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The effective g factor for ferrimagnetic resonance frequencies
in rare-earth iron garnets is calculated by direct inspection of
eigenvalues rather than study of the equations of motion. The
rare-earth jons are treated as captive in the exchange field from
the iron, but subject to decomposition of their energy levels by
crystalline fields and/or spin-orbit interaction. With a crystalline
field, the problem is tractable in a simple way only if these
decompositions are large or small compared to those which could
be produced by the exchange field acting alone. Anisotropy,
actually very important at low temperatures, is neglected except
insofar as it can be represented by an anisotropy field. The
concept of “fictitious spin’ is useful, and the spectroscopic

N the early days of ferromagnetic resonance, there

was considerable confusion between the spectro-
scopic splitting factor and the true gyromagnetic ratio.
Some of this confusion seems to still persist in the
ferrimagnetic garnets, as we hope the present paper
will show.

There are two general methods commonly employed
for calculating ferrimagnetic resonance frequencies.
One is the use of classical equations of motion; the
other employs spin wave or harmonic oscillator approxi-
mations applied to the secular problem of the coupling
between two large angular momentum vectors. The
two methods are essentially equivalent.! In our opinion,
the second is a little clearer in exhibiting the physical
nature of the approximations.

In this paper we present still a third method which is
more primitive, but in our opinion more intuitive and
less likely to be misleading. We shall assume that the
specimen is spherically cut so that there are no de-
magnetization corrections. Also, we will forget about
anisotropy, except, of course, insofar as it can be
handled phenomenologically by the usual artifice of
an anisotropy field. We will develop our theory explic-
itly for the garnets, but it is readily adapted to any
situation in which the magnetization of one sublattice
is a “captive” one created by the exchange field from
the other.

If the crystal exists in a state of spontaneous magnet-
ization, which is not substantially changed by the
applied field, it will have 2z+41 equally spaced eigen-
values in an applied field, where 2z4-1 is the number of
possible quantized orientations of the magnetization
of the specimen. The quantity # may be called the
fictitious spin and is, of course, an enormous number.

! For references and some discussion of this point, see J. Van
Kranendonk and J. H. Van Vleck, Revs. Modern Phys. 30, 18
(1958). The harmonic oscillator approximation, incidentally, is
more or less similar to that employed by S. Golden and J. K.
Bragg in the mathematically related chemists’ problem of approx-
imating high eigenvalues of the asymmetrical top [J. Chem. Phys.
17, 439 (1949)7.

splitting factors turn out to be more relevant than the true
gyromagnetic ratios. For europium garnet, our theory becomes
essentially that of Wolf. It is shown that Kittel’s formula ges
=2(Myo+Mzrg)/Mr. has approximate validity if most of the
magnetic moment of the raré earth arises from nondiagonal

. matrix elements joining ionic energy levels with separations

58

large compared with the Zeeman energy in the exchange field.
The fact that in certain cases the experimental results are rep-
resented fairly well by Kittel’s formula is hence not necessarily to
be construed as evidence that the rare-earth ion is highly damped
by spin-lattice interaction as in his original model.

We may define quantities #pe, #rg similarly for the
iron and rare-earth sublattice, and we may take
n=nret=nre inasmuch as in the garnets, the moment
of the captive rare-earth lattice is created by the
exchange field largely from the iron, and so the moment
of the rare-earth lattice is practically parallel or anti-
paralle]l to that of the iron. Assumptions fully as
restrictive as those we have just made, and probably
essentially equivalent, are introduced in the two
standard procedures described above when it is assumed
in them that the moduli of the magnetic moment of the
two sublattices are each constants of the motion. The
state of lowest energy is that where the moment is
parallel to the applied field, so that

E=—H(Mret+Mrr).

The effective g factor in ferrimagnetic resonance, when
multiplied by BH, is the spacing of two adjacent
eigenvalues and is, hence,

geit= (Mrvot+Mzg)/[ (nretnre)8],

where 8 is the Bohr magneton.

As the ferric ions are effectively in S states, we may
take npo=Mr./28. To make our expression (1) acquire
a form superficially like that usually employed in the
literature, we define a ratio Ggr by

Gre=Mzre/[ + (nrE)8].

