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Decay of Phosphorescence from a Distribution of Trapping Levels
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In a previous paper it was shown that the usual model for second-order decay predicted the correct form
for the decay in many thermoluminescent crystals but gave the wrong behavior for the parameters involved.
Speci6cally, it was shown that b and m in the decay expression, I=IDPb/(b+t)], should behave differently
as functions of the decay temperature and the degree of trap 6lling than is observed experimentally at
temperatures near or below the glow peak. In the present paper it is shown that the discrepancies can be
accounted for by assuming a 6rst-order decay from a distribution of trapping levels. Most of the results are
based on a Gaussian distribution but it is shown that other distributions can produce similar results. The
6rst-order mechanism is justi6ed by considering the relative magnitudes of the rate constants for trap
emptying, retrapping, and recombination. At temperatures well above the glow peak this assumption is no
longer justi6ed, but in this range the second-order decay predicts the observed results for b and m. The
effects of retrapping and of crystal dimensions are considered. Also, the eGect on the glow peak of having a
distribution of levels rather than a set of discrete levels is worked out and it is shown that the peak is
broadened appreciably even for relatively narrow distributions.

I. INTRODUCTION

' 'N a previous paper' it was shown that the phosphores-
- ~ cent decay curves for a number of thermoluminescent
crystals including calcite, dolomite, anhydrite, aragonite,
and magnesite have the form predicted for a second-
order process, namely,

I=Is(b/&+1)", (1)
where b and nz are parameters. It was further demon-
strated that the behavior of the parameters b and ns

with changes in temperature and the fraction of ini-
tially filled traps was not the one predicted for a second-
order process except at temperatures well above the
glow peak.

In this paper it is shown that the correct behavior
for b and m at temperatures near the glow peak can be
predicted by assuming that the trapping levels are
spread over a range of energies according to a Gaussian
distribution function. The results are based on the
assumption that the emptying of traps is the rate-
determining step in the decay process except at tem-
peratures well above the glow peak where the second-
order process predicts the correct behavior for b and nz.
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II. THEORY

Figure 1 illustrates the transitions involved in phos-
phorescent decay of the type to be considered here. The
constants y, n, and P refer to the rates of emptying filled

traps, filling empty traps, and recombination with
empty luminescent centers, respectively. It is reason-
able to expect rr and P to be roughly independent of
temperature over the range of a glow peak but y is a
strong function of temperature, namely,

p~
—EjkT

where v is a frequency factor, E is the activation energy
associated with the trap, and kT is the Boltzmann
factor. At temperatures near or below the glow peak,
y is much less than unity for most trapping levels
whereas n and P should be much larger since they are
proportional to the probability that an electron will
combine with positively charged centers in the crystal.
Therefore, at temperatures near the glow peak, the
emptying of traps should occur at a much slower rate
than either the rate of retrapping or recombination and
should thus be the rate-determining step for the com-
plete decay process.

Obviously, the decay mechanism is more complicated
than this in the crystals being considered here since the
preceding process results in an exponential decay rate
rather than the relation given by Eq. (1).The problem
to be worked out here is whether the postulation of a
distribution of trapping levels will result in a decay of
the form of Eq. (1) and will predict the correct behavior
for the constants b and m.

The postulation of a distribution of trapping levels
is not new" and there is good evidence that such dis-
tributions exist in calcite, dolomite, etc. For example,
it is found that partial emptying of the traps associated
with a particular glow peak (by warming the crystals

FIG. 1. Energy level scheme for second-order decay.

' W. L. Medlin, Phys. Rev. 122, 837 (1961).

2J. T. Randall and M. H. F. Wilkins, Proc. Roy. Soc. (London)
A184, 390 (1945).

'T. Kikuchi, J. Phys. Soc. Japan 13, 526 (1958).
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to temperatures near a glow peak for a brief period)
results in shifting the glow peak to higher temperatures
whereas the peak temperature should remain constant
for a set of discrete traps. It has also been shown by
Saddy4 and Curie' that the decay curves for phosphors
such as ZnS can be duplicated by a sum of exponential
decay rates based on a Gaussian distribution of trapping
levels.

