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A variational procedure is adopted to determine the energies of the levels of the highest space symmetry
type in Li® and Li’. The trial wave functions employed take into consideration the existence of cluster
structures in those nuclei. With a simple two-body force, it is shown that the computed energies of the
various states are in reasonable agreement with experiment. The 2Fg level in Li7, as yet undetermined
experimentally, is found to have an excitation energy of about 5.6 Mev and a rather large level width. The
calculation also indicates that to explain the splitting of levels in those nuclei, a constant two-body spin-orbit

force of the pure neutral form is inadequate.

I. INTRODUCTION

N two previous papers'? (hereafter referred to as I
and II), we have examined the behavior of the low-
lying levels in Be®, Li?, and He® within the framework
of the cluster model.? The results obtained were gener-
ally quite encouraging. In addition to producing a
satisfactory fit to the energies of the various levels, the
model also presented a qualitative picture of the level
widths as well as a unique means of labeling these levels,
i.e., parity, angular momentum, etc. In this paper, we
continue the study by investigating the nucleus Lif,
with the hope that with the same two-body force as
previously employed, we can obtain good agreement
with the experimental binding energies.

In addition, we have re-examined the nuclei Li’ and
Be” with a three-parameter variational wave function.
Inasmuch as we desire to determine the energies of all
levels of the space symmetry type [3], a spin-orbit term
of the type introduced in II is also incorporated in our
two-body force. The reasons for refining the calculation
in I in the manner described are twofold. First, it is of
major interest to determine whether the additional
variational parameter drastically affects our results and,
second, it would be interesting to understand why the
(5—) level of the 2F doublet has so far escaped detec-
tion, if indeed it exists at all. It is quite certain now that
the (3—) level at® 7.47 Mev in Li" is of the term 2¢Pj
and hence, is not a member of the 2F¥ doublet.® Meshkov
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and Ufford” inferred from the spectra of Li® that this
latter level (2Fj) should lie somewhere around 6.5 Mev,
whereas Marion® speculated that the difficulty in de-
tecting this level experimentally can probably be at-
tributed to a large level width. Since our calculation
presents a rough estimate of level widths, we are thus
encouraged to re-examine these nuclei in greater detail.

The level structure of Li® and Li” and all other p-shell
nuclei has been extensively studied by Inglis® and
Kurath!® in the intermediate-coupling picture. By
varying essentially only two parameters, the exchange
energy integral and the intermediate-coupling parame-
ter, these authors showed that the level schemes of the
p-shell nuclei can be fairly well reproduced. From a
fundamental point of view, however, it seems more de-
sirable to calculate both the binding energies and the
level spacings from the two-body interaction directly.
To date, several authors! have attempted such a calcu-
lation; however, their method was restricted in the
sense that they incorporated only the lowest shell model
configurations, i.e., (1s)*(1p)». More realistically, the
wave function should not be limited to those configura-
tions in which all nucleons outside of the closed shells
are in the energetically lowest, incomplete shell. Rather
one must employ fairly accurate wave functions, and
this certainly implies mixing of many excited configura-
tions. This latter view is indeed supported by the work
of Feingold'? and Lyons" on the level scheme of Li® and
by our work on He® and Li%.2

Our basic aim is, therefore, to calculate the energies
of the various low-lying levels in Li® and Li’ by using
information about the nucleon-nucleon interaction as
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deduced from data on the two-body system directly. We
shall employ a variational method, with the wave func-
tions prescribed by the cluster model recently pro-
posed.®* As the basic ideas of this model have already
been discussed elsewhere,® we shall not describe it here.
It suffices only to mention that experimental evidence
for the presence of cluster structures in light- and
medium-weight nuclei seems to be rather abundant.!®
This model is especially suited for calculation in light
nuclei, since it is formulated in such a manner as to
present an obvious correspondence between certain ex-
perimental facts and a particular eigenfunction of a
complete cluster wave-function system. Namely, con-
sider a state of a nucleus which decays primarily into
two composite particles, a prudent description of this
system would be the proper two-clusters configuration,
with the actual details being determined by the relative
motion engaged in by the two clusters. Of course, the

suitable choice of cluster wave-function system can

change from level to level.!®17 For instance, for He® it
is found in IT that for the ground and first excited states,
an alpha cluster plus a neutron representation is most
suitable for their description, while for the state at 16.69
Mev excitation, a triton cluster plus a deuteron cluster
representation would be more convenient, since in their
appropriate representations, the states can be described
essentially by a single antisymmetrized cluster wave
function. As to the question of how to choose the most
appropriate cluster function system for a particular
level—one must normally employ a trial-and-error pro-
cedure, although, in many cases, insight can be gained
by studying experimental information about the level,
such as its reduced width for a particular decay channel,
its Coulomb energy behavior,!® and so on.

Also of interest is the question as to what is the exact
form of the two-body spin-orbit force. Specifically, can a
neutral spin-orbit force adequately explain the level
splittings in all light nuclei or is it necessary to-include
a symmetric component?® By an analysis of single-
particle and single-hole splittings in He® and N5
Elliott and Lane have shown that the neutral form is
presumably the more appropriate one. On the other
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hand, Abraham? concluded from the 2P splitting in Li’
that the symmetric term must also play an important
role. These contradictory conclusions, however, were
based on a simple shell model calculation with a con-
figuration (1s)*(1p)”. Since our He?(Li®) calculation
indicated that the effect of mixing in higher configura-
tions is quite significant, the conclusions of the above
authors may be considerably modified by this latter
complication. Thus, there remains the definite need to
determine whether a constant two-body neutral spin-
orhit force can successfully account for all the spin-orbit
splittings in He?®, Li% and Li".

