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susceptibilities. The theoretical and the experimental
values agree in order of magnitude.

Many rare-earth metals and alloys undergo a
spontaneous magnetic transition from ferromagnetic to

TABLE I. The change in g factor due to the polarization of
conduction electrons in rare-earth metals; the theoretical values
are calculated from Eq. (25) with I= —0.174 ev.

antiferromagnetic ordering. However, these materials
obey the Curie-Weiss law in the paramagnetic temper-
ature region with positive Curie points. This is a good
indication that the basic interaction in the materials is
ferromagnetic. In such cases, Eqs. (14) and (23) should

apply to the paramagnetic Curie temperatures rather
than the Xeel temperatures.

The indirect exchange model may apply to the
transition elements as well. However, the problem is
hard to analyze because of the complicated band
structures.
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Differential equations are given for a general formulation of
current-carrier transport that includes space charge. Arbitrary
dependences of diffusivities and magnitudes of drift velocities on
electrostatic field are considered, and extension is made for applied
magnetic field. Though excess electron and hole concentrations
are not equal, the small-signal recombination rate depends on a
single lifetime, the "diffusion-length lifetime, " rp. The formulation
is applied to one-dimensional drift with recombination for an in-

jected pulse of electron-hole pairs. The exact electron and hole
distributions are obtained in closed form for the linear small-

signal case. The condition for linearity is given; it is usually the
same as that for substantially unperturbed applied field, Ep. There
are two principal types of solution, essentially according to
whether Tp is larger or smaller than the dielectric relaxation time,
Td. For Tp)rd, , the electron and hole distributions in not too
strongly extrinsic material are ultimately similar Gaussian distri-
butions displaced by the "polarization distance, "xz, the distance
electrons and holes drift apart in time (re '—re ') '. These dis-
tributions drift at a velocity that differs from the ambipolar ve-
locity by an amount which, besides being small for small Tz/Tp,

vanishes for equal mobilities, They spread, exhibiting an apparent
diffusion. A "pseudodiffusivity, " D„ is defined. For Tp))rz and
constant mobilities, D~ is proportional to reap/e, ', with oo the
conductivity. The ambipolar diffusivity and D, are additive. They
are equal in intrinsic material for Ee equal to kT/e divided by the
Debye length (kre/Sme;e')&, or 10 v/cm for silicon at 300'K. An
extension to a nonlinear case involving high-level injection is given;
concentration-dependent D, and velocity function are defined. For
sufficiently strongly extrinsic material and Tp)T&, the minority
carriers drift in a delta pulse that leads the majority carriers dis-
tributed in an exponential tail of characteristic length x~, which
may be quite large. For nonconstant mobilities and Tp) Tg ambi-
polar velocity in the majority-carrier or "reverse" direction may
occur. For Tq )Tp the other principal type of solution gives distri-
butions that in general (and for constant mobilities) drift in the
reverse direction. Involving also regions of local carrier depletion,
and thus generation as well as recombination, these distributions
may persist for times long compared with rp, being attenuated
then with time constant rd.

1. INTRODUCTION

ITH carrier injection and transport in semi-
conductor material of high resistivity, the widely

used approximation of local electrical neutrality fre-
quently does not apply. Thus, for various experiments
and for a number of devices, including semiconductor
detectors of nuclear particles, solutions are needed that
take space charge into account. Extending results previ-

ously reported, ' this paper presents a general formula-
tion of transport with space charge, including applied
magnetic field, and gives solutions for various cases of
one-dimensional drift with recombination. An injected
pulse of electron-hole pairs is considered. For linear
small-signal cases, with relatively small perturbation of
applied electrostatic field, exact solutions are obtained

' W. van Roosbroeck, Bull. Am. Phys. Soc. $, 180 (19/0).
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in closed form, and these are treated in detail. From
the viewpoint of the mathematical methods employed,
the analysis is quite similar to that of ambipolar drift
with trapping, ' 4 for which were established certain
Laplace transforms' by whose use the solutions could
be obtained. On the basis of this analysis, an extension
to a nonlinear case of high-level injection is presented.
Trapping is not considered, but the theory could be
extended to include trapping without essential change
in its formal structure.

With the present treatment, the neglect of diffusion
in the linear small-signal case makes it possible to obtain
exact solutions for the carrier-concentration distribu-
tions that are otherwise unrestricted. At the same time,
the neglect of diffusion facilitates physical interpretation
of these solutions. Theory for transport with space
charge has been given that is based on direct calculation
of the means and second moments of the distributions
for the general linear small-signal case. ' Diffusion has
been taken into account at the outset also in still
another treatment, ' in which evaluation of the dis-
tributions in closed form is accomplished under the
assumptions of strongly extrinsic material and corn-

paratively small dielectric relaxation time.
In advance of the proper derivations, it may be well

to outline in descriptive terms some principal aspects
of the present results concerning transport with space
charge. Note, first, that local electrical neutrality is,
in a sense, tantamount to infinite Coulomb forces or
zero dielectric relaxation time. Effects associated with
space charge are the more pronounced the larger is the
dielectric relaxation time. They are thus the more
pronounced the higher is the resistivity, whether this
be in, say, weakly extrinsic silicon at room temperature,
or in a high-purity semiconductor at low temperature,
which may be quite strongly extrinsic. Note also that
the problem of specifying the recombination rate with
space charge, that is, with excess electron and hole con-
centrations that are unequal, is similar to that previ-
ously considered in connection with trapping': For
given equilibrium concentrations of electrons and holes,
the small-signal rate is determined simply by the
"diffusion-length lifetime, '

7 p.

The condition that 7-p be larger than the dielectric
relaxation time, v~, is of course implicit in the assump-
tion of local neutrality. Transport with space charge
under this condition accordingly possesses some quali-
tative similarity to neutral transport. In particular,
with constant mobilities, the direction of drift of the
concentration disturbances is that of the minority
carriers. With the finite Coulomb forces taken into
account, however, it is shown that in not too strongly
extrinsic material under conditions that may readily

' W. van Roosbroeck, Bull. Am. Phys. Soc. 2, 152 (1957).' W. van Roosbroeck, Bell System Tech. J. 39, 515 (1960).
4 W. van Roosbroeck, Phys. Rev. 119, 636 (1960).' J. Keilson, J. Appl. Phys. 24, 1198 (1953).
6 R. Gevers, Physica 21, 888 (1955).

occur in practice, spreading of the distributions may be
associated primarily with a field-dependent "pseudo-
diffusivity, D„, rather than with diffusion itself. This
D, is occasioned by the applied field acting against
Coulomb forces to which the contribution of the equi-
librium minority carriers is not inappreciable. Even
with strongly extrinsic material, for which D, is negli-
gible, numerical estimate shows that the "polarization
distance, " xp, by which the means of the electron and
hole distributions are separated' may in practice be
quite large.