€Y

)

geit= (MvetMze)/ GMrc+Gre ' MRE). 3)

We have taken My.>0, and then Myg is negative for
most of the rare-earth garnets; but up to samarium,
and also for samarium at low temperatures, Mgrx has
the same sign as M pe.

Our problem is now to evaluate ##grg, and our
essential point is that this is a matter of numerology
rather than of calculating true angular momentum.
We assume that in the absence of the exchange and
applied fields, an individual rare-earth ion has a number
of energy levels Er which are separated from each

Then
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other because of the crystalline field and/or spin-orbit
interaction. Each of these levels is in general (2St+1)-
fold degenerate, and we speak of Sr as the fictitious
spin of the level. For spin-orbit splitting in the absence
of a crystalline field, St is, of course, the same as the
inner quantum number J. We use capital letters
throughout for spins and gyromagnetic ratios or
spectroscopic splitting factors which have only a
pseudo-meaning. For a cubic field St can be % or § for
an odd ion, and 0 or 1 for an even one.? The important
thing is that inside each of these degenerate manifolds,
the transformation properties of the angular momentum
and magnetic moment matrices are, except for a
proportionality factor, the same as those for an ion
with an honest spin of Sr. Consequently, we can write

Sr
dnpp=—AY T Me Fruit, (4)

I' M=-Sr

Here Ery is one of the substates into which Er is
decomposed by the exchange field H.x emanating from
the iron sublattice, and the proportionality constant
A is the number of rare-earth ions divided by the
partition function of an ion. The negative sign in (4)
is necessary, as the ferrimagnetic lattice has a negative
gyromagnetic ratio because of the negative sign of
electronic charge, and so the spin of the ferric sublattice
in the direction of My. is negative if My.>0. The
question of sign choice in (2) is eliminated when (4)
is used, since the right side of (4) is negative when the
minus sign applies. To compute M rg we introduce for
mathematical convenience a small applied field H,
parallel to the exchange field. We then can use the
relation

Mgrr=—A4 Zr ZM (——aE/aHo)e“EFM/”. (5)

After the derivative is taken, Ho, may be set equal to
zero, as any applied field is negligible compared with
the exchange one. We now assume that 8H. is small
compared with the splitting of the energy levels Er
produced by the crystalline field or spin-orbit interac-
tion. Then the energy levels can ‘be expressed as a

2 It should, however, be noted that the method of fictitious spin
is rigorous for the case S=3 only if the first-order Zeeman energy
is linear in the magnetic quantum number M, as assumed in our
Eq. (6). Actually, this need not be the case in a cubic field, and
instead it is either necessary to include a term in M3 or alter-
natively to assume that g depends on the magnetic quantum
number M [Cf. A. Abragam and M. L. Pryce, Proc. Phys. Soc.
(London) 63, 409 (1950), and especially B. Bleaney, ibid. 73, 939
and 74, 493 (1959)]. The cubic term gives anisotropy in the
Zeeman effect, though not the susceptibility ; and in the framework
of our isotropic theory, which of necessity neglects the cubic term
in M, the best approximation is probably to use the single g value
which yields the proper susceptibility or, in other words, proper
second moment. It should also be mentioned that for even ions
in a cubic field there can be doubly degenerate levels (Bethe’s type
T'5); since they are void of any magnetic moment, it is immaterial
whether they are formally treated as having a fictitious spin
S=1% or as two coincident levels with S=0,

series

EFM: EF+ (GI‘H0+GI‘Hex)BM
+%[aI‘MH02+ Z&I‘MH(}Hex—}-aFM,HexZ]- (6)

Note particularly that the quantity Gr, which may
be termed the exchange spectroscopic splitting factor,
is not the same as the conventional splitting factor Gr,
since the exchange field acts only on the spin moment,
whereas a true magnetic field acts on the total moment.
(The relation between the two G’s isGr=2(gs— 1)Gr/g.,
where g is the Landé factor of the multiplet component
J of the free ion from which T is derived.) We will
keep only the terms of the first order in the development
of (4) and (5) in the exchange field. With this approxi-
mation, we find from (4) and (5), evaluating > M? in
the usual way, that (2) becomes

Zp (25r+ 1)I:SI‘ (Sr+ 1)Grér+3kT5lrﬁ~2:|6_Er/kT
RE~ )

Sor Gr(2Sr+1)Sp(Sp+1)eEr/eT o

where
ar=>_umarm/(2Sr+1).