The smearing out of discrete trapping levels into a
band of levels would presuInably be the result of local
distortions in the crystal 6eld due to dislocations,
vacancies, impurities, etc. Since both the local dis-
tortions and the trapping centers should be randomly
distributed throughout the crystal, a logical form for the
distribution would be

04
Np

1.05
E IN ERGI

l,20 X IO

N~=Np exp[—b(E—Ep)']. (3)

At temperatures well below the glow peak, Eq. (3)
expresses the distribution of filled traps after any ex-
citation time since the rate of emptying is negligible
and it can be assumed that the rate of filling is inde-
pendent of trap depth, E. However, at temperatures
near the glow peak where the rate of emptying becomes
appreciable, the shallower traps of the distribution are
emptied at a faster rate than the deep ones as given by
Eq. (2). I'herefore, it is clear that the value of E corre-
sponding to the maximum number of filled traps shifts
toward greater values as the excitation proceeds and
the rate of shift is a function of temperature.

The method of measuring decay curves requires
that the sample be excited at the same temperature for
which the decay rate is measured. Therefore, it is
necessary to investigate the form of the distribution of
filled traps as a function of excitation time and tem-
perature near the glow peak. Assuming that the proba-
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0.80 I.I 0
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4 M. J. Saddy, Compt. rend. 228, 2022 I'1949).
~ M. D. Curie, Compt. rend. 229, 193 I'1949).

FIG. 2. Distribution of filled traps as a function of time for
)=0.01 sec ' 8 1026 ergs~, v=107 sec ' Eo——1.00)&10 &3 ergs
and T=440'K.

Fro. 3. Distribution of filled traps as a function of temperature
for )=0.01 sec ' 6=10'6 ergs 2, v=107 sec ', ED=1.00)&10 '2

ergs, and t=15 sec.

bility, $, of filling traps is independent of T and E, the
rate of filling is given by

ds/dt= sy+ —(NE s)f, — (4)

The behavior of Eq. (5) is illustrated in Figs. 2 and 3
which show s/Np as a function of E for various values
of t and T, respectively. These results show that s(E)
is Gaussian in form to a good degree of approximation
ol ~

s(E)=S exp[ —a.(E—E )'],
where S, o., and E are all functions of t and y (and
hence T). At low temperatures where y« t, it is found
that 5=1—e &', 0=8, and E =E~, which means that
all of the traps are 6lled uniformly as expected. At
high temperatures where y))$, Eq. (5) reduces to a
Gaussian function multiplied by exp(E/kT), which
means that E increases to a limiting value with in-
creasing t. For intermediate values of y, E behaves in
the same way but reaches a limiting value more slowly.
The magnitude of $ also determines the rate at which
E reaches a limit, i.e., for smaller $ longer times are
required. It follows from this that the magnitude of v,
the temperature independent part of y, has the opposite
eGect: For smaller v shorter times are required for E
to reach a limiting value. The magnitude of the limiting
value of E is determined by the distribution parameter,
8, as well as the temperature. For broader distributions
(smaller 8) and for higher temperatures the limiting
value is larger.

The distribution parameter, 0-, is also a function of

where s is the number of filled traps and y is related to
the temperature through Eq. (2). Integrating Eq. (4)
and substituting the initial condition: s=0 when t=0,
gives

&Np exp[—8 (E—Ep)']
(I —e PL—(7+$)t]) (5)
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the excitation time and temperature. The value of o can
be computed from the relation,

o.=0.693/(Ei —E,„)'-,

where E; is the value of E for which s has half its maxi-
mum value. At a given temperature, o- increases with
excitation time, passes through a maximum, and then
decreases to a limiting value. The rate at which it
reaches a limit still depends on the temperature and
the relative magnitudes of v and $ as in the case of E
In general, o- approaches a limit in approximately the
same time as E, the difference being that it passes
through a maximum first. The occurrence of this maxi-
mum is in accordance with the trap emptying and re-
trapping mechanisms involved. During the early part
of the excitation, the deeper traps in the distribution are
filled at a much faster rate than the shallower ones be-
cause the probability of emptying the shallow traps is
greater. The distribution of filled traps is thus becoming
narrower during this time and o is increasing. But as
the deeper levels become filled the rate of filling them
decreases and finally becomes smaller, than the rate of
filling the shallower traps. During this period, the dis-
tribution is becoming broader and cr is decreasing.
Eventually, equilibrium conditions are approached and
o- takes on a.limiting value.

