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Analytic Hartree-Fock Wave Functions for the 3p-Shell Atoms
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Hartree-Pock wave functions have been obtained for the 3P-row atoms, i.e., for neutral Al, Si, P, S, Cl,
and Ar, and for Cl . Solutions were determined in analytic form using a version of Nesbet's symmetry and
equivalence restrictions to simplify the calculations for atoms with both closed and unclosed shells of the
same l value. These restrictions, the reason for their use, and their relation to other open-shell methods are
discussed. and the calculated one-electron wave functions and their eigenvalues are presented.

I. INTRODUCTION

~~NE of the most successful schemes for approxi-
mating solutions of the many-electron Schrodinger

equation is the one-electron approximation. Its applica-
tions have been many and varied and have included
properties of atoms, molecules, and solids. But basic to
the scheme is the assumption that one has available
one-electron wave functions, called orbitals, whose
description depends only on the coordinates of a single
particle. Well-defined and useful orbitals (and in many
ways the most accurate) are those determined by a
self-consistent field solution of the Hartree-Fock (H-F)
equations for free atoms. In our own investigations we
have found these functions to be conspicuously absent
for the unfilled 3p-shell atoms' and this has led us to
determine Hartree-Fock solutions for Cl and the
neutral atoms Al, Si, P, S, Cl, and Ar. These are con-
ventional or restricted Hartree-Fock solutions in that
one-. electron functions of the same shell are constrained
to have the same radial dependence. ' Analytic methods
were used utilizing a version of Xesbet's symmetry and
equivalence restrictions'; details of the method are dis-
cussed in the sections that follow.

Aside from their own inherent interest as a descrip-
tion of the electronic structure of free atoms, a major
purpose of such calculations is to supply a starting
point for further investigations. The results to be re-
ported here have already been utilized in a number of
investigations: Atomic scattering factors have been
obtained4 for these atoms and particularly for Al in
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' Boys and Price LS. F. Boys and V. E. Price, Phil. Trans. Roy.
Soc. A246, 451 (1954)j have obtained analytic functions with
exchange for S, S, and Cl utilizing configuration interaction and
simple atomic orbitals.

2 See R. E. Watson and A. J. Freeman, Phys. Rev. 120, 1125
(1960), for a recent review discussion of the Hartree-Fock method
and the restrictions usually associated with its application to
many-electron systems.' R. K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).

4 A. J. Freeman and R. E. Watson, Acta Cryst. (to be
published).

an attempt to account for the discrepancy between the
theoretical and the experimental x-ray form factor re-
cently obtained~ for the metal; an investigation' ~ of
the effect of self-consistent solutions for the Stern-
heimer quadrupole polarizabilities' of ions has utilized
the Cl results; the Si results and basis set have been
used in an effort to improve on the core and valence
electron self-consistency in orthogonalized plane wave
calculations' for silicon; Al wave functions were needed
and employed in a theoretical study" of the observed
negative Knight shifts in rare-earth aluminum inter-
metallic compounds"; and finally, the P and Cl results
have furnished a starting point for an investigation"
into the effects associated with the unrestricted Hartree-
Fock formalism (i.e., no requirement on common radial
behavior of orbitals).

In what follows, we will first concentrate on the
symmetry and equivalence restrictions, ' why we use
them, and their eGect. Secondly, we will report the
results, but will keep the discussion of these to a
minimum. Their relation to experiment is similar to
that already seen" for the unfilled 3d-shell iron-series
ions and we will not repeat the observations here. We
have supplied enough results so that the interested
reader can make similar comparisons if he so wishes.

II. SYMMETRY AND EQUIVALENCE RESTRICTIONS
IN THE ANALYTIC HARTREE-FOCK METHOD

There are certain difficulties associated with obtain-
ing Hartree-Fock solutions for an atom with both
closed and unclosed shells of the same / value. This can

' B. W. Batterman, D. R. Chipman, and J. J. DeMarco, Phys.
Rev. 122, 68 (1961).