In the next section, a brief description of the two-body
force and of the method of calculation will be presented.
Sections IIT and IV are devoted to the explicit calcula-
tions of Li® and Li7, respectively. In this investigation,
we have only considered levels of the highest space
symmetry type, i.e., [A\]=[3] for Li” and [A]=[2] for
Li®. Finally, in Sec. V, we summarize and discuss the
results of the present investigation, together with results
taken from I and IT on He® and Be®. Also, in this section,
a rough indication of how to extend our method of
calculation to heavier nuclei is presented.

II. METHOD OF CALCULATION

The procedure for evaluating the energy of a level has
been discussed in I and IT; hence, we shall present only
a brief review here. We compute the energy by the usual
Ritz variational method; that is, we minimize the

expression
o f VFHVdr / f ¥*udr, (1)

with respect to all parameters in the variational wave
function ¥. In Eq. (1), H is the Hamiltonian operator
and has the form

= (-w/2M) 2

all particles

Vit T Vi, @)
all pairs
with V;; being the two-body potential.

For the computation of E, one should certainly use a
realistic two-body force w1th hard core. However, to
compute with such a force would be a nearly prohibitive
procedure; therefore, we shall in this investigation use
an approximation method which simplifies calculations
greatly. Essentially, what we do is to separate the total
energy into two parts, one part pertaining to the in-
ternal energies of the clusters and the other part relating
to the interaction energy between the clusters. To
compute the interaction energy, we make the assump-
tion that since the clusters in a light nucleus would
normally be quite far apart, we can compute it by
employing a simple two-body force of nonsaturating
character, but one which is in accord with all low-energy
two-nucleon phenomena.?? As for the internal energies,

2t G. Abraham, Nuclear Phys. 1, 415 (1956).
22 Since we include only central forces, the static moments of the
deuteron, of course, cannot be properly reproduced.
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it is assumed that the same simple force will suffice for
the deuteron cluster case, while for the cases of the alpha
and triton clusters, a more realistic force with hard core
should really be used. In this work, instead of actually
computing the internal energies of the latter clusters,
we use experimental information about the three- and
four-body bound systems and infer the compressibilities
of the clusters from a calculation of Mang and Wild.?
The explicit expressions for the internal energies of the
alpha and triton clusters as a function of their cluster
sizes will be given in the next section.

Since the present investigation is of an exploratory
nature, we shall use a very simple Serber force which fits
the two-nucleon data to about 40 Mev to compute the
interaction energy. It has the following form?¢:

Vij=—Voexp(—wrii){w(14+P;)+b(Py*—Pi7)}
—Visexp(—M?) (r;—1;) X (p:—p;)
(oito)hi™/24ee;5/ri,  (3)

with e;=1if 7, 7 are protons and O otherwise. In Eq.
(3), Vy=068.6 Mev, k=4.16X10% cm~2, w=0.41, 5= 0.09,
and P;", P;°, P;™ represent the space, spin, and
isobaric spin exchange operators, respectively. The
range N and depth Vs of the neutral spin-orbit po-
tential will be discussed when the results of our calcula-
tions are presented.

III. ENERGY LEVELS OF Li®
A. Qualitative Description

For the discussion of the spectrum of Li®, it is proper
to choose an alpha cluster plus a deuteron cluster
representation. The wave functions of this representa-
tion have the symbolic form

V= A{®;(2)®r(d)x(Ra—R0)}, 4)

where ®;(o) and ®,(d) refer to wave functions which
describe an alpha-cluster in its jth state and a deuteron
cluster in its kth state, respectively, and x(R,—Ry)
pertains to the relative motion between the alpha and
the deuteron clusters. The operator 4 signifies the com-
plete antisymmetrization of the wave function with re-
spect to the exchange of all pairs of particles.

We begin by describing the triplet states of Li®
(I'=0, S=1) with excitation energies less than 6 Mev.
For those levels, a description with unexcited alpha
cluster and triplet deuteron cluster should be adequate.
Since in the single-particle shell model picture, two
nucleons are in the 1p shell, the relative oscillation func-
tion x (R,—Ry) must be of second order with L=0 or 2
in accordance with the Pauli exclusion principle. The
L=0 configuration should give rise to the lowest state,
since in this configuration, the clusters are, on the aver-
age, closer to each other. Thus, the ground state of Li¢

2 H. J. Mang and W. Wild, Z. Physik 154, 182 (1959). For a
discussion of the applicability of their results to our calculations,
see II.

2 K. Lederer, Diplomarbeit, Munchen, 1957 (unpublished).
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has the assignment (1%) in agreement with experimental
finding. On the other hand, since there is a spin-orbit
potential, the degenerate L=2 states are split into three
states with /=3, 2, 1, with the /=3 state having the .
lowest energy. This is again the observed level sequence.
We like to mention here that the description of these
T'=0 states by the assumed configurations finds strong
support from the experimentally determined values of
reduced level widths. It was found that for all those
L=2 levels, the reduced widths leading to the decay
into a deuteron and an alpha particle are in the neigh-
borhood of the Wigner limit, suggesting a high degree of
a—d configuration in the wave functions.2s

Now we consider the singlet states of Li¢ (S=0, T=1)
with excitation energiesless than 6 Mev. Here x (R.—Ry)
must again describe motion of the alpha cluster relative
to the singlet deuteron cluster with orbital angular mo-
mentum O and 2. But in the singlet case, since the

. deuteron cluster has zero spin angular momentum, there

is only one state for each value of L. Therefore, the only
low-energy singlet levels of Li® with excitation energies
less than about 6 Mev are the J=0 and J=2 levels,
which is again in complete agreement with experiment.