Familiar descriptive considerations that tacitly entail
local neutrality require quite drastic revision if v-z is
greater than ~p. The transport is then typified by com-
paratively rapid recombination (rather than dielectric
relaxation) in conjunction with polarization of charge
essentially by the distance electrons and holes drift
apart in time 7.0 (rather than rq) With. this polariza-
tion, recombining excess current carriers of one kind
cause local depletion of the carriers of the other kind,
and there is generation of carriers as well as recombina-
tion. For the carriers of each type, there are adjoining
regions of carrier excess and carrier depletion, whose
means exhibit the polarization of charge and for which
the net total number of carriers is substantially zero.
The frequency of recombination and generation of the
minority carriers being the greater, depletion of the
majority carriers is the more pronounced. The dis-
tributions, which result essentially from drift with a
multiple recombination-generation mechanism, there-
fore move together in the majority-carrier or "reverse"
direction. For r~))rp, excess electrons do not recombine
with excess holes, since there is no overlap of the dis-
tributions of excess carriers; and the concentration
disturbances, attenuated with time constant substan-
tially rd, persist for a time long compared with the
lifetime, ~p. In this case, both the polarization of charge
and the attenuation are such that the dielectric relaxa-
tion time and lifetime are, in effect, interchanged.

2. FORMULATION

In this section, phenomenological differential equa-
tions that take space charge into account are first
written for arbitrary dependences of the diffusivities
and the magnitudes of (collinear) drift velocities on
electrostatic field, and the extension for steady applied
magnetic field is included. The formulation is then
examined in further detail for the case of constant
mobilities and no applied magnetic field. The nota-
tion is largely consistent with notation previously
employed. ' 4"

The continuity equations for holes and electrons may
be written as

Bp/Bt= —e ' divI„+g —(R,

Be/Bt = e 'divI„+g —6t,
—

7 W. van Roosbroeck, Phys. Rev. 91, 282 (1953).
8 W. van Roosbroeck, Phys. Rev. 101, 1713 (1956).
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in which the same volume generation and recombination
functions g and (R apply in both equations for interband
excitations and no trapping. For arbitrary drift velocity
functions v„and v„and no applied magnetic field, the
current densities are

I„=eve eD~—gradp,

I =ev„n+eD„gradn
(2)

I„—(I„X1)canS„= I *,

I„—(I„Xk) tantl„= I„*, (6)

where O„and O„are the Hall angles for holes and for
electrons. These equations may readily be solved" for
I„and I„.In the present context, the definitions

I„*=e(v„,p D, gradp) (i—i+jj)—
(7)

+e(v~tp D„t gradp) kk, —
I„*—=e(v tn+D„, grade) (ii+jj)

+e(v tn+D„t gradn) kk

are employed for the case of tensor ellipsoids that are
ellipsoids of rotation about the magnetic Geld. The
second subscripts in Eqs. (7) are used to denote the
phenomenological transverse or longitudinal velocity
and diffusion-constant functions. Equations (6) and (7)
are readily specialized for the case of small Hall angles.

' W. van Roosbroeck, Bell System Tech. J. 29, 560 (1950).
"See Eqs. (11) of reference 8.

For the homogeneous semiconductor (with uniform net
fixed-charge concentration), space charge is associated
only with the inbalance in the hole and electron con-
centration increments hp and An, and (with uniform
dielectric constant e) Poisson's equation is

divE= (47re/e) (hp —An). (3)

Lamellar electrostatic Geld generally obtains as an
excellent approximation, the effect of time-dependent
magnetic field that may be associated with the trans-
port generally being negligible. Thus, the equations

curlK= 0, K = —grad V, (4)

hold. It follows readily from Eqs. (1) and (3) that the
total current density I, which includes the displace-
ment current density, is solenoidal. ' A field equation of
Maxwell relates I to the curl of the magnetic field:

I= I~+I„+(e/4vr)cIK/c)t = (c/4m. ) curlH. (5)

Since, with Gaussian units, c is the speed of light, and
since (for uniform magnetic permeability) divH is zero,
it is evident that the contribution to H from the trans-
port can be neglected, unless I is very large.

For steady uniform applied magnetic Geld, the
current-density equations must be suitably modified;
the other equations still hold. Consistently with results
previously given, ' for magnetic field applied in the
direction of the 2' axis, the direction of the unit vector
k, the current densities are given by

The current densities I„*and I„*defined by Eqs. (7)
represent the "forces" from which the transport origi-
nates. The velocities and diffusion constants in these
definitions do not include the effects of the Lorentz
forces. For the transverse and longitudinal quantities
equal, as in the case of small Hall angles, I„*and I„*
are formally the same as the I„and I„ for no applied
magnetic field of Eqs. (2). With applied magnetic field
but no diGusion, I~ and I„ofEqs. (6) are current densi-
ties that result from the actual velocities, the cross-
product terms in the equations being the terms that
arise from the Lorentz forces. From Eqs. (6), velocity
tensors that involve the Hall angles may be written,
and, with the diffusion terms included, diffusivity
tensors as well. It is implicit in these equations that the
current densities do not change appreciably in times
comparable with the relaxation times for conductivity. "

The continuity equations may be written out in
detail by substituting for the current densities in Eqs.
(1). Useful simplifications result from the assumption
that the drift-velocity functions of Eqs. (2) are collinear
with the electrostatic field, or that those of Eqs. (7)
are collinear with the transverse and longitudinal com-
ponents of the Geld. This assumption applies for the
drift currents along a symmetry axis of the crystal, or,
at least at room temperature, in general as a reasonable
approximation. "With this assumption and with applied
magnetic Geld taken into account for the case of small
Hall angles, the following continuity equations result:

Bhp/Bt div(D„gradhp) —g+ m, —
div(pv„) —„ediv( vp,

—Xk)

= —v (&p —Dn) —v„gradd, p p(v„Eds /dE)— —
Xdiv (E/E) —ou( (vn/E) fgradhp, E,k7

+p(v„Eds„/dE) curl(E—/E) k}, (8)

i7hn/Bt div(D„gradin) —g—+ (R

=div(nv„)+0 div. (nv„Xk)
= —p„(An Ap)+v„. gradAn+n(—s„—Edn„/dE)
Xdiv(E/E)+0. {(s„/E)fgradin, E,k7

+n(v„—Eds„/dE) curl(E/E) k).

Here, the heavy brackets denote scalar triple products

"For analysis of space-charge effects at frequencies comparable
with the collision frequencies (as for certain experiments on plasma
resonance), the respective left-hand members of Eqs. {6) should
include the derivative of the current density, I„or I„, with re-
spect to time measured in units of the mean relaxation time for
conductivity due to holes or electrons. See Dresselhaus, Kip, and
Kittel, Phys. Rev. 98, 368, 100, 618 (1955);W. P. Allis, FIandbuch
der Physik, edited by S. Flugge {Springer-Verlag, Berlin, 1956),
Vol. 21; E. Groschwitz and K. Siebertz, Z. Naturforsch. 11a,
482 (1956); E. Groschwitz, ibid. 12a, 529 (1957); P. A. Wolff,
Phys. Rev. 112, 66 (1958)~' The max&mum departure from collinearity does not exceed a
few degrees in germanium at room temperature. See M. Shibuya,
Phys. Rev. 99, 1189 (1955); W. Sasaki, M. Shibuya, and K.
Mizuguchi, J. Phys. Soc. Japan 13, 456 (1958); S. H. Koenig,
Proc. Phys. Soc. (London) A75, 959 (1959);E. G. S. Paige, Proc.
Phys. Soc. (London) A75, 174 (1960).
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and v„and v„are defined by

pp:47M (d vg&/d'E) p/e,

i = 4ire(dv„/ dE) n/ e.

de6ned by
hm—=—,'(Ap+hn),
hq—=—,

' (Ap —hn),
(13)

With the velocity magnitudes v„and v known func-
tions of the magnitude E of the field, Eqs. (3) and (8)
provide three differential equations in the dependent
variables Ap, dn, and E or V.