It is to be cautioned that formula (7), or even the
expression (4) for the enumeration of states and our
whole concept of fictitious spin for the RE sublattice,
should not be used unless BHx is small compared to
the intervals Er— Eyp separating the various states Er.
Fortunately, this condition is usually met in the rare-
earth garnets, especially at higher temperatures,
where the exchange fields are smaller. It is clear that
(7) cannot be employed for arbitrary values of BH e,
for (7) does not in general reduce in the limit Er— Ep=0
to the value g; for the free ion. (This difficulty does
not arise, however, if the splittings are caused solely
by spin-orbit interactions.) If the crystalline field is
small compared to the exchange fields, it is, of course, a
better approximation to treat the ion as free. In the
intermediate case, there appears to be no simple
formula.

Another difficulty is that, actually, in the garnets
the field is not cubic locally, although macroscopically
the symmetry is cubic. We can, however, regard our
model as the first approximation and treat the local
deviations from cubic symmetry as a perturbation
which we ignore or, rather, relegate to the catch-all of
anisotropy corrections. An alternative procedure, in
case the deviations from cubic symmetry are quite
pronounced, is to treat all levels as at most two-fold
degenerate (Sr=3%) and use for each Kramers doublet
an isotropic G equal to the mean of that for the three
principal local directions.

Equations (3) and (7) are to be compared with the
Tsuya-Wangsness® formula :

gett= (M rot+Mzrr)/ GMretg ' Mrr), (®)

3N. Tsuya, Progr. Theoret. Phys. (Kyoto) 7, 263 (1952);
R. K. Wangsness, Phys. Rev. 91, 1085 (1953).
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and the formula of Kittel:
Zett= (Mrot+MrE)/3Mre. 9)

The quantity g in (8) is the gyromagnetic ratio (in
units of —e/2mc) of the rare-earth lattice, or equally
well, its Landé g factor, as Tsuya and Wangsness did
not consider crystalline fields or more than one multi-
plet component. Comparing (8) and (3), we see that
our formula is similar to that of Tsuya or Wangsness
except that it involves Grg, which we may call a
fictitious gyromagnetic ratio, instead of a real one.

The relation of our formula to the Tsuya-Wangsness
and Kittel ones, and its meaning, will be clearer if we
consider some specific examples:

(i) Gadolinium iron garnet. Here the crystal field
can be considered as negligible compared to the
exchange field, and one has Grg=g=2. Then (3)
reduces to the Tsuya-Wangsness formula, which is
known to work quite well in gadolinium garnet. This is
not surprising, as this is the case where the ions are
least influenced by the crystalline field.

(ii) Europium iron garnet. Analysis of the suscept-
ibility shows that it is a pretty good approximation in
europium to treat the ions as free, the reason being
that the two lowest levels, /=0 and J=1, are unde-
composed by a cubic field. The decomposition of the
levels is then to be considered as due to spin-orbit
interaction, and it is well-known that Eu and Sm are
the two rare earths for which it is necessary to include
more than one multiplet component. The case of Sm
we will discuss elsewhere.

If we neglect the crystalline field, the quantity Grg
is the same as the gyromagnetic ratio g in an exchange
field. In Eu the formula for g is

484 (9X—3)e X (45X —5)e X4+ -
o X (66X4-30e~3% - - -) ’

(10)

where
X=(Eja1—Es_0)/kT=480/T.

This is not quite the same as the expression given in
my book® for the gyromagnetic ratio of Eu but is
obtained by adaptation to the case that the field acts
only on the spin, as discussed by Wolf and Van Vleck.®
Since the denominator of (10) vanishes except insofar
as the upper multiplet components are inhabited, 1/g
is quite small (~0.04 at 300°). As a first approximation,
one can take 1/g=0, and then one has the same formula
as that used by Wolf7 to explain the results of Miyadai®
on ferrimagnetic resonance in the europium garnet.
Thus, the formula which Wolf” employed is, as he

4 C. Kittel, Phys. Rev. 115, 1587 (1959).

5 J. H. Van Vleck, The Theory of Electric and M agnetic Suscepii-
balitzes (Oxford University Press, New York, 1932), p. 256.

6§ W. P. Wolf and J. H. Van Vleck, Phys. Rev. 118, 1492 (1960).