In the above discussion and the ensuing quantitative
treatment, we have assumed that all the levels can be
described by a pure configuration in the cluster wave-
function system; in other words, we have adopted, in
first approximation, the Z—S coupling scheme by as-
suming that both L and .S are good quantum numbers.
With the inclusion of a spin-orbit term in our two-body
force, it is of course well-known that neither .S nor L is
good. Thus, our assumption of a pure configuration can
only be approximately valid. For instance, for the
ground state of Li® the spin-orbit term mixes the state
1851 with the states ¥*D; and " P;. However, it has been
shown that for nuclei in which a new shell has just been
started, the L—S coupling scheme should represent a
fairly good approximation.® For Li® further support in
favor of the L—.S model can also be found in the com-
parison between the theoretically calculated and ex-
perimentally observed values of the magnetic moment
and quadrupole moment.!* Thus, our simplifying as-
sumption of a pure configuration in our trial wave
function should introduce a relatively small error into
our calculation.

We would speculate that the group of levels at 6.63,
7.40, 8.37, and 9.3 Mev® arise from the motion of an
alpha cluster relative to a two-nucleon system in an
internal p state. Then in our picture, x (R.—Rg) would
be of first order with L=1, and those four levels can be
identified with the assignment 3P, 1P, 3P, and $P,.
From the fact that two nucleons interact very weakly in
a relative p state if a two-body force of the form (3) is
assumed, we can easily estimate in a rough manner the
approximate location of these levels on the energy scale
by considering the experimental binding energies of He?

% A. Galonsky and M. T. McEllistrem, Phys. Rev. 98, 590
(1955).
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and Li® relative to that of an alpha particle plus a free
nucleon. Such a rough estimate yields the value 6.6 Mev,
indicating that our assumed configuration for this group
of levels is probably correct.

From our calculations in I and II, we can also predict
that the alpha-deuteron configuration in relative 3p and
3f states cannot properly describe resonant states.
Thus, the levels recently reported to lie around 12.5
Mev?® should be described by a configuration in which
the alpha cluster is broken up.

B. Quantitative Treatment

As mentioned in the Introduction, we shall calculate
only the energies of those levels with the highest space
symmetry, i.e., the first six levels of Lif. The group of
levels at about 7 and 12.5 Mev will not be quantitatively
treated in this investigation.

For the trial wave function, we choose

W= A{y(1234; 56)£(1234; 56)}

o 4 a 6
=A[exp Oy ,,) exp(——z pf)
2 i=1 2 i=b

XR"Y 12u(R/R) exp(—28R)E(1234; 56) } 5)

where £(1234;56) is a charge-spin function, and
¥(1234; 56) denotes the space part of the wave function
written in the notation of Edwards.?” This notation
simply means that y describes particles 1, 2, 3, 4 in the
alpha cluster and 5, 6 in the deuteron cluster. Also in
Eq. (5), '

e.=r.—R., 0;=r;—Ry, (6)
and
R—R.—R., 1)
with
4 6
Ri=1>Xr, Ri=32 1. (8)

Our particular choice of the wave function is dictated by
our desire that when a=a&=g, it reduces to the usual
shell model function describing the lowest configuration
(15)*(1p)? in an oscillator potential well of width
parameter a.

The particular choice of #» and L in the trial wave
function has been explained in detail in Sec. ITL A; that
is, n=2, L=0 for states with terms %S, 1Sy, and n=2,
L=2 for states with terms 3Ds, 3Dy, 3Dy, 1Ds.

The method of computing the expectation value of the
Hamiltonian operator has been discussed in I and II;
hence, we shall present here only the general form of the
results, while listing the various potential integrals in
the Appendix. The normalization factor N? kinetic

26 J7, Ajzenberg-Selove and T. Lauritsen, ‘‘Energy levels of light
nuclei (4 =35 to 20),” Tech. Rept. (1960). )
27§, I. Edwards, Proc. Cambridge Phil. Soc. 48, 652 (1952).
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energy (T) and potential energy (V) can be easily shown
to have the following forms:

Ne—o6! f (o 2-F) "ol 9)
in which
Yo=y(1234; 56),
=y (5234; 16),
Ya=y(5634; 12),

(10)

with the subscripts 0, 1, 2 denoting no-exchange, one-
exchange, and two-exchange, respectively.

(T)= (12/2M) (2n+3B-+9a+3a)
o i n(n+1)—L(L+1)
oM 1.33N72

f (Yo 201-H)*
1 721

X—odr— 61— — f (Yo 20 +n)*
R? 2M N2 :

X@ L pita g oA RIadr, (1)
)=V (V.o
= (6!/N2)[ f¢0*[w(12F12+6F15+2F56)
+ed (2F ) JWodr
- f\//l*[w(—- 6F 15+ 12F o3+ 8F 15+ 24F 15+ 2F o)
+ 10(8F 15— 4F 5) Wodr
+f¢2*[w(4F12+16F13—- 2F15+2F3,)
+e1b(4F 10— 8F 13+4F 15+ 2F34) Wodr }
+(6 !/1\72)62{ f Vo 4Grhodr

) f U (Grst-Gas+-Gust-G)odr

+f¢2*(4615)¢0dr}, (12)

where

F,ﬁjz—Ifo exp(—xriﬂ), (13)
and_
Gi=—Visexp(—=M ) (r,— 1) X (pi—p;) L, (14)

with the subscript z denoting the z component of the
expression within the bracket. Also, in Eq. (12), ¢ is
equal to 1 for triplet states and —1 for singlet states,
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and e, has the value 1, —%, —32 for the states 3Dj, 3D,,
3Dy, respectively, and zero for all other states considered
in this investigation. Coulomb energy has not been in-
cluded in Eq. (12); it will be computed in an approxi-
mate manner and discussed in a later paragraph.

