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A novel method of solving added carrier transport problems in
semiconductors is presented. The usual procedure in treating
problems of this type is to derive a continuity equation for charge
carriers on the basis of carrier conservation, allowing for genera-
tion and recombination, and to solve this equation under ap-
propriate boundary conditions. The resulting Quxes or currents
are obtained from diffusion and drift current equations, which
involve the concentrations and concentration gradients. In the
formulation presented here, equations embodying conservation
of flux (again with due allowance for generation and recom-
bination) which incorporate the proper boundary conditions from
the outset are solved in the steady-state one-dimensional case to

yield a Green's function for the desired carrier Auxes directly.
The method is more general than the commonly used continuity
equation formulation in that the physical dimensions of the system
and the diffusion lengths are not restricted to be large compared
to the mean free path; in particular it is unnecessary to assume
Pick's law for diffusion processes. Otherwise the method is
equivalent to the continuity equation analysis. An example
involving carrier generation in a plane region bounded on one
side by a surface of arbitrary refiection coefficient (or recombina-
tion velocity) and on the other by a collecting p-e junction is
worked out. The results are shown to reduce to those obtained
via the continuity equation in the appropriate limiting case.

I. INTRODUCTION
' 'N solving problems dealing with added carrier
~ - transport in semiconductors, it is customary to
derive a continuity equation, ' ' the basis of which is
the computation of the gain or loss of charge carriers
by diffusion, drift, generation, and recombination per
unit time in an infinitesimal volume element, and to
solve this equation under appropriate boundary con-
ditions. The currents which Row are then computed
from current equations which relate the average flux
of carriers to the already computed concentrations and
gradients by way of simple Pick's law diffusion theory
and 6rst-order Boltzmann transport theory. The
validity of the results so obtained is limited by certain
assumptions which are made in connection with simple
random-walk theory, ' the most important of which is
that the number of free paths which a particle ex-
periences be, on the average, large compared with unity.
This, in turn, requires that the physical dimensions of
the system being studied be large compared with the
mean free path, and that the probability of recom-
bination within the mean time between collisions be
small in comparison with unity.

In a discussion of the scattering and absorption of
light in diffuse media, Coltman, Ebbigshausen, and
Altar4 and later Longini' have shown how diffuse light
fluxes can be calculated as a function of thickness of
scattering medium by a method based upon internal
multiple reflection and absorption. Certain aspects of
their approach have been extended in connection with
carrier recombination studies in semiconductors by
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McKelvey. ' Since the basic assumptions upon which
these calculations are founded, that is, conservation
(with due allowance for absorption) of flux and com-
pletely random or diffuse scattering at each collision or
reflection, hold under a great variety of conditions for
the transport of charge carriers in semiconductors, it
should be possible to formulate a mathematically
analogous steady-state flux theory of carrier transport
in semiconductors. This general approach forms the
basis for certain rather restricted calculations involving
recombination at surfaces or internal boundaries which
have been made previously. ' ' It is the purpose of this
paper to formulate this general steady-state theory as
it applies to semiconductors and to show the relation
between the results of this theory and the results ob-
tained in a more conventional manner from the steady-
state continuity equation in a simple case of some
practical interest.

II. FLUX RELATIONS IN A DIFFUSE
SCATTERING MEDIUM

Coltman, Ebbigshausen, and Altar' consider the
physical situation which is illustrated in Fig. 1. A layer
of scattering material of thickness x is considered, and
an additional scattering layer of thickness dx is inter-
posed between the source and the original material. A
steady-state, one-dimensional situation is assumed. A
diffuse Aux A (of light or of charge carriers, as the case
may be) which is generated just at the surface of the
layer of thickness dx and which proceeds initially to
the right in Fig. 1, is incident upon the system, and
gives rise to the reflected and transmitted fluxes Ii1,
P~', Il2', and Ii 3 as shown. The distance dx is considered
to be so small that the probability of multiple scattering
or absorption events in that distance is negligible; in
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scient which, since the differential recombination
probability md@ is assumed to be strictly proportional
to dx, must be inversely proportional to the quantity c7,
where c is the mean thermal velocity Lc= (8kT/em*)']
and r is the mean carrier lifetime. The constants of
proportionality may be arrived at by suitable averaging
calculations. A derivation of these numerical constants
is given in Appendix 8, and using the results obtained
there to complete the definition of k and x, one may
write

Reflection Coefficient: k d X
Transmission Coefficient: I-a d X

R(x)
T(X)

FIG. 1. Fluxes arising between a layer of bulk material of
thickness x and an incremental layer of material of thickness dx
which is interposed between the bulk layer and a generation
source. The reQection coefIIcient of the thin layer is dered as
kdx and the transmission coeKcient as 1—ndx.

where

and

k =3/4X =1/2',
w = 2/cr =y/L,

I.= (lice/3)&= (Dr)l,

y =2li/3L =2 (li/3cr)'*.