Since it has been determined that the distribution of
filled traps can be approximated by a Gaussian function
for any excitation time, it is now necessary to deter-
mine the rate at which this distribution is emptied
when the exciting source is removed. Neglecting re-
trapping, the rate of emptying traps is

dz/dt= — yz(E) exp[ —y(t —to)]dE,
J0

where t0 is the time at which the exciting source is re-
moved and the decay begins. Substituting Eqs. (2)
and (6) gives

dz/dt= )I vS—e ~'"' expL —o (L—E...)'j
0

&&expL —ve Ets" (t—ts)]dE. (g)

As long as the rate of emptying traps is the rate deter-
mining step, Eq. (8) expresses the decay rate. Since the
distributions represented by Eq. (8) are very narrow
(o 100 ev '), the integrand cuts off very quickly on
either side of E and it is a very good approximation for
all but very shallow traps to extend the integration to
—~, so that

7=)~ vSe ~t"r exp) —o.(E—E„)']
&&expL —ve e's (t ts)]rlE (9)— .

The integral in Eq. (9) has the same form as the ex-
pression for the aftereffect current in a charged con-
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denser. ' A set of numerical values for this function has
been computed by Wagner' and a family of curves has
also been published by Jahnke and Emde. ' It is clear
from inspection that these curves can be fitted to Kq.
(1) over a range of values of y„(t—ts) which decreases
with increasing values of 8(kT)'. However the results
compiled by Jahnke and Emde are not complete
enough to determine the functional relations between
the parameters b and m, in Eq. (1) and the parameters
o, E, v, and T in Eq. (9). In order to determine these
relations a set of supplementary values has been com-
puted from Eq. (8). These results show that Eq. (1)
can be fitted over a considerable range of values of
o-, E, v, and T when

b= aE„s/v(kTE, )',

where 8, is a constant having the value of 0.01 ev. The
corresponding value of m can be determined graphi-
cally. A table of results for b and m has been compiled
on the basis of Eq. (10) and these results are presented
in Table I. Some representative curves taken from these
results are shown in Fig. 4, and Fig. 5 shows some
typical experimental decay curves for comparison.

The results of Table I are not adequate to provide
an expression for m in terms of E, o, and T (m is
independent of v in agreement with dimensional con-

' K. W. Wagner, Ann. Phys. 40, 833 (1913).' K. W. Wagner, Electrotech. Z. 34, 1279 (1913).' E. Jahnke and F. Emde, Tables of Functions (Dover Publica-
tions, New York, 1945), p. 38.

Los{ )

FIG. 4. Theoretical decay curves based on Eqs. (9) snd (IQ) for
E0=1.20X10 ' ergs and v=1.40&&10~ sec '
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TAsLE I, Graphically determined values of b and m.
4oo' &

1026
10'6
1025

QQ

(erg)

1.200X 10-»
1.200X 10-»

PX1P

(sec ')

1'.40 X10z
1.40 X10z
1.40 X10z

T b

(deg K) (sec)

400 3.8
440 3.1
480 2.6

1.04
1,15
1,28

20—

1P26
1026
1P26

1.200X10 " 1.40 X10' 400
1 2P0X1P—'2 140 X10z
1.200X10 " 1.40 X10' 480

10'z 1.200X10 " 1.40 X10z 400
10'z 1.200X10 " 1 40 X10z 440
102z 1.200X10 " 1.40 X10z 480

38
32
26

380
320
260

1.18
2.33
3.60

2.70
12.3
25.2

CO

Ch
~ l8—
O
O
LLI

(h

1026
10"

1026
1026

1026
1026

1.000X 10-»
1.000X 10-»

1-40 X 10' 400
1.40 X10z 440

1.200X10 " 0.700X10' 400
1.200X10» 0.700X10z 480

1 200X10 " 2.80 X10z 400
1.200X10» 2.80 X10z 480

76
52

19
13

13
8.7

1.19
3.62

1,22
3.63

2.65
5.28

0
0
I

0
0
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1P26

1.400X10 "
1.400X10»
1.400X10 "