The internal energy of the deuteron cluster is calcu-
lated with the Serber force given by Eq. (3), while for
the energy of the alpha cluster, we adopt the expression

Eo=—283+33.4(1—0.96/y): Mev,  (15)

where for computational purposes, we have redefined
the variational parameters as

x=B/a, y=«/a, (16)

The constants in Eq. (15) are so chosen that the alpha
particle binding energy and rms radius are given cor-
rectly. Also, the compressibility implied by Eq. (15) is
consistent with the nuclear compressibility determined
from analyses of the isotope shifts.?

Since the Coulomb interaction is a long-range opera-
tor, we shall calculate the interaction Coulomb energy
between two clusters with an unantisymmetrized wave
function, i.e.,

ECou1=[262 il ¢o*(1/R>¢odr] / [ [ \Po*¢odf]- an

A check with an exact calculation for one particular set
of parameters indicates that Eq. (17) overestimates the
interaction Coulomb energy by about 109,

With Egs. (9), (11), and (12), we are led to an ex-
pression for the expectation value of the Hamiltonian in
terms of the variational parameters x, y, and z. To
obtain the interaction energy between the clusters, we
must further subtract off from the aforementioned ex-
pression the internal energies calculated with the Serber
force and add to it the interaction Coulomb energy.
Finally, by adding the deuteron cluster internal energy

z=a/a.

2 D. L. Hill, Encyclopedia of Physics, edited by S. TFliigge
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 203.
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TastLE I. Calculated energies for the first six levels in Li®,

Calculated
energies
Terms X Y Z (Mev)
T=0 35y 0.76 0.96 1.52 —30.0
3D 0.86 0.96 1.51 —27.0
3D, 0.71 0.96 1.33 —24.7
3Dy 0.52 0.96 1.16 —23.5
T=1 1So 0.75 0.96 0.98 —24.4
1D, 0.68 0.96 0.80 —21.7

Eg and the alpha cluster internal energy E,, we obtain
the energy of the state in question, which must now be
minimized with respect to all the variational parameters.

The complete numerical analysis was performed on an
IBM 650 computer. The interaction energy of each
state as a function of the parameter x with y and z at
their optimizing values is plotted in Figs. 1 and 2 (Fig. 1
for T=0 states and Fig. 2 for =1 states). For the
range parameter A of the spin-orbit potential, we have
chosen the value 2.657X10%® cm~2 used by Hochberg
et al.® in their analysis on the scattering of nucleons by
alpha particles. The depth Vs is then adjusted to yield
the correct D3;—3D, splitting. With this procedure, Vs
is found to be equal to 1.90 Mev, comparing to the value
of 4.5 Mev attained by Hochberg et al. Shorter ranges
with A equal to 4.16X10? cm~2 and 5.663X10% cm™2
have also been tried, the corresponding depths then turn
out to be 3.91 and 7.08 Mev, respectively.

The results for the total energies of the various states
and the optimizing values for the variational parameters
are listed in Table I. In this table, the values listed are
obtained with the parameters A and Vs of the spin-
orbit potential having the values 2.657X10% cm™2 and
1.90 Mev, respectively. For other choices of the latter
parameters, the results are slightly different; the differ-
ence is, however, so small that it is not worthy of listing.

T T T T T T T T

50|— Li® Te1 _
40

30

INTERACTION ENERGY (MEV)

-0 | | | | | | I I I
0O ol o0z 03 04 05 Qs 07 08 03 10

SEPARATION PARAMETER X

F16. 2. T=1 states of Li® with y and z at their optimizing values:
(&) 'S0, (B) 1D

2 S. Hochberg, H. S. W. Massey, H. Robertson, and L. H.
‘Underhill, Proc. Phys. Soc. (London) A68, 746 (1955).
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F1c. 3. Interaction energy as a function of the separation
parameter for the alpha-deuteron configuration with #=3,

Using the cluster wave function (5) and the values of
the variational parameters in Table I, we have also
computed the rms radius of Li® in the ground state from
the expression

Rems= [ (%)f(lﬁo—z%-*-\//z)*

X[H(S p2+4R) Wadr |, (18)

=1

and obtained 2.02 fermi as compared with the 2.70
fermi found by the electron scattering experiment.*

To corroborate our contention that the configuration of
an alpha cluster in relative 3p-state motion (r=3, L=1)
with an s-state deuteron cluster cannot properly describe
a resonant state, we have performed the desired calcula-
tion including the two-body central potential only and
determined the interaction energy as a function of the
separation parameter x, which is plotted in Fig. 3. We
note that these curves possess absolutely no trace of a
relative minimum, indicating the absence of resonant
states with such configurations.