(5)

(6)

where
T(x)= Lcoshqx+ (n/q) sinhqx] ',

q= (n' —k')&.

(2)

(3)

A brief resume of the analysis, using a rather more
general method of attack'' than the "multiple re-
Qection" treatment of Coltman et u/. is given in Ap-
pendix A.

It is necessary to identify the quantities o., k, and

q with physical parameters such as the mean free path,
mean carrier lifetime and the mean thermal velocity.
Since the differential scattering probability Ada is
assumed to be strictly proportional to dh, it is obvious
that k is related inversely to the scattering mean free
path X. Likewise, if the differential "nonsurvival" co-
eScient o. is written

then' m represents a differential recombination co-

other words, the reQection coefficient and the absorption
coe%cient of the layer are considered to be strictly
proportional to dx. According to this view, the reflection
(backscattering) coefficient of this thin layer is defined
to be kdx and the transmission coefficient to be 1—ndx.
The parameter n includes both scattering and absorp-
tion effects, and it follows therefore that n~&k, the
equality holding when there is no true absorption (or
recombination), but only scattering. It is shown by
Coltman et al.' that under these circumstances, dif-
ferential equations for the reQection coeKcient and
transmission coefficient of the layer of thickness x
Lthe reRection coefficient and transmission coefficient
being defined as R(x+dx) =P2'/2 and T(x+dx)
=F3/A, respectively] can be written, which, upon
integration, yield the following results:

(k/q) sinhqx
R(x) =

coshqx+ (n/q) sinhqx

It follows, then, from Eqs. (3)—(6) that

q= (1+&')'/L

Note that in the limit y~0 (which is a necessary
condition for the applicability of the continuity equa-
tion analysis), using the de6nitions of w and k given
by (5) and (6), q

—& 1/L. Since y is solely a function
of the ratio of X and cr, it is inversely proportional to
the square root of the number of free paths which a
carrier experiences before it is lost by recombination.
One would therefore expect that the results of this Aux
a,nalysis would coincide with the results of conventional
diffusion theory only in the limiting case where p(&1.
That this is indeed the truth is shown in the following
section for a simple example of some practical interest.

III. FLUX ANALYSIS OF A SURFACE REGION
BOUNDED BY A COLLECTING

P-n JUNCTION

The application of the Aux analysis outlined in the
preceding section will be illustrated for the case of a
plane layer of semiconductor of thickness a, bounded
on one side by a surface of reQection coefficient (non-
recombination probability) Ro and on the other side
by a perfectly absorbing collecting p-e junction.

The problem of finding the current across the
junction will be solved first by the Aux method, then
by use of the continuity equation analysis, and a
comparison of the results obtained by the two ap-
proaches will be made. The geometry which is used in
formulating the Aux approach is shown in Fig. 2. It is
assumed that a carrier Aux dA is generated isotropically
at a distance x from the surface so that equal Auxes
-', dA proceed initially to the right and to the left, and
that these Quxes give rise to the rejected and trans-
mitted Quxes de ~, dF~', dF2, dE&'2', and dF3 as illustrated.
These cruxes are assumed to represent cruxes of excess
carriers only; the principle of detailed balancing assures
that any such Aux system arising from eqlilibnlm
carrier generation will be balanced by an equal and
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opposite system caused by equilibrium recombination
processes. It is assumed that a steady state has been
reached, and that no electric fields act upon the carriers
in the region of the crystal which is of interest. The
latter assumption is equivalent to the assumption of
highly extrinsic bulk semiconductor material. ' The
geometry is similar to that which is encountered in
p-21 photovoltaic devices.

Referring to Fig. 2, one can write the following
relations between the Quxes which are illustrated there:

dF2~

Surface ~
{X=O)

Reflection Coefficient: Ro
Transmission Coefficient:

dFI~
dF~~

Rl
Tl

~ a-X = = Junction
(X =a)

R2
Tz

bulk ~—
[
—~ bulk

dA~dA
zlz

dF, = ', dA+R-1dF1 +T1dF2,

dF1 = 2dA+R2dF1,

dF2=EpdF2 )

dF2 TldF1 +R1dF2)

dF3 ——T2dFg.