'A. J. Freeman and R. E. Watson, Bull. Am. Phys. Soc. 6,
166 (1961).' R. E. Watson and A. J. Freeman (to be published).' R. M. Sternheimer, Phys. Rev. 84, 244 (1951}.' F. Quelle (to be published)."R.E. Watson and A. J. Freeman, Phys. Rev. Letters 6, 277,
388(E) (1961).

"V. Jaccarino, B. J. Mathias, M. Peter, H. Suhl, and J. H.
Wernick, Phys. Rev. Letters 5, 251 (1960)."R.E. Watson and A. J. Freeman (to be published)."R. E. Watson, Phys. Rev. 118, 1036 (1960), and ibid. 119,
1934 (1960).
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The 3p equation can be written

et~ Ks~+ 2F'(3P——, 1s)+2F'(3P, 2s) +2F'(3P,3s)
+6F'(3p, 2p)+2F'(3p, 3p)
—G'(3p, 1s)—G'(3p, 2s) —G'(3P, 3s)

G'(3p, 2p) (—2/5) G'(3p, 2—p)
—G'(3p, 3p) —(1/5)G'(3p 3p)

(2)

The e s are the one-electron energies, the E s are
one-electron kinetic+nuclear potential energy integrals
and the F~'s and G~'s are the Slater Coulomb and ex-
change integrals. " The two equations are identical
fi.e., Eq. (1) can be obtained by inserting 2p for 3p
as the first parameter in each term in Eq. (2)] except
for the coeKcients multiplying the Gh(i, 31) terms of
the last lines. If these coe%cients were the same, the 2p
and 3p would be different eigenfunctions of the same
equation and thus automatically orthogonal, but since
these coefficients are different, a self-consistent solution
of Eqs. (1) and (2) will yield nonorthogona/ p-wave

"See D. R. Hartree, The Calcrclotionof Atomic Strttc, tires (John
Wiley Bz Sons, Inc. , New York, 1957)."An atomic system with a net spin and/or angular momentum
will provide an environment with which electrons of the same
shell but diGering m, and/or m& will interact differently. In other
words, separate Hartree-Fock solutions for them would yield
different radial orbitals.

' For de6nitions see E. U. Condon and G. H. Shortley, The
Theory of Atomic SPectru (Cambridge University Press, New York,
1953), p. 177.

best be illustrated by a specific example. Consider the
1s'2s'2Ps3ss 3P', 'P state of neutral Si where I.=Mr, = 1
and S=Mq ——1. The Hartree-Fock many-electron wave
function can be written as a single Slater determinant'4
(with the two 3p orbitals having cr spin and nt t values of
+1 and 0) provided that the various one-electron
functions are orthonorrnal and that there is a single
radial wave function per shell. This gives us the con-
ventional or "restricted" Hartree-Fock wave function.
The second requirement is, in fact, a restriction on the
wave function" and on the Hartree-Fock formalism.
The Hartree-Fock equations are obtained by applying
the variation principle to the total energy of the system.
We will consider the case of an energy computed for a
many-electron Hamiltonian consisting of kinetic energy,
nuclear potential energy, and inter-electronic electro-
static energy. Applying the variational principle in
conjunction with the requirement of a single radial
function per shell yields a single ("restricted") Hartree-
Fock equation per shell which is the a~erage of those
which could be derived for the different occupied orbi-
tals of that shell. For Si, the restricted Hartree-Fock
equation (in its integrated form) for the 2p shell is

es„——Ks„+2F'(2P,1s)+2F'(2P,2s)+2F'(2p, 3s)
+6F'(2p, 2p)+2F'(2p, 3p)
—G'(2P, 1s)—G'(2p, 2s) —G'(2p, 3s) (1)
—Go(2p, 2p) —(2/5)G'(2p, 2p)

functions. Different coeKcients exist because of our
requirement of a single radial function per shell; p
orbitals diGering in mt and/or nt, interact differently
with the unfilled shell (note that orbitals of the same i,
m~, and I, but different e have identical iedividlul
H-F equations). The average for the full shell is different
than that for two orbitals in the 3p shell and thus the
differing coefficients occur. The counterparts to Eqs.
(1) and (2) for all the atoms of the 3p series are given
in the Appendix.

