova, O. V. Lozhkin, M. M. Makarov,
V. I. Ostroumov, Z. I. Solov'eva, and V. P. Shamov, Zuhr.
Eksptl'. i Teoret. Fiz. 38, 345 (1960).


