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applied field, and, in consequence, the coupling between
the rare-earth and iron sublattices, though basically of
antiferromagnetic sign, makes the moment of these
sublattices parallel rather than antiparallel. "

In closing, we should emphasize that the present
paper makes no pretense of including anisotropy, and
it can be regarded rather as an attempt to see how far
one can push the theory with a purely isotropic model.
Qf course, the effects of anisotropy are particularly

"V. Jaccarino, B. T. Matthias, M. Peter, H. Suhl, and J. H.
Wernicir, Phys. Rev. Letters 5, 251 (1960); G. Goldring, M.
Schieber, and Z. Vager, J. Appl. Phys. 31, 2057 (1960); W. P.
Wolf, ibid 32, .742 (1961).

important at low temperatures. The theory usually
does not appear to work too well at low temperatures if
the correction for anisotropy is made in the usual
way by introducing an anisotropy field. The question
of how far it is warranted to include the anisotropic
part of the crystalline potential simply through this
artifice is a subject into which we do not want to
enter here.
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A simple calculation is presented of the effects of lattice dynamics on interference between Mossbauer
processes and corresponding atomic processes, i.e., between Mossbauer and Rayleigh scattering, or between
internal conversion of Mossbauer radiation and the photoelectric effect. When the energy of the emitted
y ray or electron is not measured, it is necessary to sum over all possible final states of the lattice. The
interference contribution is found to be attenuated by the same "Debye-Wailer" factor as the ordinary
Mossbauer contribution, depending only upon the momentum of the incident p ray. If the energy of the
emitted y ray is measured (e.g. , by a Bragg scattering experiment), the atomic contribution is attenuated
by the usual x-ray Debye-Wailer factor, depending upon the momentum transfer, the Mossbauer contribu-
tion by the square of the usual Mossbauer factor, and the interference term by the geometric mean of the
atomic and Mossbauer factors.

' 'T is now generally known' ' that the effects of lattice
- - dynamics in Mossbauer experiments are expressed
very simply in terms of the fraction f of gamma rays
emitted from the source without energy loss due to
recoil. This is the Debye-%aller factor4

where li) is the initial state of the lattice, kk is the
momentum of the gamma ray, and X& is the coordinate
of the nucleus emitting the gamma ray. Interest has
recently been expressed in interference between atomic
effects and the Mossbauer effect; e.g., between Ray-
leigh and Mossbauer scattering, ' or between atomic
photoelectric absorption and Mossbauer absorption
followed by emission of a conversion electron. ' The
purpose of this note is to point out that the effect of
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the lattice dynamics on the interference term is given
by the same factor f which appears in the direct Moss-
bauer term.

Let us consider the scattering of a gamma ray of
momentum Akt into a state of momentum hks by an
atom whose motion in the lattice is described by the
coordinate X&. Let M be the probability amplitude
for the process due to the Mossbauer effect, and let A
be the amplitude for Rayleigh scattering by the atomic
electrons. Then the scattering cross section will be
given by

o. ~ (l~ I'+ I~I'+2CRe(A*cV)),

where C is a factor expressing the degree of coherence
of the two elementary processes. This factor C is inde-
pendent of the lattice and is not considered further here.

We wish to investigate the effect of the lattice dy-
namics upon Eq. (2). From ordinary Mossbauer and
Rayleigh scattering we know that the direct Mossbauer
term IMI' is proportional to f, and that the direct
Rayleigh term IA I' is independent of the lattice dy-
namics. The dependence of the interference term upon
the lattice is not evident, a priori.