There are three ways one can obtain orthogonal
analytic Hartree-Fock orbitals for cases like neutra] Si:

(i) One can add a Lagrange multiplier to ensure
2P-3P orthogonality. "Roothaan'r and Huzinaga's have
shown how such Lagrange multipliers can be incor-
porated into the analytic H-F method. The strength of
this approach is that it straightforwardly applies the
conventional method of adding restrictions to a set of
equations while maintaining a single radial orbital per
shell. This scheme utilizes a three-electron supermatrix
as compared with the two-electron supermatrix of
earlier" analytic methods and makes applications much
more cumbersome.

(ii) The most obvious method of obtaining orthogo-
nality is to relax the restriction which led to non-
orthogonality. If we had gotten separate (averaged)
Hartree-Fock solutions for (1) those 2p orbitals with
ntt and nt, in common with the occupied 3p orbitals
and (2) those not in common, we would have a set of
orthonormal Hartree-Pock orbitals for Si. We would,
of course, then have two distinct 2p radial functions.
One could solve even less restricted "unrestricted"
Hartree-Fock equations, retaining orthonormality and
obtaining larger numbers of differing radial orbitals.
Since this is the least restricted of the three approaches,
it yields the wave function of lowest total energy and
thus in principle is the best many-electron wave func-
tion. The method involves the simultaneous solution of
more Hartree-Fock equations than (i) [or (iii) below]
but avoids the three-electron supermatrix of (i). One
disadvantage of this scheme is that the resulting many-
electron function is not an exact eigenfunction of L
and/or S. While this may not be serious for some uses, "
such a function can be a treacherous starting point for
certain computations (e.g., configuration interaction or
the use of perturbation theory). Properly symmetrized
(thus many-determinantal) "unrestricted" Hartree-
Fock many-electron functions are difficult to solve for
variationally. None, in fact, have been obtained to date.
This matter is discussed elsewhere. ' "

(iii) A third approach is to use a version of Nesbet's'

C. C. J. Roothaan, Revs. Modern Phys. 32, 179 (1960).' S. Huzinaga, Phys. Rev. 120, 866 (1960)."C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).
0 W. Marshall (to be published) has given such an argument; see

also N. Bessis, H. Lefebvre-Brion, and C M. Moser (to be
published)."R.K, Nesbet and R. E. Watson, Ann. Phys. 9, 260 (1960),
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TAnLE I. Parameters (A; and Z;) which define the basis functions (R;).

E. s used for the
construction of

s orbitals (l=0)

p orbitals (/=1)