1.40 X10z 400
1.40 X 10z 440
1.40 X 10z 480

96
81'
66

0.768
1.90

5aooK
0 I
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m= —CrE„+C,,
m =Cs+C40.,

m=CST,

Cr =f(~)
Cs= f(&-)
Cs= f(rr, L ),

Cs=f(T)
C4 f(b', T), (1——1)

where C~, C~, C~, C4, and C5 are all positive, Thus, m is
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FIG. 5. Experimental decay curves for an anhydxite sample
containing 680 ppm Mn++.

siderations), but the following relations have been
determined:

FIG. 6. Decay parameter, 6, as a function of t computed from
Eqs, (5) and (10) for 5=5X10" ergs ' /=0. 01 sec ' and L'o
=1.00X10 "ergs.

approximately a linear function of each parameter over
the range of values considered in Table I.

The results predicted for the parameters b and m of
Eq. (1) can now be summarized and compared with the
experimental results. At a given temperature, b varies
with excitation time as the product o-E '. Because of
the complicated behavior of o- with t, the predicted be-
havior of b is not obvious. Some computed values of b

have been plotted in Fig. 6. The results show that in
general, b increases with excitation time to a more or
less constant value at temperatures below or near the
glow peak and then decreases slightly with excitation
time at temperatures well above the glow peak. These
results are in good qualitative agreement with the
experimental data reported earlier' for calcite, dolomite,
anhydrite, aragonite, and magnesite. It should be
pointed out that the magnitude of the increase in b
with excitation time is controlled mainly by the in-
Quence of E which depends on the relative values of
v and $ and the value of the distribution parameter, b.

The behavior of b as a function of temperature (at a
constant excitation time) is even more difficult to pre-
dict because it involves the factor, 1/T'. Some com-
puted results are plotted in Fig. 7 which shows that b

should increase with temperature to a maximum value
and then fall off more rapidly than 1/T'. These results
are also in qualitative agreement with the experimental
data' except at temperatures well above the glow peak.
It is to be expected that the results are influenced in
this range by the second-order process which becomes
important at high temperatures.
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is based on a discrete trapping level, E. For a Gaussian
distribution of filled levels, the equation for the glow
peak is given by

20—

~ IB
CIz0
O
~I6
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I I l I 1

360 380 400 420 440 460 4BO 500 520
TEMPERATURE IN DEGR E ES K

FIG. 7. Decay parameter, b, as a function of T computed from
Eqs. (5) and (10) for 8=5X10 5 ergs (=0.01 sec ' and I~;0

=1.00X10 "ergs.

The relations given for m in Eq. (11) are not precise
enough to predict its behavior except as a function of
temperature for long excitation times. Under these
conditions o- and E remain approximately constant
and m should increase roughly as a linear function of
temperature. This behavior is observed in most cases
in the experimental data. However, it is dificult to
explain the result, observed in all samples, ' that m in-
creases to a limiting value and then falls off with in-
creasing temperature.

It is interesting to note that in most cases the experi-
mental curves decay faster than Kq. (1) at very short
and very long times. The faster decay at short times is
evidently the result of the rapid emptying of traps in
shallower distributions. However, the behavior at
longer times is in accordance with the curves of Fig. 4.
Therefore, Eq. (8) actually fits the experimental decay
for longer times than indicated by the curves of Fig. 5.
This means that Eq. (1) should be interpreted merely
as a convenient approximation to Kq. (8) which can be
used to describe the experimental decay curves in
terms of the parameters b and nz. The few cases for
which the decay at long times is slower than Eq. (1)
can probably be explained by interference from the
emptying of deep trap distributions.