These simultaneous equations may be solved to yield
the following expressions for the Quxes:

dF1 (dA/2h) ——[(1—RPR1) (1+R1)+RPT1'j,
dF1' (dA/2A——) (1—RPR1) (1+R2),
dF2= (dA/26)ROT1(1+R2), (11)

dF2' (dA/2A) T——1(1+R2),
dF 2——(dA/2h) T2[(1—R2R1) (1+R1)+RoT12$,

where
A—= (1—RPR1) (1—R1R2) —RoR2T1 . (12)

The Qux collected by the junction is dF3. Note, how-

ever, that according to the results of the preceding
section, one may express R1 and T1 as R(x) and T(x),
and R, and T2 as R(a x) and T(—a —x), respectively,
through the use of Eqs. (1) and (2). Making these
substitutions and simplifying, using the mathematical
identity

R(x)R(a —x) 1 1

T(x) T(a—x) T(x)T(a x) T(a)—
(13)

which is easily proved from (1), (2), and (3), and
writing out the differential Qux dF3 across the junction
produced by the differential generated Qux dA, it can
be shown that

FIG 2 Disposition of fluxes in a plane semiconductor layer
bounded on one side by a surface of reflection coe%cient E0 and
on the other by a perfectly absorbing p-n junction. These fluxes
are assumed to arise from an isotropic plane source of generation
at a distance x to the right of the surface. Bulk reQection and
transmission coefIIcients are defined as illustrated.

R(x) 1 R(x)—Ro——+ +Rp
T(x) T(x) T(x)T(x)

dF3 ———,'dA
1 1 R(x) R(a—x)

Ep —&0
T(a) T(x) T(x) T(a—x)

[2y(1+y2) ' coshqx+ (2y2+1 —Ro) sinhqx][7(1+y2) ' coshqx+ (1+y2) sinhqxj+2p2(1+y2)RO=dA
[2y (1+y2) ' coshqx+ (2'+ 1—R2) sinhqx)[2y (1+y2) '* coshqa+ (1+2y2) sinhqa] —

2yR2 (I+y2) l sinhq (a—x)

or
dF2 C(x,y)dA. —— (14)

g(x) to give the total flux across the junction. Thus,

dF2 ——g(x)C (x,y)dx,
In general, the Qux source strength dA will be a

function of x. Since the carriers generated within a
sufficiently thin elementary layer contribute to the
Qux across the boundaries of that layer without first-
order losses by recombination, the flux dA may be
related to the generation rate of carriers per unit
volume, g(x), by a.simple conservation argument, the
result being

( )dA =g(x)dx.

Substituting this result into (14) one obtains a Green's
function for the junction current:which may in prin-
ciple be integrated over any given generation function

F2(y) = g(x)C (x,y)dx.
0

(16)

In some instances, the integral must be evaluated by
approximate or numerical methods, or by a computer.
It is instructive to examine the rather simple case where

g(x) =gpss(x —xo), (0&xo&a). (17)

8(x) referring to the Dirac 8 function. In this case, F2
can be evaluated analytically, the result being

F2= gpC (xp,y).
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(iii)
(19)

( )
D (d'p/dx') p(—x)/r =0,

The coritinuity equation applicable to this example (ii)
may be written as

limp(x, —~) = limp(x, ye);
e—+0

p(a) =0;
limPD(dp/dx) zo —D(dp/dx) tp+ ]=go,
~~0

where D (—= 3Xc) is the diffusion coefficient and p is
the excess carrier concentration (actual concentration
minus equilibrium concentration). It may be solved
under the boundary conditions:

D(dp/dx). =o sp (0——),

where s is the surface recombination velocity';

to yield the excess carrier concentration. The Aux at
the junction may then be obtained by evaluating the
quantity D(—dp/dx) at x = a. The boundary conditions
so chosen define precisely the same conditions of carrier
generation as Eq. (17). The result of the continuity
equation analysis subject to these boundary conditions
can be shown to be

go

(sL/D) +tanh (xp/L)
coshL (a—xo)/L]+ sinh L (a—xo)/L]

1+(sL/D) tanh(xo/L)

(20)

It is to be expected that (18) reduces to (20) in the limit where the continuity equation analysis is valid. Ac-
cordingly, we shall examine the behavior of (18) in the limit p«1. If in the expression for C (xo,y), the radicals
are expanded by the binomial theorem, and if subsequently all terms in p' are neglected (this assumes p'«1 —Ro
as well as y«1), one obtains