1
2
3
4
5
6
7

9

10
11
12
13
14
15
16

0
0
1
1
1
2
2
2
2

Al

14.5168
11.3133
10.8561
6.8933
4.6860
4.1147
2.0500
1.3196
0.8363

9.8219
6.1873
3.8452
3.1870
1.4804
0.9972
0.5003

Si

15.6334
12.1835
11.8216
7.5755
5.2061
4.6712
2.3810
1.5647
0.9866

10.8139
6.8493
4.2336
3.3949
1.7195
1.1824
0.5932

Z; for

16.7500
13.0537
12.7871
8.2577
5.7262
5.2277
2.7121
1.8098
1.1369

11.8059
7.5114
4.6220
3.6028
1.9586
1.3676
0.6861

17.8666
13.9239
13.7526
8.9398
6.2464
5.7842
3.0431
2.0549
1.2872

12.7980
8.1734
5.0103
3.8107
2.1976
1.5528
0.7790

18.9832
14.7941
14.7181
9.6220
6.7665
6.3407
3.3742
2.2999
1.4375

13.7900
8.8355
5.3987
4.0186
2.4367
1.7380
0.8720

20.0999
15.6644
15.6838
10.3041
7;2867
6.8971
3.7052
2.5450
1.5878

14.7820
9.4975
5.7870
4.2264
2.6757
1.9232
0.9649

Cl

18.9832
14.7941
14.7181
9.6220
6.7665
6.2190
3.2450
2.1679
1.3550

13.7900
8.8355
5.3987
4.0186
2.4367
1.6382
0.8219

symmetry and equivalence restrictions. For Si this
would consist of solving Eq. (2) (or its counterpart for
other ions) for both the 2p and 3p shells. "The resulting
computations represent a considerable economy in
computer time over (i) and (ii). A small error, associ-
ated with outer electron (3p) exchange, is introduced
into an inner electron (2p) equation. This approxima-
tion is reasonable because inner electrons are insensitive
to both the exchange and the more important Coulomb
sects of outer electrons. There are many situations"
where this insensitivity has been utilized. The best
test of (iii) is to compare the energy of the resulting
total wave function with those of (i) and (ii). Un-
restricted Hartree-Fock calculations" for neutral P
and Cl indicate that an improvement of about 0.0015 ry
out of total energies of —700 to —900 ry is associated
with going from (iii) to (ii).""Calculations for" Li
suggest that roughly half of this energy improvement is
obtained on going from (iii) to (i). This energy dif-
ference, of about 0.0007 ry, is roughly one-tenth of one
percent of the difference (often called the "correlation
energy'"') between the Hartree-Fock total energy and
the exact eigenvalue of our many-electron Hamiltonian.

In what follows, we are reporting calculations using
method (iii). We believe that these are of sufficient
accuracy for the restricted Hartree-Fock method and
that if one requires better many-electron eigenvalues or

"No advantage (in total energy) was obtained by using a com-
promise between the Gs(~,3P) coeKcients of Eqs. (1) and (2).
This contrasts with the Li case of reference 21.

23 Three such are: (1) The frequent use of core functions, ob-
tained for one atomic state, in calculations for other atomic
states, (diiIering in configuration and/or state of ionization),
(2) the success of the Slater rules fJ. C. Slater, Phys. Rev. 36, 57
(1930)] for providing simple atomic orbitals (these presume no
outer orbital effect on inner orbitals) and (3) the use of free atom
functions as core functions in energy band calculations.

s4 A. J. Freeman, Revs. Modern Phys. 32, 273 (1960) has made
similar observations in a molecular problem."P. O. Lowdin, Advances in Chemical Physics, edited by
I. Prigogine (Interscience Publishers, Inc. , New York), Vol. 2,
p. 207 (1959).

eigenfunctions he should consider the "unrestricted"
Hartree-Fock formalism, or better yet some description
which goes beyond the "simple" one-electron approach.

U, (r) =P, C,,R, (r).

Their normalization condition is

(3)

and the basis functions, R;, are of the form:

R, (y)
—Q y(i+A&'+l)o zp'r—

where / is the one-electron angular momentum quantum
number appropriate for the one-electron orbital of
which U, (r) is the radial part. N; is a normalization
constant and is expressible in terms of the other
parameters, i.e. :

X;=L(2Z )" '+~'+'/(2l+2A;+2)! jl.
U;(r)'s of common / value are constructed from a
common set of R, (r)'s. Given the basis sets, i.e., the
R;(r)'s, the problem is reduced to solving the Hartree-
Fock integro-di6erential equations for the eigenvectors
(the C; s) and their eigenvalues. This is done by
straightforward matrix diagonalization and manipula-
tion and avoids the problems of numerical accuracy
inherent in the integrations of the numerical Hartree-
Fock method.