The results discussed above provide good evidence
that the electron traps in many thermoluminescent
crystals are distributed over a range of energies. In
view of this, the question arises as to what effect a dis-
tribution of traps has on the glow curve. The well-
known expression derived by Randall and Wilkins' for
the form of a glow peak due to a heating rate, p,

T v
I=Xsve ~~exp —f —e ~i~ dr,

p

Si expL o(E'—E„)—']e s ~

T

Xexp —)f —e s~'AT dE. (13)
0 p

Calculations for I as a function of T have been made
for a set of representative values of E, v, and p and the
results are shown in Fig. 8 for four values of o-. These
have been compared with the glow peak for a discrete
level by introducing a suitable normalization factor.
The normalizing criterion is that the total number of
traps, E, be constant. For the Gaussian distribution
this gives

1
gV= — S expt —o(E—E )']dE, (14)

since EE is the total energy of all of the electrons
which have an average energy, E . Equation (14) can
be integrated by letting x=E—E and recognizing that
for all but very shallow traps,

0 00

f exp( o Y )d~ — I expt o (E E~) ]dE
—Em 2J

The result is

f'"
expL —o (E—E„)']dE=2 exp( —o x')dr= (m/o) l.

Thus, the normalizing relation for the curves of Fig. 8 is

E= (S/E ) (m/o)-'*.

As would be expected, the sharpness of the glow peaks
in Fig. 8 increases with 0-. It is somewhat surprising,
however, that the magnitude of o- should be so critical
in this respect. It is clear that the values of E, v, and p
change only the temperature of the glow peak and have
little effect on its shape except for very shallow traps.
Therefore, Fig. 8 indicates that 0- must be at least of
the order 10" ergs ' to provide a reasonably sharp
glow peak. It is interesting that a 0- no smaller than
1025 ergs ', which still corresponds to a very narrow
distribution of traps, can account for a glow peak as
broad as the one shown in Fig. 8. Some of the crystals
considered here such as calcite, dolomite, and magnesite
have glow curves consisting of more or less continuous
levels of emission over a long range of temperature. '
The results of Fig. 8 show that these can be explained
by a relatively narrow distribution of traps.

Another point which deserves some comment is the
method of determining the activation energy associated
with a trap. The most satisfactory means of doing this
for a discrete level is to measure the exponential slope
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TABLE II. Slope of exponential plot of glow curve
for various values of 0.

0'

in ergs '
SX10"

1026

5X 1026
1027

Slope of exponential plot
for E /k =0.870 deg

0,725
0.812
0.855
0.862

P

j
—e-«»d T« i,

o P

of the initial increase in intensity over a range of tem-
peratures well below the glow peak. In this range,

lAI-

g 26

CO
K

X
I8

X
O
Cf)
CO

~ l4
lal

IOI-
CA
K
lsJ
I

6

and Eq. (12) reduces to

Z ~ „&
—z/Ir 360 380 400 420 440 460 480 500 520

TKIHPF. RATURE IN OEG. K

from which a value of E can be determined graphically. I'ic. 8. Glow peak as a function of 0 for I~'0 ——1.200X10 " ergs,
When S~ is replaced by the Gaussian distribution of v=10r sec ', and v=0.5 deg/sec.

Eq. (6), the early rise of the glow peak is given by

I= j iVsv exp) o(E E—)'j.e s—'"rdE.
0

(15)

TABLE III. EBect of annealing on decay parameters b and nz.

Sample

Excita-
tion Tempera-
time ture
(sec) (deg K)

b
(sec)

Equation (15) is nonintegrable in closed form but a set
of numerical integrations has been carried out over
the temperature range 350'—400'K for E. =0.75 ev and
for several values of o-. It was found that the slope of
the early part of the I(T) curve is still exponential and
approaches —E /k for large o. The results, tabulated
in Table II, show that the method is suitable for pre-
dicting an approximate value of Es (which is always
too small) for reasonably sharp glow peaks.

It has been shown that for some crystals such as
calcite the glow peaks are appreciably enhanced by
annealing the sample at temperatures near its decom-
position range for a few hours. ' The increase in intensity
is accompanied by a decrease in the half width of the
glow peak. The results shown in Fig. 8 indicate that this
can be readily explained by an increase in 0- when the
sample is annealed. Since the effect of annealing is to
smooth out many of the crystal distortions which were
introduced during growth, such an increase in o- is to be

expected. To test the hypothesis, a calcite sample con-
taining 1000 ppm Mn~ was prepared by precipitation
at room temperature. A part of the sample was then
annealed and values of 0- were determined from the
decay curves of the original and the annealed samples.
The results, given in Table III, show a definite increase
in a. due to annealing which indicates a larger value of
0- in the annealed sample. Similar results have been ob-
served by comparing the decay curves of samples pre-
cipitated at room temperature with samples precipi-
tated at elevated temperatures (200—250'C) by hydro-
thermal techniques. '