L2y coshqxo+ (1—Ro) sinhqxo](p coshqxo+sinhqxo)
C (xo,y) =

P2y coshqxo+ (1—Rp) sinhqxo] (2y coshqa+ sinhqa) —2&RO sinhq (a—xo)

In this expression, if one divides numerator and denominator by

L2y coshqxo+ (1—Ro) sinhqxo](y coshqxo+sinhqxo)

(21)

and then expresses the hyperbolic functions of qa in terms of functions of qxo and q(a —xo), neglecting terms in y'
where they arise, assuming also that 1—Ro(&1, one obtains the expression

2y+ tanhqxo

y+ tanhqxo
coshq(a —xo)+

tanhqxo tanhqxo+ (1—Ro)/2y
sinhq (a—xo)

y+tanhqxo 1+L(1—Ro)/2y] tanhqx,
(22)

D (1—Ro) cs=- =—(1—Ro).
L 2y 4

(23)

For 1—Ro((1, this is in close agreement with previ-
ously published results. 7 In the case where the sinhqx
terms in C(xo,p) may be neglected (i.e., for x,«X),
inspection of (14) reveals that it is necessary to retain
terms of the order of p'. It is easy to show that in this
case (again for y«1)

2 1 (1—Ro)
C (xo,y) =

~

coshqa+ —— — sinhqa
~( 1+Ro q (1+R,) )

(xo«X) (24)
' W. Shockley, Electrons and Holes in Semicondlctors (D. V@n

Nostrand Company, Inc. , Princeton, New Jersey, 1950), p, $&I,

According to (9), for p«1, q 1/L; likewise—, for xo))X,
the coefffcient of coshq(a —xo) and the expression
tanhqxo (p+ tanhqxo) ' approach unity. Therefore,
under these conditions (18) agrees with (20), provided
that one takes

This is again in agreement with the predictions of (20),
provided that s is taken as —,'c(1—R,)/(1+R,); this is
in exact agreement with previously obtained results~
and in close agreement with (23) for 1—Ro«1. The
slight discrepancy in the expression obtained for s may
be due to the fact that the assumption 1—Ro«1 was
used to obtain (22), but was not used to obtain (24).

It should be emphasized that the fulfillment of the
condition p«1 (i.e., X«L) does not by itself guarantee
agreement between the Aux theory presented here and
the classical diffusion-recombination theory as applied
via the continuity equation. In addition, the physical
dimensions of the system under consideration must, in
general, be large in comparison with X for the classical
continuity theory to be applicable. It is apparent, for
example, that (22) no longer corresponds in a simple
way with (20) when tanhqxo p (i.e., when xo 'A).

This occurs not only because the quadratic term in the
numerator of C (xo,y) must be considered, as mentioned
previously, but also because of a breakdown in the
assumptions upon which the classical diffusion-recom-
bination analysis is based —notably the assumption
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that many free paths are involved, on the average,
between the generation and subsequent collection or
recombination of a carrier.

In the limit where y«1, and xo, a«L (this special
case is discussed in detail for simplicity), it is found
that C(xo,y) reduces to

1+Ro+ (3xo/4lt) [2+(1—Ro)]+ (1.—Ro) (9xo /@ )
4 (xo,y) =

2+ (3xo/2X)+ (1 Ro) (3G/2X) (1+3xo/4X)
(25)

This expression is obtained by expanding the sinh,
cosh, and (1+y')' functions in (14), and simplifying
numerator and denominator, neglecting terms of higher
order than quadratic in p, xp, a, or their products. If,
in addition, it is assumed that xp, a, a—xp))X, then

1+(3xo/4X) (1—Ro)
C (xo,p) = (xo, a, a—xo))lt) (26)

1+(3u/4X) (1—Ro)

Equation (26) agrees with the result of the continuity
equation analysis, which predicts that 4 = (1+sxo/D)/
(1+su/D), provided s is defined as in (23). If the
condition xp, a, a—xp))X does not hold, then the ex-
pression (25) must be used to compute C, and the results
no longer correspond in any simple way to those derived
by way of the continuity equation. On the other hand,
if xo is identically zero, then (25) gives

2 3a (1—Ro) q
4 (O,y) =

i +— i, (xo=0) (27)
E 1+Ro 2X (1+Ro)i

which does in this restricted case again agree with the
result of the continuity equation analysis if 1—Rp«1
and if s is defined as —',c(1—Ro)/(1+Ro); this definition
of s agrees closely with that set down in (23) for
1—Rp«1.