The second forms of the right-hand members of
Eqs. (8) apply specifically for v„and v„collinear with
E. The divergences of v~ and v„may then be written
so that they give contributions involving divE and
contributions involving div(E/E); note that the unit
vector E/E gives the direction field of the electrostatic
6eld, which depends essentially on Row geometry.
Eliminating divE by means of Eq. (3) gives the terms
involving the frequencies v~ and v„. These are recipro-
cals of dielectric relaxation times associated, respectively,
with holes and with electrons. Their sum is the reciprocal
of the actual dielectric relaxation time, v-~, or

&d= vy vn (1o)

For constant mobilities, v„and v„reduce to 4~0„/e and
4iro„/e, which are proportional to the conductivities
due to holes and to electrons.

The factors that multiply div(E/E) and that multiply
curl(E/E) k vanish for constant mobilities. For flow in
one Cartesian dimension, div(E/E) is zero. For cylin-
drical or spherical symmetry and outwardly directed
field, div(E/E) equals the reciprocal of the radius r or
2/r, respectively, and negative signs apply for inwardly
directed field. For all of these geometries, curl(E/E) is
zero. The terms in div(E/E) are clearly carrier-genera-
tion or -depletion terms that occur for nonconstant
mobilities in any Qow geometry other than the parallel
unidirectional one. The terms in curl(E/E) k are re-
lated terms for applied magnetic field and Row ge-
ometries other than the three simple ones considered.

From the specialization for constant mobilities and
no applied magnetic held, connections with an earlier
treatment' of the neutral case will now be exhibited,
and differential equations derived that are especially
suited for certain theoretical applications. For this
specialization, the continuity equations may be written
as

Bhp/Bt =D„div gradhp —p„E.gradhp
—p,„p divE —ap/r„,

Bhn/Bt=D„div graddn+p„E gradin
+p„n divE an/r„, —

in which g has been omitted and N. written as hp/r„
and as hn/r, with r~ and r„ lifetime functions for
holes and for electrons. The differential equation

e.E+ (e/kr) 8E/Bt = I e(D„gradd n —D„gradhp) —(12)

follows readily from Eqs. (2) and (5). In view of
Poisson's equation, it is well to employ hm and hq

as concentration variables. YVith these, and by eliminat-
ing divE by multiplying Eqs. (11), respectively, by o„
and 0~ and adding, substituting for E from Eq. (12),
and making use of

divD gradAm
=D div gradhm+e'o'p„p„. (D„D„)—

)&L(n—p) gradDm+ (n+p) gradhq7 graddm, (14)
divD' gradd q

=D' div gradhq e'0 2p„—p„(D„+D~)
)& [(n—p) gradAm+ (n+ p) gradhq7 gradDq,

where D and D' are defined by

D= (D o„+D—„o )/0 .=kTp„p„(n+p)/~,
(15)D'= (D~o „D„—o,)/a =—k Tp,.„p„(n p)/o. ,
—

the continuity equation

Bhm/Bt divD grad—d m

+e(r 'p„p„(n p)/I—(e/4—n)aE/Bt7 graddm

+~ '(0 /r„+-o, /r„)am
= —0 '(o.„—0„)Bhq/Bt+divD gradhq

eo. 'p—„p„(n+p)pI (e/4—m)BE/Bt7 graddq
'(~„/r„~-„/r „)aq—

results. This equation is the generalization of the ambi-
polar continuity equation~ previously derived for the
neutral case. In a formal sense, the latter results from
Eq. (16) if e is set equal to zero; Dq is then zero also
(and Ap= An and r~= r„ follow), since Poisson's equa-
tion is, in the present notation,

Aq= (e/8vre) divE. (17)

The quantity D is the concentration-dependent ambi-
polar diffusivity previously derived. The velocity for
Am which multiplies gradino is the same as the ambi-
polar drift velocity except that the factor I is replaced
by I minus the displacement current density. The
quantity D' may consistently be identified as a dif-
fusivity for the concentration inbalance Aq, and that
which multiplies grading, as a drift velocity for Aj.
There is a correspondence between D' and the velocity
for hm which is the same as that between D and the
velocity for hq: The former two quantities contain as a
factor (n —p) where the latter two contain (n+p).
Note also that the recombination terms on the left-
hand side of Eq. (16) transposed to the right combine,
as may be expected, with terms there to give (—S),
which is the contribution to Bhm/Bt from recom-
bination; there is no contribution to Bhq/Bt from
recombination.

Another differential equation, one that gives cl&q jest,
may be obtained by subtracting the second of Kqs.
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(11) from the first. This procedure is tantamount to
writing the equation that expresses the solenoidal
property of I, as by taking the divergence of Eq. (12)
and introducing Bhq/Bt from the time derivative of
Eq. (17). With Eq. (17) used also to eliminate divE,
the result obtained is

e ' divl= 2M,q/Bt (D—„+D„)div gradAq
—(p„—ti„)E gradAq+ (8s-0/e) Aq

+ (D„D„)—div grad Am+ (tj,„+trav) E
.gradAm =0. (18)

For the neutral case, the last three terms on the right
together equal zero if divR is restored by replacing the
first of these terms by e '0- divE.

A pair of differential equations obtained as the linear
combinations of Eqs. (16) and (18) that correspond to
r)(tJ, „AP+Ij~tt,n)/Bt is of advantage for certain applica-
tions. The equations are

Bhm/Bt+ [(b 1)/(b+—1))r)hq/Bt
= 2p[(kT/e) div gradAm —E gradhq —

q divE)
[b/{b+ 1)—r„y1/(b+ 1)r„]~m

—[b/(b+1) r„—1/(b+1) r„)~q,

[(b 1)/(b+—1))r)hm/Bt+Bhq/c)t
(19)

= 2p[(kT/e) div gradhq —E gradAm —m divE)
—[b/(b+1) r„—1/(b+1) r ]Am

—[b/(b+1) „+1/(b+1) „)Aq,

with m= , (p+n—),—q=——,(p —n), b= p~/p„—, and ,p= tJ, pv/—
(ti„+y,„).Note that the coefFicient of div gradDm and
of div gradhq is the diffusivity D;= 2D j)v/(D„+Dv—)
for intrinsic material. The recombination terms on the
right in the respective equations are, as may be ex-

pected, equal to (—(R) and [(b—1)/(b+1))(—(R). As
written with divE, Eqs. (19) are symmetrical, since one
results from the other upon interchange of m and q
and of Am and hq. The equations that Eqs. (19) reduce
to for the neutral case do not possess this symmetry. "