The coherence properties of the final lattice states
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must first be investigated. Although the Mossbauer
resonance condition requires that the gamma ray be
absorbed (either really or virtually) without excitation
of lattice vibrations, no such restrictions exist for the
re-emission process. Thus the lattice can be left after
the scattering in a final state

I f) which is different
from the initial state. The same is true for Rayleigh
scattering, where there is no resonance condition. How-
ever, interference can only occur between two ampli-
tudes, Mossbauer and Rayleigh, describing processes
in which the lattice is left in the same knat state

I f)
We must therefore define atomic and Mossbauer scat-
tering amplitudes A(ki, k2, i,f) and M(ki, k2,i,f) for
scattering in which the lattice goes from a definite
state Ii) to a definite state

I f) during the transition.
Because lattice forces are weak in comparison with

atomic and nuclear forces, the perturbation of internal
atomic and nuclear structure by the lattice can be
neglected, and the internal and lattice degrees of free-
dom can be separated. The scattering amplitudes can
therefore be separated into a factor A,t (or M„„,)
depending upon the elementary atomic (or nuclear)
process, and a lattice factor describing the transfer of
momentum to the atom XI. in the lattice. The latter is
simply the matrix element of the operator expl irkk XL7
between appropriate lattice states, where Ak is the
appropriate momentum transfer. ' Thus,

A(ki, k,i,f)=A,t(flexpl i(ki —k2) Xz7li), (3a)

M(ki k2 i f)=M„«(fl exp( —ik2 Xr) Ii)
X (i I

exp(iki. Xr) I
i). (3b)

In the atomic case, the total momentum transfer
(k,—k2) is given to the lattice during the scattering
process. Whether or not this is considered as a two-step
process involving virtual absorption and re-emission is
irrelevant, as there is no resonance in the intermediate
state. The sum over all intermediate virtual states can
be performed directly by closure to yield the result
(3a), neglecting the variation of the energy denominator
which is very large compared to lattice energies. This
is not true for the Mossbauer case, as the resonance in
the intermediate state is so narrow that only a single
lattice state is relevant, namely the initial state. In the
Mossbauer case, the lattice remains in the initial state
during the absorption of ki and goes to the final state
in the emission of k2.

The total amplitude for the process is just the sum
of the two terms of (3). The total cross section is ob-
tained by squaring the total amplitude and summing
over all lattice final states

I f), since the lattice final

state is not measured. Thus,

o ~ Pt I A,e I'l(f I expl i(ki —k2) Xi7 I i) I'

+IM I'l(fl exp( —ik2 XI) li)l'l&il exp(iki XI) li&l'

+2C Re(A.&*M „.(ilexpl i(k2 —ki) Xr7I f)
X(f I exp( —ik2' I) I i)(il exp(iki ' XI)

I i)}. (4)

The summation over final states
I f) is simple matrix

multiplication. The result, obtained by closure is

~"{I
A.~l'+ IM-..I'f(ki)

+2C Re(A.„*M„„,)f(k,)}, (5)

where f(ki) is the ordinary Mossbauer fraction, Eq. (1)
for momentum ki. We now note the following points:

(1) The derivation of Eq. (5) does not depend spe-
cifically upon the nature of the processes of Rayleigh
and Mossbauer scattering. It is valid for any process
in which a particle of momentum Aki is absorbed by an
atom in a lattice and a particle of momentum hk2 is
emitted. It is therefore also valid for the case where a
conversion electron is emitted.

(2) The interference term is attenuated by exactly
the same lattice factor f(ki) as the direct Mossbauer
term.

(3) The attenuation is independent of the emitted
momentum k&. This surprising effect is particularly
interesting in the case of the conversion electron, where
k2 is large because of the electron mass, and f(k2)
would be very small.

It is also of interest to note that Eq. (4) can describe
lattice eGects in coherent "Bragg" scattering from many
atoms in a single crystal. For this case Eq. (4) should
not be summed over all final state If); rather If)
should be set equal to

I i), since there is constructive
interference at the Bragg angle only if the outgoing
gamma ray has the same wavelength as the emitted
one; i.e., if there is no energy transfer to the lattice.
For this case, we obtain

~n-gg ~ ( I A.~ I'f(ki —k2)+ IM-. I'(f(ki) }'
+2C Re(A„*M.„,)Lf(k,—k,)7lf(k, )}.

The direct atomic term has the familiar Debye-Wailer
factor for Bragg scattering, depending upon the mo-
mentum transfer. The direct Mossbauer term has the
square of the usual factor. The interference term has
the geometric mean of the two direct factors, as is to be
expected when there is only a single final state.
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