In comparing the results of the flux analysis with

those obtained from the continuity equation, it has
been assumed in various contexts that 1—Rp«1. That
this is indeed the case for most experimentally realizable
surface conditions, at least for germanium and silicon,
has been demonstrated by surface recombination
measurements. '" It should be noted, however, that
a boundary such as the one characterized as the
"surface" in this example need not necessarily corre-
spond to a real crystal-atmosphere interface, but may
describe any boundary which is partially reflecting to
carriers such as, for instance, a p-e junction which is
maintained at arbitrary bias.

In instances where the physical dimensions of the
system are not large compared with X, where L is not
very much greater than X, where y' is not small com-
pared with 1—Rp or, finally, where 1—Rp is not small
compared with unity, the use ef the continuity equation
must be abandoned in favor of a more general treat-
ment, such as the one outlined here. The first of these
instances may be encountered in sufficiently thin
surface p-e junction structures, the second may arise in
certain of the III-V intermetallic compounds.

It should be pointed out, parenthetically, that this
example can be solved by the same general procedure
even if the absorbing p-e junction is replaced by a
partially reflecting surface of reflectance Rp'. In this
case the flux crossing this boundary is given by

Ts(1—Ro') [(1+Ri)(1—RoRi)+RoTi ]
dF = —,'dA

(1—RoRi) [(1—RiRo) (1—Ro'Ro) —Ro'RiTss] —(1—Ro'Ro)RoRoTio —RoRo'TisTss
(2g)

where, as usual, R~, R2, T~, T2 are to be identified with
R(x), R(a—x), T(x), T(a—x), respectively, as given
by (1) and (2). This expression reduces to the expression
given for dFo in (11) and (12) for Ro' ——0.

IV. DISCUSSION

It has been demonstrated that results concerning
fluxes of added carriers in semiconductors usually
obtained by solving a continuity equation and com-
puting currents from concentrations and concentration
gradients obtained thereby can be obtained by a
consideration of scattering and absorption phenomena
acting on the fluxes themselves. The results of the flux
analysis, while as yet having been derived only for the
steady-state, one-dimensional, zero-electric-field case,
are nevertheless in some respects more general than

those obtained from the continuity equation, in that
no restrictive assumptions regarding the dimensions
of the system or the average number of free paths
experienced by the carriers before absorption need be
made.

In familiar semiconductors, even those characterized
by high carrier mobility, the mean free path is always
less than 10 ' cm at room temperature. In very pure
germanium at low temperatures ( 10'K) the mean
free path may be of the order of 10 ' cm. It is thus
clear that only if the system dimensions are very small,
or if the diffusion length L is very low, will there be
appreciable departure from the results derived from
the continuity equation analysis. The eGect of short
lifetime will not be appreciable in germanium at low

"W. Heywarrg arid M. Zerbst, Z. Naturforsch. lla, 256 (1956).
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temperature if the lifetime exceeds about 10 ' sec, and
at room temperature will not be apparent for lifetime
in excess of about 10 "sec.

It should be kept in mind that the evaluation of the
scattering and absorption parameters is based upon a
simple kinetic model which assumes strict equality of
probability of forward and backward scattering, and
in which no account of the effect of either applied
electric fields or internal electric fields' (arising from
the tendency of the crystal to maintain local electrical
neutrality in situations where the hole and electron
mobilities are unequal) has been taken. The effect of
the internal fields may be expected to play an important
role when large added carrier concentrations or high
concentration gradients exist, but may be expected to
be negligible in small-signal situations where the added
carrier density is small compared to the equilibrium
carrier density. There will be, on the average, no
internal fields even at high added carrier concentrations
in cases where the hole and electron mobilities are
equal, and the Qux analysis may, of course, be expected
to apply unequivocally under those conditions. The
desirability of extending the analysis presented here
to include cases where nonnegligible electric fields are
present is obvious, and indeed it is possible to eGect
such a generalization on a simple phenomenological
basis by modifying the scattering and absorption
parameters with additive terms varying linearly with
the electric field. It is, however, not a simple matter to
arrive at expressions for field-dependent scattering and
recombination parameters on a rigorous, physically
correct basis, and (although the results of the phe-
nomenological theory agree with the results given by
the continuity equation in the appropriate limit), it
appears that the simple phenomenological model may
not be sufficient to describe the physical situation
correctly in a completely general way. It is expected
that continuing research e8ort on this subject will

yield a physically rigorous solution to the field-de-
pendent problem.