IV. ENERGY LEVELS OF Li’ AND Be’
A. Qualitative Description

To describe the states with the highest space sym-
metry in Li’, it is most convenient to use an alpha

3 R. Hofstadter, Revs. Modern Phys. 28, 214 (1956); G. R.
Burleson and R. Hofstadter, Phys. Rev. 112, 1282 (1958); N.
Meyer-Berkhout, K. W. Iord, and A. E. S. Green, Ann. Phys.
(N. Y.) 8, 119 (1959).
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cluster plus a triton cluster representation. In the first
approximation, these states can then be described by a
pure cluster configuration in which neither the alpha
cluster nor the triton cluster is excited. Since, in the
single-particle shell model picture, three nucleons are in
the 1 p-shell, the relative motion between the clusters
must be an oscillation of third order with L=1 or 3 to
comply with the Pauli exclusion principle. The L=1
configuration gives rise to the 2P doublets, while the
L=3 configuration yields the F states. This predicted
structure is in agreement with the experimentally de-
termined level scheme.

Again, the adoption of the L—.S coupling scheme finds
support from the results of the intermediate-coupling
calculation.’® For Li’, the rather small value of the
intermediate coupling parameter indicates that the
coupling is near the L—.S limit.

From a study of the excitation energies of the mirror
levels in Li’” and Be’,'® we can conclude that the (§—)
level at 7.47 Mev in Li7 (7.18 Mev in Be’) must es-
sentially have a different structure from that of the 2P
and ?F doublets.® Thus, for its description, it is more
convenient to choose a Li® cluster plus a neutron
representation,® since, in this representation, this state
can be described in first approximation by a pure
configuration, i.e., an unexcited Li® cluster and a
neutron in relative 1p-state (r=1, L=1) motion. With
such a description, this state is then a member of the *P
multiplet, in agreement with the predictions of many
other authors.®—3

The existence of a broad positive-parity level around
6.6 Mev in Li7 53 is rather difficult to explain in our
picture. In the Li® cluster-plus-neutron representation,
this state would mainly be described by a relative
2s (n=2, L=0) motion between the clusters; thus,
energetically, it is expected to lie above the (3—) level
at 7.47 Mev.* In fact, from our experience of cluster
model calculations, we would even suspect whether this
configuration could properly describe a resonant state.
Recent failure in finding this level experimentally by the
(d,p) reaction on Li®3% also seems to indicate that the
presence of this level may be seriously in question.
Theoretical computations are now being undertaken to
prove or disprove its existence.

B. Quantitative Treatment

As we shall only calculate the energies of the 2P and
2F doublets, we choose the trial wave function in the

31 This conclusion can also be reached by studying the various
reduced partial widths of this level.

3 This is equivalent to an alpha cluster plus deuteron cluster
plus nucleon representation,

3 C. A. Levinson and M. K. Banerjee, Ann. Phys. 2, 471 (1957).

3¢ This corrects a mistaken statement in I wherein we asserted
that this state lies lower than the (§—) level at 7.47 Mev.
(13568;). W. Hamburger and J. R. Cameron, Phys. Rev. 117, 781

960).
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form

W= A{y(1234; 567)£(1234; 567)}

o 4 a v
=A[CXP = 2 sz) exp{ —— 22 sz)

i=1 2 =5
6
XR"Y 1 (R/R) exp(—;ﬁRZ)é(IZSZL; 567) } (19)

which again reduces to the usual shell model wave
function describing the lowest configuration (1s)4(1p)?in
an oscillator well of width parameter a, if 8 and & are set
equal toa. Alsoin Eq. (19), all quantities have analogous
meanings to the corresponding ones in Sec. ITI B ; hence,
they will not be further explained.

The quantity » will assume the value 3 as explained in
Sec. IV A, while the orbital angular momentum
quantum number L will take on the values 1 and 3 for
the 2P doublet and the 2F doublet, respectively.

With the wave function (19) and the two-body force
(3), the normalization factor N2, kinetic energy (7°) and
potential energy (V) can again be easily calculated.
They have the following forms®®:

Ne=7) f (Wo— 31t odr,  (20)

where
Yo=1(1234; 567), ¢»=y(5634;127),
Yi=y(5234; 167), ys=y¢(5674; 123),

with the subscripts 0, 1, 2, 3 denoting no-exchange, one-
exchange, two-exchange, and three-exchange, respec-
tively.

2y

72
(Ty=—-(2nB+3B+9a+6&)
2M

. 7 n(n+1)— L(L+1)
oM 12N2/7

f (o= 30— ) *
1 nro1

X —odr— T — f Yo 3Yr+-3pa— ) *
R2 2M N2

4 7 12
x (a2 S pi @Y p,-2+7ﬁ21e2)¢0d7. (22)
=5

=1

M=V oy+(Vs)

- (71/N2){ f Vo' [w(12F 12+ 9F 15+6F ) Wodr

- fllq*l:‘lt'(— ()F15+ 18]—"23“]'24]?](.

36 The potential integrals for the limiting case of 2=1 have
already been given in I; hence, they will not be listed in the
Appendix.
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+36F 15+6F 5-+6Fe;) Wodr

+ f Vo (= 6F 15 +-12F 15+ 24F
~3F5+-48F 134-6F 35) Wodr

- f Vo[ (3F 15 12F 13-+ 12F,) Jodr
+(7 !/Nz)ézflil/o*(ZGls)klfodT .

- f i (Gus--2Gs-+Gas-+2Gasudr

+ f P (4GsF2G o
_f¢3*(3G15—G45)¢0dT , (23)

in which F;; and G; are defined by Egs. (13) and (14).
Also, e;is equal to 1, —2, 1 and —4 for the 2Py, 2P;, 2Fy/,
and ?F states, respectively.