The two concentration variables and E or V are the
dependent variables, and three diGerential equations
are Eqs. (16), (17), and (18) or Eqs. (17) and (19). If
I must be determined from boundary conditions, then
it is well to eliminate I from Eq. (16) by use of Eq. (12).
But I is retained and Eq. (12) advantageously used
instead of Eq. (17) if, as is often the case, I is a known
function of the space coordinates and time.

neglecting diffusion and for no applied magnetic field,
are

Bhp/c)t = (v„—v„,)hn —(v,+v„)Ap —s„c)t1p/Bx,

Bhn/Bt = —(v„+v„„)An+ (v„—v„„)t)P+s„BA»/c)x
(20)

Here, the volume generation term has been omitted;
the dielectric relaxation frequencies and the drift ve-
locities have values that apply for thermal equilibrium;
and v„, and v„, are decay constants for "linear recom-
bination" defined in accordance with'4

X=*/1., U—= t/~,

and reduced concentrations

(22)

SP=zp/(rI/1. ), tt, N=an/(O'/1. ), (23)

where the distance and time units L and r are given by

I.= (v.+r„)r, r=—(i v'i)l, —

v'—=4(v.—v„„)(v„—v.,)
4»,s 4pre(np+pp) dp„

&0

(»p+Pp)'

47M (»p+ Pp) l&&

7 p

(24)

(R= (Ppkn+npAP)/(np+Pp)rp v.=—,An+ v,„hp, (21)

where 'rp is the'diffusion-length lifetime. Equation (21)
indicates that (for the linear small-signal case) it is the
concentration (pp&n+np&p)/(np+pp) to which a life-
time applies, and that this lifetime is ro. This result is
based on the hypothesis of negligible trapping, that is,
that the recombination centers, present in compara-
tively small concentration, have a trapping transient of
negligible amplitude and also of negligible duration.
Note that in regions where there is carrier depletion,
the recombination function R may be negative, which
implies generation of electron-hole pairs

To solve Eqs. (20) for a pulse of electron-hole pairs
injected into a doubly-infinite filament, for which a
suitable technique is that of the bilateral or two-sided
Laplace transform with respect to the distance variable,
a particular dimensionless formulation is employed.
This involves independent variables

3. TRANSPORT OF AN INJECTED PULSE

3.1 Drift in the Linear Small-Signal Case
subject to the restriction v'&0. The reduced di6erential
equations that result are

3.11 The Exact Solutioes
M P/r) U = —'[(X—«) AN —g' «) AP (1 n) r)QP/—r)—x), —
a&N/a U = ',[ (f-+«)aN+ () P«)a—P-

+ (1+rr)BAN/BX), (25)
' See reference 3, pp. 5'?3, 5'?4. The expression for (R follows

from the linearization of the general (steady-state) expression and
use of the last form for r0 of Eqs. (65) of this reference.

From Eqs. (8), linear small-signal continuity equa-
tions for one-dimensional drift with recombination,

"For this case, the transport terms of the right-hand mem-
bers are, respectively, (—e ' divI') and (b 1)/(b+1) times-
(—e divI"), where I' and I" are current densities defined in
reference 3.
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in which n, N, li, and f are the parameters

&n &p &n &p p

&n &p +0 0 +0 0 ~0

V„Vp—V„,—Vp, 7.= 7q ' —7.0 r,
I'n &p &nr &pr 7 = 7d &0

(26)

one to the right combines the identities

', g-+—X)r&=r= ', (P—-X)r—, (28)

Note that f is always positive, and, for no recombina-
tion, X and f are equal. Positive or negative X corre-
sponds, respectively, to 7-d, smaller or larger than 7 p. It
is evident that v is real or imaginary according to
whether the quantities

~'+1=X'=f' —4r'/rgro, (27)

in which the upper and lower signs apply, respectively,
for real and imaginary v, follow readily from the defini-
tions of Eqs. (24) and (26). The equation to the left
shows that ~ and A are not independent parameters. The

It is clear from the second form for v' of Eqs. (24)
that v is real for sufficiently large or su%ciently small
lifetime 7 p, and imaginary for an intermediate range in
which, for constant mobilities„ the relative change in
rp equals the mobility ratio. Thus, with di6ering elec-
tron and hole mobilities, imaginary v may obtain for 7 0

of the order of the dielectric relaxation time, 7-d. The
relationships between parameters,

-,'(li —~) = (v„v.„—) r, -', Pi+~) = (v.—v,„)r (29)

are of the same or of opposite sign. It is readily shown
that imaginary v imposes no restriction on X and im-
plies either 1&~&~ for e-type material or —00&~
& —1 for p-type material, while real v imposes no re-
striction on a and implies either 1&X(~ or —~ &X
& —1 for positive or negative (ro —r&), respectively.

Solutions of Eqs. (25) for a Gaussian initial distribu-
tion of electron-hole pairs, obtained in Sec. A. 1 of the
Appendix by use of two-sided Laplace transforms
previously derived, ' provide solutions for the limiting
case of the injected delta pulse. These are, for the pulse
injected at X=O,

(AP ) f ~P, (1—n) U —X]q
l
= {exp[&X—l 0 —«)U]} I l+-

I
IIo([-'U' —(X+-'nU)']')

EAE) (8[X+-,'(1+n) U]) 2 &y+g]

X+~ (1+n)Ui
+I I

[~~ U~ —(X+in U)~)—'f i(P U~ —(X+ inU)~]-*') )(lP U2 —(X+inU)~] I (30)

for w real, and

~APq
I

pb[2(1 —n)U —X]q 1- ~x—&q
I
= {exp[~X—l(f—nK) U]} I

I+-
I

l~o([-'U' —(X+ln»')')
&~x) I (8[Xyg'(1+n) U]) 2 (X+K)

(—X—-', (1+n)U)
+I l[-, U -(X+-, U) ]-V,([-,U -(X+-; U) )-:) XI[-',U -(X+-'nU)']

X——,'(1—n) UJ
for v imaginary.

The terms in hP and AS with the delta functions
S[-;(1—n)U —X)=LS(v,t—~) and ~[X+-', (lan)U)
= Lb(@+v„t) represent, respectively, pulses of holes and
lectrons at distances from the origin co rresponding to
the particle-drift displacements. The continuous con-
tributions, in which Ip, I», Jp, and J» denote Bessel
functions in the notation of Watson, are confined to the
interval ,'(1+n) U—&—X&-,'(1—n) U or v„t (x&vvt, —
the step function

I[-,' U' —(X+-'n U)')
=1[(', (1 n)U-X—)(X+—-,'(1+n)U)]

= l[(v, t—x) (x+v„t))
being, respectively, zero and unity for negative and

positives value of its argument. Thus, the Bessel func-
tions contribute only for positive values of their
argument.