Despite the fact that rather cumbersome algebraic
procedures have been necessary in the foregoing analysis
to exhibit in detail the relationship between the Qux

theory and the conventional analysis, it should be
noted that the Qux analysis is generally no more tedious
nor difficult to apply in a given situation than the
conventional method. The ease and precision with
which surface or interfacial boundary conditions can
be introduced, and the generality of the results obtained

render it, where applicable, a powerful tool for the
analysis of excess carrier problems in semiconductors.

Fi=A (1 ndx—)+kFi'dx,
Fj'=RFj,
F,'=kAdx+ (1 ndx—)Fi',
F3= TFg.

(A.1)

Here kdx and 1—o;dx are assumed to be the reQection
(backscattering) and transmission (survival without
backscattering or recombination) coefFicients, respec-
tively, of a layer of thickness dx. The equations (A.1)
may be solved to give

1—ndx R(1—ndx)'
F,=A —, F2' Akdx+——

1—kEdx 1—kid x
(A.2)

1 Elder

1—kEdx 1—Mdx

Then (following Coltman et a/ 4), .

F2' R(1—ndx)'
R(x+dx) = = kdx+

1—kEdx

and (neglecting second-order terms in dx)

dR R (x+dx) R(x) ( —2n
=k] 1——R+R f.

dx dx ( k )
This equation can be integrated, the constant of
integration being evaluated by the requirement that
R(0)=0. The result is Eq. (1). The transmission
coefficient can be derived in a somewhat similar manner
to give (2). Note that if there is no absorption (n=k,
g=0), then R+ T=1, as expected.

APPENDIX B. DERIVATION OF PROPORTIONALITY
CONSTANTS

In deriving Eq. (5), it is necessary to show that the
average distance from which Qux, entering an element
of area normal to the x axis and being scattered in that
element, originates, projected upon the x axis, is 2li/3.
Referring to Fig. 3, one can write

APPENDIX A. REFLECTION AND TRANSMISSION
COEFFICIENTS

Referring to Fig. 1, the following Qux relations can
be written for the Quxes illustrated therein:

pelf p27l

li =(X cos8), = (li cos8) cos8X' sin8d8dg
o ~o

r
z~ 2m

cos8 li' sin8d8dg,J,

whence
li =2K/3. (B.1)

The quantity @ is the azimuthal coordinate about the

polar (x) axis. The extra cos8 factor in the integral is, of

course, the I ambertian cosine factor, necessitated by
the fact that the area subtended, and thus the Qux inter-
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cepted, by dS varies with angle as cos0. The result is
consistent with the conclusions of previous treatments

FIG. 3. Geometry assumed in calculating average separation of
scattering events along the x axis.

involving this subject. ' ' Electively, then, so far as the
Quxes are concerned, scattering events are separated, on
the average, by distance 2X/3 along the h axis. The re-
flectivity kCh, should thus be -', for Ch=2X/3, assuming
the scattering to be isotropic (i.e., the probability of a
backward scatter equals that of a forward scatter
equals —,). Writing down this equality and solving for k,
one obtains at once, k= 3/4X, or Eq. (5).

To derive Eq. (6), it must be noted that the fraction
of Qux absorbed in a layer approaches asymptotically
t/r as the layer thickness approaches zero, where t is
the mean traversal time for the Qux. For an elementary
layer of thickness e and an angle of approach 0 relative
to the h axis, the time of traversal is e(v cos8) ', where
v is the Qux velocity. This, accordingly, is the quantity
which must be averaged in order to 6nd t. The weighting
factors are those which are used in classical kinetic
calculations which involve particles striking a wall or
streaming through an aperture; the average is thus

computed according to Eq. (B.2).

t(e) = v' exp( —mv'/2kT)v cos8 sin8d8dv
v cos8 ~p ~ p 5 coso

v' exp( —mv'/2kT)v cos8 sin8d8dv. (B.2)

The cos8 sin8 terms arise from the assumed spherical
isotropy of velocities, and the factor ~ is included
because the Qux associated with an element of the
velocity. distribution is the particle density associated
with that element times the velocity which pertains
to it. The factor v' exp( —mv'/2kT) represents the
familiar Maxwell-Boltzmann distribution of velocities.
Evaluating the integrals in (B.2) and recalling from the

whereby
t(e) =2t/c= vt)rv) (B.3)

as represented by Eq. (6).

de6nition of z that xe also represents the fraction of
Qux absorbed in an elementary layer of thickness e,
it can be shown that