The internal energy of the alpha cluster is given by
Eq. (15), while that of the triton cluster is represented
by the expression

Ep=—85+8.6(1—1.41/y)* Mev, (24)

where, again, the constants are so chosen that the triton
binding energy and rms radius are given correctly.?
The complete numerical analyses can now be per-
formed with exactly the same procedure as outlined in
Sec. ITI B. The interaction energy of each of the four
states as a function of the parameter x with y and z at
their optimizing values is plotted in Fig. 4. With the
range parameter A of the spin-orbit potential set equal
t0 2.657X10% cm™2 it is found that a depth Vg of 1.66
Mev will produce the proper 2P splitting. This value of
Vs is somewhat smaller than that needed to account
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3 B. C, Carlson and I, Talmi, Phys. Rev. 96, 436 (1954).
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Fi1c. 5. Spin-orbit interaction energy in Li7 as a function of the
separation parameter with y and z at their optimizing values:
(a) 2Py, (b) *Fupa.

for the splittings in LiS. Other ranges at A equal to
4.16X10% cm=2 and 5.663X10% cm™ have also been
tried, the corresponding depths are then calculated to be
3.78 and 7.03 Mev, respectively, again smaller than the
corresponding values in Li®.

The behavior of the interaction spin-orbit energy as a
function of x for the state 2P; and the state 2Fy is
plotted in the graphs of Fig. 5. For these curves, A and
Vis are set as 2.657X10%® cm™ and 1.66 Mev, re-
spectively.

The results for the total energies of the various states
in Li” and the optimizing values for the variational
parameters are listed in Table II. In Table III, we list
the excitation energies of the 2Py, 2Fy;, and 2F levels in
both Li” and Be’. We note that the calculated (3—)
level occurs at an excitation of 5.96 Mev in Li” and 5.85
Mev in Be’. Taking into account the fact that our
variational wave function overestimates the excitation
of the 2F, level by about 0.3 Mev, we venture to say
that the actual locations of the (§—) levels are at about
5.6 Mev in Li” and 5.5 Mev in Be’.

To discuss the property of the 2F; level, we note that
in Fig. 4, curve (d), which exhibits the behavior of the
interaction energy of this level, has a very shallow
relative minimum, which is a consequence of the fact
that in this state, the spin-orbit interaction is relatively
strong and repulsive. By studying the correlation be-
tween the depths of the relative minima and the known

level widths of many other levels considered in our .

cluster model calculations, we can conclude, although

Tasre II. Energy levels of Li”.2

Calculated
energies
Terms X Y Z (Mev)
2P 0.65 0.96 0.80 —374
2P 0.61 0.96 0.79 —36.9
2f075 0.59 0.97 0.74 —32.5
R 0.52 0.98 0.70 —31.5

a Computed with A =2.657 X1025 cm~2 and Vis =1.66 Mev.
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TasLE III. Excitation energies of levels in Li7 and Be’.»

Excitation energies

Excitation energies
in Be?” (Mev)

in Li7 (Mev)

Calcu- Experi- Calcu- Experi-
Terms lated mental lated mental
2Pg/s 0 0 0 0
2Py 0.48 0.478 0.44 0.431
2Fq9 494 4.63 4.89 4.54
2F 59 5.96 5.85

a Computed with A =2.657 X1025 cm~2 and Vs =1.66 Mev.

only in a qualitative manner, that the level width of
this (§—) state must be quite large, perhaps in the
neighborhood of 1 Mev or so. This large level width,
together with the fact that there are other levels of
similar widths around, makes the experimental de-
termination of this level rather difficult.’®* The most
promising way to explore this level experimentally
seems to be by H?(He?®) —He* scattering; this is so, since
this level is energetically incapable of decaying into Li®
plus a nucleon, and reactions such as (d,p) on Li® are
not suitable for the study of ?F levels.

Finally, we have also computed the rms radius of the
ground state of Li” from an expression similar to Eq.
(18). We obtain a value 2.28 fermi as compared to 2.71
fermi found by the electron scattering experiment.*

V. SUMMARY AND DISCUSSION

In this section we present an analysis of all our cluster
model calculations performed to date. The complete
final results along with the appropriate experimental
values are tabulated in Table IV.

TasrLe IV. Summary of results.?

]Ecalc Eexp Ecalc_‘ Eexp
Nucleus T J= (Mev) (Mev): (Mev)
He5 3 3 —25.4 —27.3 1.9
i+ —83 —10.6 2.3
Li¢ 0 1+ —30.0 —32.0 2.0
34 —27.0 —29.8 2.8
24 —24.7 —27.5 2.8
14+ —23.5 —26.5 3.0
1 0+ —244 —284 4.0
24 —21.7 —26.6 4.9
Li? 1 32— —37.4 —39.2 1.8
3— —36.9 —38.7 1.8
i— —32.5 —34.6 2.1
32— —31.5
Be? 0 04 571 —56.5 —0.6
2+ —53.8 —53.6 —0.2
4+ —45.5 —45.2 —0.3

a All experimental values are taken from reference 26.