It is of particular advantage to transform Eqs. (30)
and (31) by eliminating the reduced distance X in
accordance with

X—= ——,
' (cosO+n) U

=[- 'lo —l(1+ )]U
=[—cos'-,'0+-,' (1—n)) U, U) 0, (32)

in favor of 0, an angle variable that specifies relative
location within the range covered by the distributions.
This procedure gives

]AP~ &[-, (v —0)U)-ih(v —0)q

I
= {exp[ —

~ (f'+K cos0) U]}
L ZiV) & [-'OU]-'SO

1 pX
—~q p

tan-,'-0~
y+—

I
IIo(-'U sinO)+I IIi(-,'U sinO) Xl[O(v —0)]

EX+~)
'

& cot-.,'0) (33)
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for v real, and

)hI'q f' [-,'(~—0)Ug-'8 (~—0)y

I
= (exP[ —rs(i +a cosO) Ug}

&~x) )&
[-'0U]-'so

1 f'X —lrq (tan-', Oq+-
I

I~p(-', U»ne) -
I

i~i(-;U sine) XI[8(~-o)3 (34)
2 t. l~+~) i cot-', 0)

(X„)—(X„)=X '[1—exp (—XU)j. (36)

This result shows that, for X positive, the difference of
the means of the distributions approaches asymptoti-
cally, with time constant (rz ' —rp ') ', a "polarization
distance" x& given by'

xi = I/X= (v„+v„)/(rg—i—rp
—') (37)

It is clear that xp is essentially the distance electrons
and holes drift apart in the dielectric relaxation time v-~,

provided v«&~0 holds, and that x& is increased by
recombination.

For X negative, the right-hand member of Eq. (36)
may be written as I

X
I

—'[exp( I
X

I U) —1) and the means
of the distributions ultimately separate at an ex-
ponentially increasing rate, so that an xl does not
apply. As is shown in further detail in Sec. 3.12 in con-
nection with specific illustrative cases, the physical
interpretation has to do with the circumstance that
(with X (0) the distributions include regions of carrier
depletion as well as regions of carrier excess, and both

'~ Equation (37) written for constant mobilities is consistent
with Eq. (14) of reference 5.

for v imaginary. The use of 0~ as a variable implies the
step function of Eqs. (30) and (31), while the step
function of Eqs. (33) and (34) simply restricts 0' as
defined by Eq. (32) to the interval 0(0" (v.. The
particle-drift displacements x= —v„t and x=v„t cor-
respond to X=—rs(1+cr) U and X= rs(1 n)—U and to
0~=0 and 0'=v, respectively. The total range in X is
equal to U.

Some details of the evaluation of integrals of the
concentrations over the drift range as well as integrals
for the means or erst moments are given in Sec. A.2 of
the Appendix. It is verified that (with no trapping) the
fractions F„and I' at given elapsed time of holes and
electrons initially injected are both exp[—s(|—'A)U)

=exp( —t/rp), as may be expected. The means of the
distributions of Eqs. (33) and (34) are then found to
be given by

((X )) ~2il—a)U (gp)
&(X.)) ~;o+n&v i hN)

(»—X)=-;[./~-~gU-
I

(K+X)

X[1—exp( —'AU) j, (35)
whence

means ultimately lie outside the drift range, " even
though the distributions themselves do not.

If an xi applies, then Eqs. (35) show that the means
of the distributions ultimately exhibit the common
drift velocity s(s/X —n)(v„+v„). This velocity differs
from the ambipolar drift velocity' which, by eliminating
the contributions from divE (which are proportional
to Ae —Ap) between Eqs. (20) and then introducing the
neutrality condition Afs= AP, is found to be given by

vp
——(v„v,—v„v„)/(v„+v,)

v„—vy v „vy —cx v„vy
= (v„vrpdv„/dE v„ppdv, —/dE)/

s + v + v . v
(38)

(~Av„/dE+ p pdv„/dE).

With the definitions of Eqs. (26), the common drift
velocity and vo are clearly equal if there is no recom-
bination. The correction to vo is given by"

-,'(a/l~ —n) (v„+v„)—vp

ri,s dv„/dE dv„/dE —rg/r p

(39)
up+ p p Bpdv ~/d E+p pdv rp/d E 1—r&g/r p

which is evidently a small correction for v«&v. o, vanish-
ing for no recombination. It vanishes also if the di6er-
ential mobilities dv„/dE and dv„/dE are equal. Note
that, according to Eq. (38), with nonconstant mobilities
an ambipolar velocity vo may occur whose direction is
opposite to that normally associated with the con-
ductivity type. "

3.12 APProxirriate Sotutiofss and I/lustrative Cases

Principal physical interest attaches to cases of real v.
Cases of imaginary v apply over a range of approximate
equality of ~0 and rz that is generally quite limited,
their occurrence depending on diGering electron and
hole mobilities. For real v, approximate solutions of two
main types are here considered, the first being for
suKciently large times and not too strongly extrinsic
material, and the second for extrinsic material of suS-
ciently high resistivity. These correspond, respectively,
to large and to small values of the argument of the
Bessel functions.

"This conclusion follows from Eq. (35) since, from Eqs. (29),
z+ IX I )0 and s—IX I

(0 hold for v real and x(—1.
For constant mobilities, this result gives the corresponding

correction en;~(t(g, ~—p7,') rg/00(n0+p0) (v 0
—vd) to the ambipolar

pseudomobility, and this correction can be shown to be consistent
with Eq. (16) of reference 5.

"A. C. Prior, Proc. Phys. Soc. (Londonl A76, 465 (1960).
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For U large and 0' not too close to the limits of the interval to which it is confined, approximation" of the
Bessel functions in the solution of Eqs. (33) for v real gives

(~P) ( PL Q' )U3&C-'( —0)Uj 'b( —0))
(expL —-', (f +s)U]XPOU]—'50

(X—tt+tans 0~)
+-,' (s U sinO) l

~ ~
expL —-,'g' —sinO+s cosO) U)X1L8(s.—0)). (40)

(h+K+ cot s 0~)

Since U is large, the continuous distributions can be
appreciable only for 0~ in a certain range about the
value 0 for which the exponential factor (for given U)
has a maximum, and for which

tanO~„= —K
—' sinQ. „=(s'+1)-'*= ~X

~

'

f—sinO~ +tt cosO" =f j)i—~,

) —+tan-'0 =A+a+cot-', 8,—)I,+ ~X ~,

(41)

"Use is made of: Io (s)~I~ (s)~ (2s-s) i exps for
~
s

~
large.' The asymptotic expansions of I0 and I1 give U/2&»3 and

U/2X)&s. Hence U»X or t»(rs i—rs ')/2(v„—v„„)(vv —v„„) is
essentially the condition required. With rz '=v +v„and 7.0 '
=v«+v„„ this reduces to the form given.

can easily be shown to hold. It is well, therefore, to
write the approximate solution, Eqs. (40), as an ex-
pansion about the maximum. Equations (41) indicate
that the solution will assume either of two distinct
forms, according to whether P is positive or negative.