The problem of basis sets is, however, always associ-
ated with the analytic Hartree-Fock method. First
there is the question of the size of the set. A small set
is desirable because of economy in computer time and

III. ANALYTIC HARTREE-FOCK METHOD

The analytic H-F method uses matrix techniques to
obtain orthonormal analytic Hartree-Fock radial orbi-
tals, U, (r), of the form:
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TanLz II. The eigenvectors (C;;) defining the Hartree-Fock radial functions (U;) in terms of the basis sets (R;).

10
11
12
13

15
16

10
11
12
13
14
15
16

Al
z= 1$

0.47820335
0.49560163
0.05508320—0.04176310
0.03517378—0.01275182
0.00328381—0.00208467
0.00064383

2$

—0.09989705—0.16445991—0.13454941
0.16844612
0.73860189
0.25492763
0.00818443—0,00322537
0.00089386

3$

0.03176749
0.02535354
0.04425760—0.06690018—0.15116208—0.12724852
0.28726532
0.70009039
0.12098648

2P

0.04491808
0.26567769
0.64446107
0,11017090
0.00536737—0.00216351
0.00042991

3P

—0.01080307—0.03116521—0.14269477
0.01360895
0.24267490
0.69938117
0.13470789

Si
1$

0.47801597
0.49824461
0.05194539—0.04347004
0.03799932—0.01408673
0.00333849—0.00202937
0.00057422

2$

—0.10609487—0.16348699—0.13861219
0.15460438
0.73990991
0.26642326
0.01164115—0.00424561
0.00114269

3$

0.03558677
0.02959468
0.04930876—0.07277665—0.16248240—0.15628299
0.30330287
0.69690759
0.12075475

2P

0.04082228
0.26098350
0.68489733
0.07026888
0.00265586—0.00071710
0.00014665

—0.01181046—0.03787150—0.17923597
0.02649990
0.34702725
0.63306352
0.08747425

P
1$

0.47650550
0.50252456
0.04835136

—0.04470139
0.04028467—0.01518227
0.00332557—0.00196202
0.00051826

2$

—0.11123490—0.16299528—0.14170556
0.14287276
0.73992204
0.27692571
0.01529906—0.00522343
0.00136969

3$

0.03480513
0.03854337
0,04799508—0.06270257—0.18849294—0.16772952
0.29654439
0.70452779
0.12683228

2P

0.03629017
0.26221183
0.70895994
0.04113520
0.00538798—0.00236645
0.00044655

3p

—0.01223249—0.04151134—0.20945233
0.04626733
0.39674585
0.58839757
0.07358222

S
1$

0.47433873
0.50753060
0.04482154—0.04625191
0.04290337—0.01647929
0.00343135—0.00200526
0.00050693

2$

—0.11613808—0.16200474—0.14461845
0.13339409
0.73862683
0.28675089
0.01867834—0.00603379
0.00155631

3$

0.03517716
0.04486713
0.04914036—0.06440589—0.19367097—0.19103485
0.30031295
0.70460221
0.13342544

0.03216818
0.26455447
0.72611248
0.01737931
0.00985020—0.00504626
0.00086477

3P

—0.01305630—0.03863229—0.24064481
0.08715074
0.37949215
0.57240453
0.09455649

Cl
1$

0,47057770
0.51463953
0.04037388—0.04660228
0.04419208—0.01712669
0.00328116—0.00185897
0.00043970

2$

—0.12073746—0.16070403
0.14728644
0.12539405
0.73667456—0,29569014
0.02211865—0.00681901
0.00173871

3$

0.03226696
0.05472073
0.04604961—0.05545469—0.21001735—0.20191239
0.29052539
0.71291582
0.14067898