In deriving the decay expression given by Eq. (8) it
has been assumed that retrapping during the decay
period can be neglected, . If the crystal contains trapping
sites at several different distribution levels then it is
clear that retrapping at levels other than the one under
consideration can be neglected. Retrapping in the shal-
lower distributions has negligible effect since the elec-
trons spend such a short time there. Retrapping in the
deeper levels is in the same category as radiationless
transitions; both can be neglected as long as the trap-
emptying process is the rate determining step. How-
ever, retrapping at the same level may occur to an
appreciable extent and it is worthwhile to consider its
e6ect.

Using the notation of I'ig. 1, the rate of emptying
traps is

ds/dt = —ys+n (Ex—s)e.
Calcite: before annealing

before annealing
45 325 40

300 325 60

Calcite: after annealing
after annealing

325
325

50
100

W. I . Medlin, J. Chem. Phys. 32, 943 (1960).

1.9
1.5

1.4
1.4

The case where an electron is immediately retrapped
at the same center it has just left can be eliminated as
before since this merely amounts to a reduction in the
value of y. If it is assumed that the number of conduc-
tion band electrons, e, remains approximately constant
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during the period of interest, then Eq. (16) gives TA&w.z IV. Effect of crystal size on decay curve.

s= {X!Ya+[(X+y)s—XNa]
X+y

Xexp[—P.+y) (t—to)]), (17)

where X=ee and sp is the number of filled traps at
t=to. Differentiating Eq. (17) with respect to t and
substituting foi so and!Vs from Kqs. (3) and (6) gives
an expression for the rate of emptying traps,

Sample

Natural calcite
(Brewster County, Texas)

Natural calcite
(Brervster County, Texas)

300 335 20 0 85

Excita-
tion Tempera-
time ture b

(sec) (deg K) (sec) I
300 335 25 0.85

Re-
marks

Single
crystal
Ground
sample

ds(dt—={(g+ve @to )S exp[—o(E—E )']
—XÃ exp[—8(E—Eo)'])

&(exp[(—X+ve ~" )(t—to)]. (18)

The decay rate is then obtained by integrating Eq. (18)
over all energies. The resulting expression can be put
in the form,

E=e px[ —X(t—to)] ~ vSe s"'

Xexp[ —0.(E—E„,)'] exp[ —ve e!"'(t t„)]dl.—

+Jt {Sexp[ o (E E~)']—!Yexp[—tI(E—Eo)'])

XX exp[—ve ~"'(t to)]dJ&. . —(19)

The first integral in Eq. (19) is identical to the decay
rate without retrapping [see Eq. (8)] multiplied by the
exponential, exp[ —X(t—to)]. The second integral is
always negative since J'o"sodE( Jo"!YgdE and for long
excitation times becomes negligible. Therefore the decay
with retrapping is given by the decay without retrap-
ping multiplied by the corrective factor exp[—), (t—to)]
and with another corrective term of approximately the
same form in t subtracted from it. An obvious means of
determining the importance of retrapping is to measure
the decay rates under the two conditions: (1) y))X
(high temperature) and Jo"sodE= Jo"XsdE (long ex-
citation time), and (2) y X and. Jo"sodE« J'o"cVadE&

This has been done for several samples' without ending
any apparent differences in the form of the decay curve.

The preceding developments have been derived on
the basis of a single crystal of large dimensions. But
since large single crystals of most of the crystals con-
sidered are not generally available, it is important to
consider the effect of crystal size on the decay process.

Since the crystal boundaries act as barriers for the
motion of free electrons it is clear that. the crystal
dimensions determine the maximum range of electrons
in the conduction band. Therefore, unless the mean
free path of the conduction electrons is considerably
less than the dimensions of the individual crystallites,
the equations based on single crystals are not va]id when

applied to a powdered sample (the ef'feet of considering

the contributions of a large number of crystallites to the
decay process has been considered by Weyl").