Positive X implies X&1, since v is real. For this case,
lifetime exceeds the dielectric relaxation time, and the
last of Eqs. (41) indicates that the continuous hole and
electron distributions from Eqs. (40) are approximately
the same. Thus, the fractions of holes and of electrons
in the respective delta pulses must be relatively small,
and similar continuous distributions then result whose
means are displaced by the polarization distance xy,
with x& small compared with the range covered by the
distributions.

This consideration provides the condition for large t.
From Eqs. (40) and by use of Eqs. (26), the decay con-
stants for the delta pulses of holes and of electrons are
vv+vv, and v +v„,. Since the decay constant for the
total number of carriers is rp ', the decay constants for
the fractions of holes and of electrons in the delta
pulses are v„+v„„—rp = vv v„an—d v +v, re '—
=a —v„„ the second forms following by use of Eq.
(21). From the definition of v in Eqs. (24), it is clear
that the assumption of real v and positive X ensures
that these decay constants are positive. The condition
of large time is thus

t»(v, —v„„)—', t»(v„—v,„)
—'.

This provides also t»-,'L(vv —v„„) '+(v„—v„„) '), the
condition that the argument —,'U sino~ = U/2)i of the
Bessel functions for 0'= 0~ is sufficiently large. 's One
of Eqs. (42) requires that t be large compared to a
time at least equal to the dielectric relaxation time

associated with the minority carriers. Thus originates
for this case of positive X, the previously stated require-
ment that the material be not too strongly extrinsic.

%ith negligible fractions of the carriers in the delta
pulses and with the variables DO~ and Ax=I.DX intro-
duced in accordance with

+0~= 0~ 0~

~X=X—x„-(U/2) )z8,
X~:—s (cos Qw~+rr) U = s (K/)i rt) U

&

Eqs. (40) and (41) give

(43)

where tT, is the value for intrinsic material of the con-
ductivity a-p. In its dependence on conductivity, this D,
is largest for material of minimum conductivity,
namely, r P-type material of conductivity 2b'*o.;/(b+1).
In given semiconductor material, D„may be larger or

2 p hatt ((P/I. )AP

((f'/I. ) ()is/7r U)" expL —t/rs —-')I.UA 8'$
,' (P(~D„t)—fexpL ——

t/rp —Ax'/4D„t), (44)

and, by use also of Eq. (37),

Dp —hvt = ((P/I.) (AP DIV)—
-(tI/L) () s/~U) lzO expL —t/r, ——,') Ua8 g

= —,'s=l(P(D„t)—~xpAx expL —t/rs —Ax'/4D, tj
xt Bhp/ax, —(45)

with

D.—= ~s (v„+v„)'r/)is
= ( — .)( — .)( + )'/( '

o ')'. (46)

The similar hole and electron distributions for this
case—whose displacement by the polarization distance
xt is verified by Eq. (45)—are thus Gaussian distribu-
tions that are attenuated by the lifetime decay factor,
exp( —t/s s), drift at the common drift velocity,
-,'(K/)i —n)(o +ev), and spread, exhibiting an apparent
diffusion with "pseudodiGusivity" D,. For Gaussian
distributions, as is shown in Sec. 3.3, the pseudodif-
fusiviCy D„and the ambipolar diffusivity Dp are
additive.

For constant mobilities p,„and p„, the pseudodif-
fusivity is proportional to the square of the applied
field, Ep. If also recombination is negligible, then D, is
proportional to rsEss/oss, being given by

(47)
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&p (Vg+Vp) f/4~Kg

smaller than Do, depending on the applied field. From
Eq. (47), D„ is equal to Do= kTp„pv(np+pp)/o p for the
applied field

Ep ——(o p/o;) [4n k T (ep+ po)/e]'. (48)

For intrinsic material, this field is (87rkTe, /e)*', which
is equal to kT/e divided by the Debye length' I.&
—= (kTe/8rrrr, e')'*Thus, f.or intrinsic silicon at 300'K,
D„equals Dp for a field of only 10 v/cm. For silicon of
minimum conductivity at 300 K, the field is about 6%
less, being [2b**/(b+1)jl times that for intrinsic
material. "

Figure 1 illustrates a case of drift in an e-type semi-
conductor for which the Gaussian approximation of
Eqs. (44) to (46) applies. The continuous distributions,
calculated from the exact solutions of Eqs. (33), are
shown at different times following injection of the
neutral pulse at the origin. Equilibrium conductivity
due to electrons is assumed to be 10 times conductivity

OIMKNSIONLKSS DISTANCKp X:- X/L

FIG. 1. Continuous concentration distributions at different
times of electrons and holes from an injected neutral delta pulse
for a case of drift with space charge for which diffusion-length
lifetime is larger than the dielectric relaxation time. The assump-
tions of conductivity due to electrons 10 times that due to holes,
constant mobilities with mobility ratio 2.63 (as for silicon at
300'K), and negligible recombination give o.=0.449, z = 1.422, and
) =&=1.738. The delta pulse of holes at the end of the drift
range to the right is attenuated by the factor exp( —0.158U), and
that of electrons to the left by exp( —1.58V).

due to holes, constant mobilities are assumed with a
mobility ratio equal to that for silicon at 300'K, and
recombination is neglected. For this case, th, e time unit
r equals e/8vre(p„liv)in, and is thus of the order of the
dielectric relaxation time in intrinsic material. The
continuous distributions, shown at reduced times
U: t/—r equal to 5, 10, 20, and 50, illustrate the ap-
proach to the Gaussian approximation. Since they
cover a total range in reduced distance equal to the
reduced time, the ones for U=50, for example, extend
in principle from about plus 14 in reduced distance
X=x/I. off scale to minus 36. Evaluated specifically for
e-type silicon at 300'K, 507 is about 14 @sec;and for an
applied field of 10 v/cm, the distributions at time 50r
are about a half-millimeter from the origin. This dis-
tance is, of course, proportional to the applied field.
The applied field for which D, equals Do is about 17
v/cm for this e-type silicon, and for fields in excess of
this, the pseudodiffusivity predominates, "

A delta pulse of majority electrons adjoins each
continuous electron distribution shown, off scale to the
left, and a delta pulse of minority holes adjoins the
abrupt front of each hole distribution. The majority
carriers appear comparatively rapidly in the continuous
distribution, since the delta pulse of these carriers in
the extrinsic material is attenuated with time constant
substantially 7.&. This is a reduced time for the present
case of about 0.6. The delta pulse of minority carriers is
attenuated more slowly, with decay constant v~,' only
80% of the excess holes are in the continuous distribu-
tion shown for U equal to 10. The continuous dis-
tribution of minority carriers leads that of majority
carriers, and the latter is the first to exhibit a relative
maximum.