2P

0.02815814
0.26830322
0.73772890—0.00340506
0.01842689—0.00942535
0.00147451

3P

—0.01294533—0.03982780—0,26254303
0.12224880
0.35931781
0.56879140
0.09941246

Ar
1$

0.46843906
0.51923323
0.03783273—0.04961999
0.04835368—0.01916713
0.00360844—0.00205635
0.00047650

2$

—0.12448169—0.16002612—0.14914618
0.11830138
0.73399316
0.30424846
0.02540739—0.00751387
0.00189119

3$

0.02781904
0.06606737
0.04216877—0.04842645—0.22121075—0.21396688
0.28422188
0.71474538
0.15173284

2P

0.02436348
0.27269964
0.74583141—0.02253016
0.02997370

—0.01484941
0.00215452

3P

—0.01240628—0.04249049—0.27928565
0.15616371
0.33196037
0.57422563
0.09797354

Cl
1$

0.46853182
0.51760183
0.03835872—0.04255196
0.03874278—0.01433782
0.00293627—0.00173223
0.00045088

—0.11231714—0.17288020—0.13795468
0.09623364
0.78296249
0.27540135
0.01661696—0.00477546
0.00145554

3$

0.04601181
0.03205335
0.06034449—0.07894860—0.18009669—0.21416129
0.40045392
0.59959016
0.16294774

2P

0.02815975
0,26812371
0.73732558—0,00189991
0.01551419—0.00713564
0.00134824

3P

—0.01158317—0.03901622—0.23911788
0.10276812
0,38612138
0.49188592
0.20319459

retains the advantages of wave functions of analytic
form. These advantages come from the ease, accuracy,
and convenience with which matrix elements can be
obtained if the functions are in analytic form. Large
basis sets allow greater accuracy of solution (provided
that we do not have too many basis functions which
are too much alike, for then one finds it dificult to
obtain accurate matrix diagonalization). "The current
basis sets represent a compromise between those used in
the highly accurate calculations of Roothaan and co-
workers' for the two-, three-, and four-electron ions

'6 P. O. Lov din, Ann. Rev. Phys. Chem. 11, 107 (1960)."C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Revs.
Modern Phys. 32, 186 (1960).

and those obtained by one of us" for the iron-series ions.
The relatively larger basis sets of the current calcula-
tions as compared with those for the iron series make
them less convenient to utilize in their analytic form
(e.g. , for multicenter integrals). On the other hand we
have greater computational accuracy, accuracy which
we believe is slightly superior to the few existing nu-
merical Hartree-Fock calculations for ions of this size.
We would like to compare total. energi. es but accurate
estimates of these are not available for the other
calculations. '"

'" Another good test is to study LH;&")U;(r)g/U;(r) as a func-
tion of r. B(r) is a one-electron Hartree-I'ock operator. Unfor-
tunately this test requires virtually the full machinery of the
numerical Hartree-Pock method and so is dificult to apply.
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TasLE III. Hartree-Fock one-electron energies (c;), one-electron nuclear potential+kinetic energies (K,), total energies and some
Slater two-electron integrals (Gs and F") for the 3p shell atoms. All energies are in atomic units (1 a.u. =2 ry). Also given are one-
electron energies of Ar and Cl as obtained by„Hartree and Hartree by numerical solution of the Hartree-Pock equations.

Cls

62s

~3s

62y
E3p

—58.4880—4.9069—0.3940—3.2145—0.1990

—68.7954—6.1501
' —0.5389—4.2500—0.2965

Al(3p', 2P) Si(3p'pP) P (3p3,'5)
—79.9553—7.5062—0.6955—5.3963—0.3911

S(3p4,V )
—91.9923—8.9996
—0.8785—6.6780—0.4363

Cl(3p5,2J')

—104.8766—10.6040—1.0717—8.0688—0.5051

—118.606—12.31.9—1.276—9.568—0.589

—118.6
12.33
1,2775—9.57;—0.5905

Ar(3p' 'S) Ar(3p' 'S) Cl (3p', 'S)