38 See also remarks by Marion, reference 8.

3 Morinaga (reference 4, p. 418) recently reported that he has
seen a broad L=3 resonance from Hed+He! scattering in the
energy range from 13 to 19 Mev. Since the energy range in his
experiment corresponds to an excitation energy in Be” of about 9
to 12 Mev, we do not believe that the L=3 state which he found
is the (§—) level we are concerned with.
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Of primary importance is the question of convergence;
that is to say, are our results markedly changed by the
inclusion of additional variational parameters? The
present Li’ calculation, which is performed with an
additional variational parameter, produces only a minor
change in the energies of the 2P and 2FF doublets, namely,
0.4 and 0.7 Mev, respectively. We are thus encouraged
to believe that our method does converge fairly rapidly.
It should be remarked at this point that for reasonable
results there must be a minimum number of variational
parameters in the trial wave function; the exact number
is determined from the cluster structure of the level, as
described in Secs. ITI and IV.

In actuality, those wave functions which consist in
part of a deuteron substructure do not contain an ade-
quate number of parameters. This can best be seen by
examining the internal energy and rms radius of the
deuteron. The simple Gaussian function which describes
this cluster cannot possibly produce the appropriate
properties of a free deuteron. In fact, it is found that the
binding energy so calculated is 0.27 Mev and the rms
radius is only 1.25 fermi. However, a wave function
which is comprised of the sum of two Gaussians allows
for values which are considerably better. This latter
shortcoming leads to discrepancies in the energies of the
levels of Li® and the (3+) state of He®. This is especially
apparent for the 7=1 states of Li® wherein the energies
are overestimated by as much as 4 Mev; this discrepancy
can be easily understood by noting that for the 7'=1
states, the deuteron itself is in an unbound singlet state
which implies that a single Gaussian wave function is
even less appropriate.

A probable source of error in our calculation arises
from the relatively simple choice for the two-body po-
tential. However, since our intention is to survey the
energies of the lower-lying levels of the light nuclei, any
minor change in our final results is uninteresting. In
fact, it is found that reasonable modifications of the
two-body potential produces changes in the final results
which, in the spirit of the above remark, are of little
concern.

One question which still remains to be answered is
concerned with the actual form of the two-body spin-
orbit force. Unfortunately, there is at present no such
potential which can be inferred from low-energy nucleon-
nucleon phenomena. Hence, we must resort to a less
palatable method of obtaining the spin-orbit force,
namely, an analysis of the structure of the light nuclei.

TaBLE V. Depth of spin-orbit potential.

A Vis Mev)

(10725 cm~2) Hes Lis it
2.657 4.5 1.90 1.66
4.16 9.86 3.01 3.78
5.663 7.08 7.03

17.88

a Taken from Hochberg et al., reference 29.
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The results of a computation using a simple neutral
form for the nuclei He? Lif, and Li” are tabulated in
Table V. For each choice of range A, we have found the
depth Vs which produces the experimental splittings.
We note immediately that the He® results are totally
inconsistent with the other values. Moreover, the agree-
ment between the Li® and Li” values is considered to be
coincidental since the tabulated depths for Li® would be
increased by about 259, had we used a better trial
function for the deuteron cluster. It is thus our con-
tention that the spin-orbit potential is not of the neutral
form alone, but includes an isotopic spin dependent
component. The confirmation of this latter assertion
awaits a more detailed calculation; one in which the
deuteron cluster is treated as previously proposed.

Upon concluding this phase of our investigation of the
behavior of light nuclei with A=35, 6, 7, 8, we would
like to briefly discuss the possibility of extending our
method of calculation to heavier nuclei. For reasons of
simplicity, we have always assumed a pure configuration
for the cluster wave functions. As has been discussed in
Secs. IIT and TV, this is probably a good approximation
for the above-mentioned nuclei. On the other hand,
there is strong evidence that already for BY, the spin-
orbit interaction becomes so strong that the L—S
coupling scheme ceases to hold.’® Thus, to extend our
calculation to heavier nuclei, we must relinquish the
assumption of pure configurations and describe all
nuclear states by a mixture of different cluster wave
functions.

In addition, as has been mentioned in I and II, one
must devise a way to include the hard-core part of the
nuclear force more consistently. The approximations
involved in our method of calculation as described in
Sec. IT are necessitated by the fact that with a Serber
force of the form (3), the binding energies and rms radii
of a free alpha particle and of a triton cannot be
reproduced. One obvious method of improvement is to
use a simple two-body force with a repulsive core (not
infinitely hard) which can account for the bound state
data of two-, three- and four-body systems and at the
same time, explain the scattering data of p-p and #-p
systems up to about 50 Mev. Further, one must intro-
duce in the trial wave function a short-range correlation
factor of the form

II [1—exp(—vr:®]

all pairs

(25)

to reduce the probability that two nucleons get within
the range of the repulsive core. This particular correla-
tion factor is preferred since it does not disturb the
geometrical properties of the simpler cluster functions,
namely, L and S are still good quantum numbers and
further, spurious states due to improper treatment of
the center-of-mass motion do not arise.: Initial effort
with such a procedure is now being undertaken to
calculate the energies of the levels of Bed. Satisfactory
results will not only encourage us to investigate heavier
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nuclei, but also will strengthen our present belief that
results so far obtained with the simpler method are
likely reliable.

APPENDIX
Potential Integrals of Li®

The method of evaluating the expectation values of

the various operators has been discussed in I and in the .