The case of negative X is that of dielectric relaxation
time greater than the lifetime. %ith v real, negative X

implies )t(—1. For this case, as the last of Eqs. (41)
indicates, the continuous hole and electron distribu-
tions for large U from Eqs. (40) are odd functions of
AO~ or Ax, being given by

(~p)
I-l(~p/L)(I) I'/ U)'I /AO exp[ —t/rg 4r IX| UAO

~. —fX[+x)

(v„+s„)'

Xhx exp[ —t/r, Axp/4D„'t], (4—9)

2 (pr (ro rd ) * ([po/('+0+po) j[ro ' —(4'ire/e) (np+pp)dov/dE j
sP &[—no/(no+po)j[ro ' —(4me/e)(no+ps)do /dAj)

with

D.'—=4(o-+o.)'r/I) I'
= (v„„vv)(vv, «„)(o +ov—)'/(rp ' —ro ')'. (50)—

That the decay term in the exponent involves ~& rather
than ro follows from Eqs. (28) and the second of Eqs.

"For silicon at 300'K, as in reference 3, the values 1500 and
570 cms/v sec are used for p and n», and 1.316X10'o/cm' for n„.

(41). From Eq. (24), the second factors in brackets in
the matrix are both positive, since v' is positive and P

negative. Thus, as shown by the first factors in brackets
in the matrix, the hole and electron distributions in the
present approximation are everywhere proportional but

2~ From Eq. (48), the 6eld for D„=D0 equals the factor (o 0/0. ;)
XP(no+Po)/2n, j& times the corresponding 6eld for intrinsic ma-
terial. The factor is 1./38 for the example considered.
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Fro. 2. Continuous concentration dis-
tributions at different times of electrons
and holes from an injected neutral delta
pulse for a case of drift with space charge
for which dielectric relaxation time is
larger than the di6'usion-length lifetime.
The assumptions of equilibrium electron
concentration 10 times equilibrium~ehole
concentration, constant mobilities with
mobility ratio 2.63 (as for silicon at
300'K), and negligible dielectric 'relaxa-
tion give a=0.449, ~= —1.422, and A,

g= —1.738. The delta pulse of holes
at the end of the drift range to the right
is attenuated by the factor exp( —1.58U),
and that of electrons to the left by
exp (—0.158U).
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of opposite sign, the majority-carrier distribution gen-
erally having the greater amplitude. Furthermore, each
distribution includes a region of carrier depletion as
well as a symmetrically equal region of carrier excess.
The common point x of zero concentration is given by
X„equal to —,'(x/lXl —n)U', or

It is easily shown that the concentration inbalance
is given by

8—xp'—(-', (s-D„'t)—l exp[ t/rd hx'/4—D„'t7)—, (52)
8$

with
(53)

a result that represents a certain forrnal analog of Eq.
(45) for positive X: The definitions of xv' and D„' result
from those of xp and D„ if X is replaced by

l
X l, that is,

if ro and r& are interchanged. Thus, x&' is, for rd&&rp,

substantially (v„+v„)rp, the distance electrons and
holes drift apart in a lifetime, and x~ is increased by
dielectric relaxation. Since the distributions are not
Gaussian (but proportional to the gradient of a Gaus-
sian distribution), D„' cannot properly be construed as
a pseudodiffusivity,

Comparison with the case of positive X furnishes the
condition of large time, which is

t&)(v,—v„) ', t»(v„,—v ) '. (54)

For the present case, this condition does not entail the
requirement that the fractions of holes and of electrons
in the delta pulses be negligible. The reason is that,
while the hole and electron delta pulses are themselves
attenuated with decay constants vv+ v„„and v„+v„„,
the fractions in the pulses increase, their decay con-
stants v„—v„„and v„—v„„being negative. This in-
crease of the fractions in the pulses is essentially a con-

sequence of the vanishing of the distance integrals of
the concentrations in the continuous distributions. One
of Eqs. (54) requires that t be large compared with a
time at least equal to the majority-carrier recombina-
tion time v„„'=(rtp/pp+1)rp or vv„'= (pp/rtp+1)rp.
Thus originates, for this case of negative X, the require-
ment that the material be not too strongly extrinsic.

Figure 2 illustrates a case of drift for negative X in
an n-type semiconductor for which the approximation
of Eqs. (49) applies. This case is otherwise largely
similar to that of positive ) of Fig. 1:Equilibrium elec-
tron concentration is assumed to be 10 times the equi-
librium hole concentration, so that the parameter i is
the same; constant mobilities are assumed, as before;
and, for this case, the dielectric relaxation times are
neglected. The continuous distributions, shown at re-
duced times 5, 10, 20, and 50, indicate, consistently
with Eq. (51) for x, that drift occurs in the majority-
carrier direction, opposite to that normally associ-
ated with the conductivity type. With r equal to

l (ep+pp)/2e, 7rp or 1.738rp, a lifetime of 1 @sec gives
about 87 psec for 50r, and for an applied field of 10
v/cm in silicon at 300'K, the distributions at time 50r
are about 1.14 cm from the origin. Since the corre-
sponding diffusion distance" (Dpt)l is only about 0.04
cm, the effect of diffusion is quite negligible for this
lifetime.

Thus, somewhat paradoxically, if lifetime is suK-

ciently short, concentration disturbances drift under

applied field that are not subject to decay according
to the lifetime, but to decay according to a dielectric
relaxation time that may be considerably larger. The
continuous distributions of AI' and 6$ are initially
both negative for this case; for V small, Eqs. (29) and

(33) give s(AWK) or (vv —v„„)r(0 and (v„—vv„)r(0
for their initial amplitudes. Thus, with a frequency v„,
of electron recombination that exceeds the hole di-

electric relaxation frequency v„, the excess electrons

(from the delta pulse) cause hole depletion or negative

' The value of Do is 15.6 eros/sec.
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AI' before their charge is neutralized by holes. Nega-
tive AS results similarly. These negative distributions
give negative (R and carrier-pair generation; with no
trapping, the same function (R applies to both electrons
and holes. Regions in which the distributions are posi-
tive then appear, but nowhere are the distributions of
both carriers positive together. Recombination from a
region in which the distribution of given carriers is
positive results in depletion of the other carriers only.
The amplitude of the distribution of majority carriers
is the larger because the frequency of recombination and
generation of these carriers is the smaller. Drift accord-
ingly occurs in the majority-carrier direction. A multiple
recombination-generation process accounts for the dis-
tributions' progressive changes in shape, shown in
Fig. 2, with the approach to the approximation for
large U' of Eq. (49). The case of this figure involving
no decay factor, the distributions decrease in amplitude

simply because they spread, with a distance for large V
between extrema of a given distribution equal to"
(SD„'t)'. For negligible dielectric relaxation and large
U, there is substantially no net recombination or
generation; as is readily seen, (R is zero for the approxi-
mation (written for small rs ') of Eq. (49). That the
hole distributions shown result, however, from the
regions of electron depletion is reQected in the lag of
the maximum of each of these distributions behind the
minimum of the corresponding electron distribution.
As the figure shows, this lag is substantially independent
of U and corresponds to a reduced distance of about
0.6. By formal analogy with the case of positive ), this
lag is x~', the distance electrons and holes drift apart
in time ~0. The reduced distance of lag of the figure, for
which 7 s= r/1 738 . 0 6r ho. lds, is thus explained.