—104.5092—10.2329—0.7356—7.6993—0.1518

Cl-(3p6, S).
—104.55—10.238—0, j27—7.695—0.1485„

+1s
E2,
X3$
X2y
E-3n

—84.3958—19.6503—5.6520—18.8243—4.3326

—97.8912—23.0011—7.0571—22.2069—5.7526

—112.3867—26.6005—8.5259—25.8282—7.1916

—127.8825—30.4499—10.1057—29.6952—8.6012

—144.3785—34.5477—11.7631—33.8057—10.1407

—161.875—38.893—13.515—38.162—11.791

—144.3785—34.5459—11.5565
33.8004—9.5539

0.34843
0.29668
0.26286
0.13223
0.18568

F (3s,3s)
I o(3s,3p)
P'(3P»p)
Z2(3p, 3p)
Gl(3&,'3p)
Total

energy —241.8692

0.40989
0.36369
0.33039
0.16682
0.23502

0.46764
0.42426
0.39112
0.19754
0.27799

0.52541
0.47805
0.44114
0.22093
0.31302

—288.8536 —340.7177 —397.5031

0.58097
0.53242
0,49368
0.24626
0.34935

0.63541.
0.58674
0.54707
0.27234
0.38578

—459.4797 —526.814

0.56555
0.50075
0.45175
0.21926
0.32094

—459.5750

D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A156, 45 (1936).
b D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London) A166, 450 (1938).Note that only the (3s), (3p) wave functions were obtained by solution of

the Hartree-I ock equations; the (1s), (2s), (2p) wave functions were obtained by interpolation between the values for Ca++, K+, and Cl .

Having chosen the size of the basis sets there is the
question of choosing the individual E, s. For a given
finite number of such functions there is in principle no
unique choice for the basis set. A series of Hartree-Fock
calculations, in which the Z; parameters were varied,
was used to obtain a "best choice" for the E,'s. The
parameters of the resulting basis sets appear in Table I.
We have reported (and used) screening constants (Z, 's)
with four digits after the decimal point. This does not
mean that the Z s were uniquely established to this
many digits. The investigations of varying Z, s carried
this many digits and since these were kept in the anal
calculation they are reported in this form. We would
estimate that improved, and/or enlarged basis sets
would lower the total energies by less than 0.001 ry.
Since this is of the order of the change of energy in

going from (i) to (iii), it does not seem worthwhile to
further improve the energy by improving and/or en-

larging the basis set.
Before presenting results, we should reiterate that

we are solving the counterpart of Eq. (2) for both the
2p and 3p shells. In the closed shell cases of Cl and Ar
this makes no difference since the counterparts of Eqs.
(1) and (2) are identical in form.

IV. RESULTS

The eigenvectors (C@) which define the U;(R)'s in
terms of the E,(r)'s appear in Table II. Note that the
C; s are given for rtormalised E;(r)'s. The C; s have
not been uniquely established to the number of digits
quoted but with these digits they provide well-normal-
ized, well-dered Hartree-Fock orbitals. The total
energies, one-electron energies (e s), E s, and selected
Fs(i,j) and Gs(i,j) integrals appear in Table III. The
&2~'s have been evaluated using the counterparts of

Eq. (1) and not Eq. (2). In order to conserve space the
two-electron integrals which are listed were limited to
those involving the 3s and/or 3p orbitals. These inte-
grals enter into the Slater-Racah parameterization" of
the multiplet spectra. If the reader fits the experimental
spectra, " he will discover systematic discrepancies
between computed integrals and the experimental
"integrals. " Such discrepancies were observed previ-
ously for the iron-series ions" and arise because correla-
tion effects (i.e. , effects beyond the Hartree-Pock
formalism) appreciably perturb the multiplet spectra.