7W. P. Wolf, J. Phys. Soc. Japan 15, 2104 (1960).

8 T, Miyadai, J. Phys. Soc. Japan 15, 2205 (1960); V. Shichijo,
T. Miyadai, and H. Takata, sbid. 15, 530, 1534 (1960).
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observed, the same as that of Kittel, but derived by a
completely different mechanism. Wolf noted that in
europium the state J=0 does not contribute to the
angular momentum. As long as one is dealing with free
ions not subject to crystalline fields, angular momentum
is a measure of the number of states. Thus, though
couched in different physical language, the physical
picture which Wolf uses is basically similar to our own.
By means of (10), we can correct for the effect of upper
states. Unfortunately, this gives a slight correction in
the wrong direction, the discrepancies with experiment
becoming respectively about 4%, 129, rather than 2%,
109, at T'=300°, 500°. These annoying corrections can
be avoided if it is assumed that the level J=1 is split
by the noncubic portion of the field by an amount large
compared to the Zeeman energy in the exchange field.

(ii) Ytterbium iron garnet. Besides Gd and Eu,
this is the only garnet for which the crystalline field
theory of the susceptibility seems pretty well under
control. The lowest level is a Kramers doublet whose
Gr value is moderately isotropic and has approximately
the value Gr=24/7 appropriate to a cubic field.? The
next level is about 580 cm™ up, so that its Boltzmann
factor can be neglected, and (7) becomes

Gre= (24/7)[1+(T/310)]. (11)

The factor 14-(7/310) results from including the
ap part of (7), or in other words, the temperature-
independent portion of the susceptibility, which is
known in YbG both theoretically and experimentally.!
For a free Yb ion, the Landé g factor or gyromagnetic

ratio is
g=8/7, (12)

and this is the value of g to be used in the Tsuya-
Wangsness formula taken literally or naively. Compari-
son of (11) and (12) illustrates the danger of confusing
spectroscopic splitting or fictitious gyromagnetic factors
with true gyromagnetic ratios. As YbIG has a compen-
sation point Mrg=—Mp. near T=0, there is a
temperature at which (8) has a zero denominator if
(12) is used, but this catastrophe does not take place
with (11) in (3).

If one interprets the resonance data of Rodrigue,
Meyer, and Jones' by a formula of type (3), then the
value of Grg which is needed is about 4.0 at room
temperatures and above; while at lower temperatures,
the empirical value of Grg so obtained drops gradually
to about 1.0 at T=0. The experimental error in so
determining Ggrr is considerable; Rodrigue states

9Y. Ayant and J. Thomas, Compt. rend. 248, 387 (1959);
D. Boakes, G. Garton, M. J. M. Leask, and W. P. Wolf, Proc.
Phys. Soc. (London) 74, 663 (1959); J. W. Carson and R. L.
White, J. Appl. Phys. 31, 53S (1960).

10 M. Ball, G. Garton, M. J. Leask, and W. P. Wolf, Proceedings
of the Seventh International Conference on Low-Temperature
Physics (University of Toronto Press, Toronto, Canada, 1960).

11 G, P, Rodrigue, H. Meyer, and R. V. Jones, J. Appl. Phys.
31, 376S (1960).
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(unpublished thesis) that it may be as much as 50%.
Even so, the fit with (11) is not good, though at least
better than with (12). or with the value Grg=
demanded by (9). The reason for the discrepancy is
not clear—whether it is caused by difficulty with
anisotropy corrections, failure to correct for -the
repercussions of the exchange field on the spin of the
iron lattice, or what.

(iv) Kittel’s formula. For certain garnets at high
temperatures, Kittel* has proposed the formula (9)
which is identical with the limit 1/Grg=0 of our
expression (3). His model is, however, quite different
from our own, as he has the rare-earth ion heavily
damped by spin-lattice interaction, whereas we have no
damping and simply utilize the static crystalline field
(and in Sm and Eu, the natural multiplet splittings).
We believe our model is the more plausible. Our
rederivation of essentially his result as a limiting case
by another mechanism under certain conditions we
regard as the main contribution of the present paper.