An expression for the mean free path of electrons in
ionic crystals has been derived by Frohlich and Mott"
and by Seeger and Teller. " For electrons having an
energy of a, few electron volts (the energy gap in most
of the crystals considered here is of the order of 10 ev),
the mean free path is no greater than 10 ' cm. Since
the crystallites in most natural samples have dimensions
of the order 1.0 ' cm, it is evidently valid to apply the
single-crystal results to these samples.

To verify this experimentally the decay curves for a
single crystal of natural calcite containing Mn++ were
measured before and after grinding. The maximum
crystallite size after grinding was no larger than 10 '
cm. The results, which are given in Table IV, show that
the form of the decay curve and the values of b and m
were not appreciably affected by diminishing the
crystal dimensions.

The choice of a Gaussian function to describe the
distribution of traps with energy follows from the
assumption that localized distortions as well as trapping
centers are randomly distributed throughout the crystal.
It is interesting to consider at this point the question
of other possible distribution functions.

A form which suggests itself is one for which the rate
of change in the number of traps with energy (measured
on either side of a zero point energy, Eo) is proportional
to the number of traps at that energy, i.e.,

dlY&jde = p!Y (20)

wher«= ~E—Eo~. From Eq. (20), tV, (E) has the form,

lV =Ão exp[ti(E —Eo)], E &E&o,

X,=!Vo exp[—t (E—Eo)], E)Eo.
(21)

When this distribution is substituted into the decay
expression, the result is

~ I~0

I=IVov ~ exp[ted(E —Eo)]e E'" exp[ —vte e!o ]dj&

(22)

+ 'Vov Jt exp[—p (E—Eo)]e s'~r exp[ —vte ~!"']dE&
gp

zo P K g eyl) I Chem Phys 26 547 ((957)"H. Frohlich and N. F. Mott, Proc. Roy. Soc. (London) A171,
496 (1939)."R.J. Seeger and E. Teller, Phys. Rev. 54, 515 (1938).
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FIG. 9. Theoretical decay curves computed from Eq. (21) for
an exponential distribution of trapping levels with So= 1.20)&10 "
ergs, v=1.40)&10' sec ', and T=440'K.

Equation (22) is nonintegrable in closed form but, a set
of values of I as a function of t has been computed
numerically. The results fit Eq. (1) over a suitable
range of t—to as illustrated in Fig. 9. The relations be-
tween b and m and the parameters Eo, v, T, and p have
not been worked out in this case. Also, it has been
assumed that the distribution function (21) retains its
form to a good approximation as the traps are 6lled.

It can be concluded that a Gaussian distribution
function is not the only one which will give the correct
form for the decay curve. Therefore, the agreement with
experiment of results based on the Gaussian distribu-
tion cannot be taken as proof that the traps are dis-
tributed in this way.

III. CONCLUSIONS

The experimentally observed form of the decay curve
for all of the common thermoluminescent minerals,
given by Eq. (1) can be derived by assuming that:
(a) the electron traps are not confined to a discrete
level but are distributed over a narrow range of energies
and (b) at temperatures near the glow peak, the rates
of recombination and retrapping are so much faster
than the rate of emptying traps that the latter process
is the rate determining step.

A Gaussian distribution of trapping levels (which is
the most logical choice) results in a distribution of
filled traps which can be approximated by a different
Gaussian function for any excitation time. The decay
curve predicted for such a distribution has the experi-
mentally observed form and the behavior of the pa-
rameters 5 and ry with excitation time and temperature
(near the glow peak) agree with the experimental
results.

Retrapping during the decay period is apparently
not important in affecting the form of the decay curve.
Also, the size of the individual crystallites in powdered
samples is not critical above 10—100 JM,.

The smearing out of discrete trapping levels into
bands of levels results in a Qattening of the associated
glow peak. This broadening eRect becomes extreme for
distributions which are still relatively narrow and shows
that the very broad, low-temperature glow peaks ob-
served in such crystals as calcite and dolomite can be
explained by quite narrow distributions of trapping
levels.

It can be shown that a Gaussian distribution is not
the only one which provides the observed decay form
and the proper behavior of the parameters b and m with
excitation time and temperature. It appears that any
narrow distribution function provides the observed
results.
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