Also included in Table III are the e,'s obtained by
the Hartrees in their pioneering numerical calculations
for" Cl and" Ar. Except for the Cl 3s, there is good
agreement between the e s for the two sets of calcula-
tions. The agreement for Ar is remarkable since in the
numerical" calculation the inner functions (ls, 2s, and

2p) were obtained by extrapolation and only the outer
functions (3s, and 3p) were solved for by solution of
the Hartree-Fock equations.
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APPENDIX

The counterparts to Eqs. (1) and (2) for the 3p
series atoms can be written as:

the IBM 704 at Avco and we thank the staff at that of electrons in the 3p shell. For Eq. (1) they are:
facility for their cooperation.

e,=K,+.
2F"(x,1s)+2F'(x&2s)+2F'(x,3s)

+6F'(x,2p) —G'(x, 1s)—G'(x, 2s) —G'(x, 3s)
—G'(g) 2p) —2/5G'(x, 2p)
+qF'(x, 3p) —rG'(x, 3p) —sG'(x, 3p),

where q, r, and s are coefficients which are different for
Eqs. (1) and (2) and are determined by the number, I,

and for Eq. (2) they are:

0—0.2—0.4—0.3—0.32—0.4,
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Temperature Variation of Ionic Nobilities in Hydrogen
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Measurements have been made of the temperature variation of the mobilities of positive ions in hydrogen
over the range 77'—300'K. The zero-6eld mobility values are go = 12.3 cm'/v sec (300'K), 13.3 (195'K), and
13.0 (77'K). The present results at 300'K are in agreement with the data of Lauer, Bradbury, and Mitchell
at low E/pp, and at high Z/po agree with Rose s measurements. Only a single ion species was observed in
the present studies. Reasons are given which support the belief that the ion observed in these measurements
was H3+.

INTRODUCTION

ESULTS of measurements of the mobilities of
positive ions in hydrogen reported in the literature

date back as early as 1932. Since then, the mobility
of positive ions in hydrogen has been the subject of
numerous experimental investigations. In spite of this,
as a result of discrepancies between the various sets of
experimental data, there has existed considerable un-
certainty of the value of the ion mobility. In addition,
the nature of the ion involved has been controversial,
primarily as a result of the lack of suitable theoretical
values with which to compare with experiment. The
present studies were undertaken in an attempt to obtain
reliable measurements of the ion mobilities in the major
energy range of interest, i.e., at low values of the electric
6eld to pressure ratio. In addition these studies were
undertaken in order to obtain information concerning
the temperature variation of the mobilities, and if pos-
sible to shed some light on the ionic species involved.

APPARATUS

The mobility tube used in the present studies has
been described in detail previously'; therefore, only a
brief description will be given here. The tube, which is

' M; A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954),

shown schematically in Fig. 1, consists of a shielded
discharge region in which a short-duration pulse is
generated, a grid which admits the ions to the drift
region, and a collector electrode to which the ions drift
under the inhuence of an applied electric 6eld. The mo-
tion of the ions in the drift region induces a current
in a resistor in the external circuit. Following amplifica-
tion, the resulting voltage waveform is applied to a
synchroscope with a calibrated time base. The ion
transit times are determined from the breaks in the
waveforms which occur when the ions reach the collector.

As in previous studies' of the variation of the mobility
with temperature, the mobility tube is immersed in a
refrigerating bath either at 77'K (liquid nitrogen) or
at 195'K (dry ice). The refrigerants are contained in a
styrofoam chamber which surrounds the tube. In the
low-temperature measurements several hours were per-
mitted to elapse, before taking the measurements fol-
lowing the introduction of the gas into the tube, in
order to allow the tube and the gas to achieve thermal
equilibrium at the refrigerant temperature.

The gas samples used in these studies are introduced
to the mobility tube by means of an ultra-high vacuum
gas handling system. ' Following extended bakeout at

2 L. M. Chanin and M. A. Biondi, Phys. Rev. 106, 473 (1957).
3 D. Alpert, J. Appl. Phys. 24, 860 (1953).