Our reluctance to interpret (9) as mainly the result
of a damping or spin-lattice process is chiefly because
this interpretation would imply that the spin-lattice
interaction distorts the Zeeman pattern as much as
does the crystalline field, and this does not seem very
reasonble. Also, we have some doubts as to whether the
Landau-Lifshitz damping term used by Kittel is, in
general, an adequate representation of the necessarily
complicated spin-lattice coupling effects.

In a certain sense, however, the difference between
our theory and Kittel’s is a semantic one, and it is
easy to see why we get somewhat similar formulas.
The important thing to obtain his formula is that the
contribution of the rare earths to the number of
eigenvalues of the specimen be suppressed. At the same
time, however, the rare earths must make a substantial
contribution to the magnetization of the crystal, as
otherwise one has the trivial case ger=2. Under such
circumstances the magnetic moment of the rare-earth
sublattice may be said to be semiquenched. One can
immediately understand why (9) usually applies, if at
all, only at high temperatures, for a necessary condition
for semiquenching is that the exchange field be small
compared to the crystalline field, be it static or oscil-
latory, and this condition is more likely to be met at
high temperatures. We prefer to think of semiquenching
not as damping of angular momentum, but rather as

-relegation of the rare earths’ magnetic contribution to
being via second- rather than first-order Zeeman effect.
As already mentioned, this difference is to a certain
extent semantic. There does remain, however, the
question as to whether the semiquenching is a static or
dynamic effect; i.e., is caused primarily by the ordinary
crystalline field or by the modulations of this field by
lattice vibrations. No doubt both effects are present,
and in this sense Kittel’s theory and ours are com-
plementary. However, we wonder whether it would be
possible to have most of the semiquenching caused by

spin-lattice interaction without introducing excessive
real quenching at high temperatures; i.e., suppression
of the rare earths’ magnetic susceptibility when the
temperature is raised and spin-lattice interaction
becomes stronger.

To obtain exactly the Kittel formula with our model,
we would have to have the degeneracy of the inhabited
rare-earth states lifted completely with a decomposition
large compared to BH e. This could conceivably happen
for even ions in sufficiently asymmetrical fields. How-
ever, we doubt if this is the actual situation. In odd ions
there is always the Kramers degeneracy, so that, with
our theory, the Kittel formula would never apply
accurately [barring very fortuitous cancellation of the
various terms in the denominator of (7), for as we
shall see later, Gr can have different signs for different
states’]. In our opinion, the explanation is rather that a
large part, but not all, of the susceptibility often
arises from the nondiagonal part of the magnetic
moment which does not contribute to the number of
states. Furthermore, oftentimes the spectroscopic
splitting factors Gr involved in (7) are quite large.
We thus expect that normally Kittel’s formula is but
an approximation, and so it is experimentally. All told,
on our model one might expect Kittel’s formula to
apply somewhat better to even than to odd ions.
Actually, of the two ions for which Kittel’s formula
holds best—Ho and Er—one is even and one is odd.
Possibly this is evidence for the dynamic rather than
static interpretation, for with overpowering spin-lattice
coupling, though Kramers’ theorem retains its validity,
there are so many energy levels that it ceases to be of
interest and the even-odd distinction disappears.
Another argument.in favor of the dynamic view can be
made from considerations of linebreadths, since the
damping model nicely explains the anomalously large
linebreadth over a certain temperature interval when
small amounts of certain rare earths are added to YIG.
It seems clear that the anomaly occurs in the transition
region where the exchange field becomes large enough to
overcome semiquenching. Such a situation can arise
with either the static or oscillatory crystal fields, but
whether the dependence on temperature is critical
enough with the static model is uncertain.

We should not forget to mention the possibility that
sometimes the denominator of our expression (3) can
be larger than in Kittel’s formula (9), either because
Gre<0; Mre<0, or Gre>0; Myre>0. The expression
(7) for Ggre can, indeed, in principle, on occasion be
negative, since some states carry negative Gr. An
example of a negative Gr is provided by the I'y triplet
of a J=3 level in a cubic field, for which Gr=—4g;.?
We doubt, however, that negative values of Ggg are
very common, The situation Mgrr>0, however, arises
in the first part of the rare-earth sequence, since here the
exchange field works in the opposite direction from an

12 A, Abragam and M. Pryce, Proc. Roy. Soc. (London) A205,
135 (1951); J. H. Van Vleck, Physica 26, 544 (1960).
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applied field, and, in consequence, the coupling between
the rare-earth and iron sublattices, though basically of
antiferromagnetic sign, makes the moment of these
sublattices parallel rather than antiparallel.’®