Appendix of IT; hence, only the results will be presented
here.
The normalization factor is given by the expression

N2=61[Ag—24,+4,], (A1)
with

Bty et
M=?(—)(—)bwu@y
408 2&

ZF[—(ZOZ;—V)]’ ot z( +B,—— )
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5 8 5
(“_ _) J7L+2JH- 2.l("”a+6, 0, ‘a+ﬂ
a+t& 3 3 3
where
r=2(5)(r/a)},
o=0a+94a,

(A.3)
w= 3012—}—1101&-{—3&2,
£=602+4ad+6a,

and

Ta(p)= f R* exp(—§pR?) | Vim(R/R) [*dRdQ, (A.4)

T uni(9,0,8) = f R'“R” exp[ —§(pR*+qR’-R+sR?) ]

X Vim(R'/R) Y 1 *(R/R)dR'dRAL/dQ. (A.5)

For the various terms of the potential energy, we have
[see Eq. (12)]:

Fif=— VO{ ( * )’Ao}, (A.6)
a+2k
m\° 2 i 6ok
Fid=— Vo{ ( ) [ -*'—*—] ~n+2,l(ﬂ+ ) }, (A7)
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& 3
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2 7t £ 16 w 8
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a+2«
w2 H w+34ak+12ax £+-8ak+24ax w+10ax+12ax
Fiel=—T, P[——] ]n+2,n+2,l( +8, — Lﬁ) }, (A.11)
a(4a+6a+12«) o+18« oc+18« o+18«
w2 2 aw+k(10a2+10ca+2a2)
F12l= — VO P[ ] Jn+2.n+2,l[ )
42 +6aa+4x(2a+a) ac+6x(2a+&)
a£+x(20a2+8aa+4 &) ow+rx(10a2+34aa+2a2)
B] }, (A12)
ao+6k(2a+&) ao+6x(2a+&)
w? i aw+2k(a+ &) (6a+ &)
F261=_V0‘ I‘[ ] ]wr{—2,n+2,l|: +8,
42+ 6aa+4k (a+ &) ao+6k(a+a)
_af—Zx(a—i—&) (6a—2&) aw+2x(a+&)(6a—|—&)iﬂ] ]’ (A13)
ac+6k(a+&) ac+6k(a+a)
ata \? ' :
F122=—V0| (——) Azl, (A.14)
a+a+4«



558 TANG, WILDERMUTH, AND PEARLSTEIN

a \? ? i 102 (a+ @) +ax (19a-+9&)
FISZZ - VO{ rl( ) [ ] J nt-2, n-t 2.1[ '}‘ﬁ,
ata 2024 2aa+«k (3a+a) | 6o (a+a&)-+3k(3ata)

16a* (a+ &) +8ak (5a+3a) 10a2(a+a&)+ax(31la+21&) ) (A15)
s , Ao
6a(a+a)+3x(3ata) 6o (a+a)+3x(3a+a) ]
T § Sa(a+a)+ 2k (6a+ &)
Fis?=— o{ F[ ] n+2,n+2,l[ +8,
(a4 &) (2a+2&4+4x) 3a+3a-+6x
8a(a+a)+r(12a—4a) Sala+a)+2x(6a+&)
| | e
. 3a+3a+6x 3a+3a+6«
FM?:—VU[( - )Az}, (A17)
a2«
and
m\ 3 2 3 6aa 6aaN
G P S S
o/ | 8aa+\(da+6a) ] L4aat(2a+35) 8ad+\ (da+6)
- w2 § 13 8 £ 16 w 8
Gis'=— VLS{ Pl—*—] [2]442(—‘[‘,34‘*)\, ————, ——H’H-—)\)
a(4a+6a) o 3 g 3 o 3
40aa—16aB—24&6
—2J 351+ 553“‘-7551)] ], (A.19)
So
32y # 1 £ aw+N(1002+34aa+2a%)
Gosl=— VLS(I‘(—) [———] ’ (6012—!—1801&)]442[ +8,
2 a6\ (2a+ &) as+6N(2a+a)
af+N (202 +8aa+4a%) aw+A (10024 10ad—+2a7) 8a(@—af)
— , ﬁ]——6a2J351+—(J653—]551) })7 (A.20)
ac+O6\(2a+&) ao+6\2a+a)
32\ ¢ 1 5 w+A(34a+12a)
Gml:__VLS(I“(_) ( ) (15a—|—962)]442[ +8,
2a a+18\ o+18\ :
£+N(8a+24a) w+A(10a+12&) 120> —4aa+408—12&8
- ) t ﬁ]+(3a“90_5)-7351+ 553—]551)}), (A.21)
a+18\ o118\
3r2\ § 1 i aw+2\ (a4 &) (6a+ &) at— 2\ (a+ &) (6a—2&)
Ga'=—V1_s (F (-—) [_] {90& (Ot—l—a)]uz[ +8, — )
2 ac+6\(a+&) as+6\(a+a) ar+6N(a+a)
aw+2\ (a+&) (6a+&) 2a[ 68(a+a)— (202 +6aa+4a2) ]
,L,B]+9a(a+ a)J 351+ (Js53— T 551) }) , (A22)
as+6\(a+a) 5
3r P 1 E Sa(a+&) 42\ (6a+&)
Gis*=— VLs(F[ ] ( ) {3(a+&)1442[ +8,
2(a+&) 3a+3a+6n 3a+3a+6\
8a(a+a)+N(12a—4a) Sala+&)+2N(6a+ &) 4(a—B) (a+a)
, +5]—-3(a+&)]351+-~*—-—~(]553—]551)}), (A.23)
3a+3a-+6\ 3a+3a+6) 5

where the superscripts 0, 1 and 2 refer to no-exchange, one-exchange and two-exchange, respectively. In Egs.
(A.18)-(A.23), we have omitted, for the sake of brevity, the arguments of some of the functions. In those cases,
it is then understood that the arguments are identical with those expressed explicitly in the same equations.