In closing, we should emphasize that the present
paper makes no pretense of including anisotropy, and
it can be regarded rather as an attempt to see how far
one can push the theory with a purely isotropic model.
Of course, the effects of anisotropy are particularly

13V. Jaccarino, B. T. Matthias, M. Peter, H. Suhl, and J. H.
Wernick, Phys. Rev. Letters 5, 251 (1960); G. Goldring, M.
Schieber, and Z. Vager, J. Appl. Phys. 31, 2057 (1960); W. P.
Wolf, bid. 32, 742 (1961).
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important at low temperatures. The theory usually
does not appear to work too well at low temperatures if
the correction for anisotropy is made in the usual
way by introducing an anisotropy field. The question
of how far it is warranted to include the anisotropic
part of the crystalline potential simply through this
artifice is a subject into which we do not want to
enter here.
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A simple calculation is presented of the effects of lattice dynamics on interference between Mossbauer
processes and corresponding atomic processes, i.e., between Mdossbauer and Rayleigh scattering, or between
internal conversion of Mdssbauer radiation and the photoelectric effect. When the energy of the emitted
v ray or electron is not measured, it is necessary to sum over all possible final states of the lattice. The
interference contribution is found to be attenuated by the same “Debye-Waller” factor as the ordinary
Mossbauer contribution, depending only upon the momentum of the incident v ray. If the energy of the
emitted v ray is measured (e.g., by a Bragg scattering experiment), the atomic contribution is attenuated
by the usual x-ray Debye-Waller factor, depending upon the momentum transfer, the Méssbauer contribu-
tion by the square of the usual Mdssbauer factor, and the interference term by the geometric mean of the

atomic and Mossbauer factors.

T is now generally known'—3 that the effects of lattice
dynamics in Mdéssbauer experiments are expressed
very simply in terms of the fraction f of gamma rays
emitted from the source without energy loss due to
recoil. This is the Debye-Waller factor?

J=I(ilexp(—ik-X1)[9)], 1)

where |7) is the initial state of the lattice, %k is the
momentum of the gamma ray, and X, is the coordinate
of the nucleus emitting the gamma ray. Interest has
recently been expressed in interference between atomic
effects and the Mossbauer effect; e.g., between Ray-
leigh and Mdgssbauer scattering,® or between atomic
photoelectric absorption and Méssbauer absorption
followed by emission of a conversion electron.® The
purpose of this note is to point out that the effect of

L Proceedings of Illinois Conference on the Mdissbauer Effect,
edited by H. Frauenfelder and H. Lustig (University of Illinois
Urbana, Illinois, 1960).

2 H. J. Lipkin, Ann. Phys. 9, 332 (1960).

3 C. Tzara and R. Barloutaud, Phys. Rev. Letters 4, 405 (1960).

41. Waller, Ann. Physik 79, 261 (1926); W. Marshall and J. P.
Schiffer, Atomic Energy Research Establishment Report, 1959
(unpublished).

5 P. J. Black and P. B. Moon, Nature 188, 481 (1960).

6§ L. J. Tassie (to be published). See also reference 1, p. 25.

the lattice dynamics on the interference term is given
by the same factor f which appears in the direct Méss-
bauer term.

Let us consider the scattering of a gamma ray of
momentum 7%k; into a state of momentum 7%k, by an
atom whose motion in the lattice is described by the
coordinate X;. Let M be the probability amplitude
for the process due to the Mdossbauer effect, and let 4
be the amplitude for Rayleigh scattering by the atomic
electrons. Then the scattering cross section will be
given by ’

oo {[ 4|+ M[*+2CRe(4*M)}, 2

where C is a factor expressing the degree of coherence-
of the two elementary processes. This factor C is inde-
pendent of the lattice and is not considered further here.

We wish to investigate the effect of the lattice dy-
namics upon Eq. (2). From ordinary Méssbauer and
Rayleigh scattering we know that the direct Méssbauer
term |M|? is proportional to f, and that the direct
Rayleigh term |A4|? is independent of the lattice dy-
namics. The dependence of the interference term upon
the lattice is not evident, a priors.

The coherence properties of the final lattice states