Approximate solutions for U are small are, from
Eqs. (33) and (34),

r
L-,'(~—8)U]-'&(~—0)y

1-
~&

—~q p sin'-,'Oy
I-(«pL —r (f+«oso) U]& I

I+-
I I~kUI I &CHICO(~

—o. )]
E~x) t.

I
-', oU)-'~o 2 ()+lc) E cos'-'0')

f (expt —(vv+ v„„)t]) &&8 (svt/L X)p-
I+(exp' —( -+") ("&/L—X) —( .+,.) (X+s.t/L) ]}

L (expL —(v„+v,)t]) &(5(X+s.t/L) &

t (v„—v.„)ra-,'(X+s.t/L) i
X

I I y II (.,t —x) (x+.„&)]. (55)
t.(v„v„,)x+4 (s—,t/L X))—

Here, the double signs in the continuous contributions
refer to the sign of v'. The second forms of the solutions
are obtained by writing the exponent in the first forms
in terms of sin'-', O~ and cos'-,'0' and by use of Eqs. (26)
'and (32). It is easily seen that the magnitudes of the
terms with the double signs cannot exceed ~~V, and
hence must be small compared with —'„since U&)2 is the
condition" on which the approximation depends.

In practice, small U would generally be a consequence
of large time unit 7.. If recombination may be neglected
compared to dielectric relaxation, then large r implies
large dielectric relaxation time for intrinsic material,
that is, high intrinsic resistivity, as may readily be
obtained with suKciently low temperature. Since in-
trinsic resistivity at low temperature may, indeed, be
extremely high, comparatively small concentration of
impurities would give materia, l that is quite strongly
extrinsic and still of quite high resistivity.

For such e-type material, with ~„))v„and negligible
recombination, Eqs. (55) give

Ap= ((P/L)AP (P6(svt x)—
hrs= ((P/L)AX (P(exp( —v„t)8(x+v„t)+v (e„+vv)

—'

&(expL —v. (s„t—x)/(s„+e„)]
&( IL(s,t—x) (x+s„t)]), (56)

and a similar result holds for p-type material. Thus, for

'4 This corresponds to a reduced distance of (2U/~x~')&, or
4.36 in Fig. 2 for V=50.

this case, the minority carriers drift at the minority-
carrier velocity in an unattenuated delta pulse, which
leads the majority carriers distributed in an exponential
tail of characteristic length substantially equal to the
polarization distance x~. This exponential tail ter-
minates at an attenuated delta pulse of majority
carriers that drifts with the majority-carrier velocity,
and it is easily verified that this attenuated pulse
accounts for the cut-off portion of the tail. Equations
(56) accordingly represent a consistent approximation;
it is, moreover, also easily verified from them that the
difference of the means of the distributions (including
the delta pulses) approaches xv with time constant rs,
as follows in general for negligible recombination from
Eqs. (36) and (37).

For an illustrative numerical estimate of a fairly
large x&, consider silicon of resistivity 10' ohm-cm at
77.4'K, for which v +sv is" 1.09X10s cm/sec for L~s

= 10 v/cm. Since rs in seconds for silicon is 1.06&&10 "
times the resistivity in ohm-cm, an x& of about 1.2 cm
results. This x~ is proportional to Eo and to the
resistivity.

Another case of small U associated with high in-
trinsic resistivity is that of recombination with negli-

This condition follows from the MacLaurin's expansion of
Ip or Jp.

~6 Electron and hole mobilities at 77.4 K of 9000 and 1900
cm~jv sec from thermal scattering (in high-purity material) are
used, See E. Conwell, Proc.IRE 40, 1327 (1952), Fig. 2.
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gible dielectric relaxation. For n-type material with
rlo))po, which implies v„,))v„„Eqs. (55) give

AP= ((P/I)AP (P exp( —i „„t)XB(~„&—x),
he= (6'/I)AF (P(8(x+s„t) v~—„(v +v„) '

X expI —vi„(x+v„t)/(v„+v„)j
X lg(~, ~—x) (x+~„&)j) (57)

as dependent variables. With, from Eq. (32),

()AP 2 RAP

BX UsinO~ BO'

~B~Z~ ~BaZq cosO+~ B~rI+( BU) x ( BU) e UsinO. BO.

(60)

for this case; a similar result holds for p-type material.
The majority carriers accordingly drift at the majority-
carrier velocity in an unattenuated delta pulse of excess
carriers with an exponential tail of carrier depletion.
It is readily seen that this depletion region and delta
pulse approach equivalence; the integrals over the en-
tire range of the electron and hole concentrations ap-
proach zero, both being equal to (P exp( —v„,t) This.
quantity corresponds to the cut-o8 portion of the ex-

ponential tail, which terminates at the attenuated
minority-carrier delta pulse. The characteristic length
of the exponential tail is substantially the distance x&
electrons and holes drift apart in a lifetime. As for the
case of negative ) and large U, if lifetime is suKciently
short, a substantially unattenuated majority-carrier
concentration disturbance drifts under applied Geld.

The cases of small U show that carriers of opposite
charge can be completely separated, excess carriers of
only one charge occurring at any given point. This
consideration provides a condition for the substantial
constancy of the Geld assumed in the calculation. By
integrating BF/Bx from Poisson's equation over a small
interval in x that includes the unattenuated delta pulse,
the magnitude of the change in Geld is found to equal
4~e/e. Because of over-all neutrality, this change in
Geld is, of course, balanced by an equal and opposite
change obtained by integrating over the remainder of
the range. The condition that the maximum change in
Geld be small compared with the applied Geld Eo is
accordingly (P«eEO/4m e or

AM= ,'(hI'+LEV), —-
Ag —=—,

' (hP —A(V)
(59)

3.2 Reformulation of the Drift Problem

Results of the analysis of the drift of an injected
pulse suggest new variables in terms of which the linear
differential equations might advantageously be written.
Such reformulation will now be considered, and con-
clusions that were arrived at will be discussed in con-
nection with it. This reformulation will serve also as
basis for analysis of nonlinear cases. It consists in use
of O~ and U as independent variables (instead of X and
U), and

—-,'(f —Z) ~M+.~g, (6l)

BDM M,Q= —U ' cscO~ —U ' cotO ——'(f'+X)hg
BO BQ~

From Eqs. (28), the term L
—-', Q

—X)AM) is associ-
ated with decay with lifetime ro of the dimensionless
total concentration AM, while the term $——,'(/+X)hgj
is associated with decay according to the dielectric re-
laxation time ~g of the dimensionless concentration in-
balance B,Q. Which one of these decays may actually be
exhibited as such through an exponential decay factor
depends on the particular nature of the solution: The
Gaussian approximation for large U with X or (ro rg)
positive involves exp( —t/ro), while the corresponding
approximation for negative li involves exp( —3/rq).
Thus, for large U, it is well to rewrite Eqs. (61) for
dependent variables

BOR= ex p(t
—/ro) XhM, 6 &=exp(t/ro) Xhg, (62)

if li is positive and dependent variables exp(t/rd) XAM
and exp(t/rq) Xhg if X is negative. ln the former case,
the dielectric relaxation term L

——,
' (f+li)hgj then gives

rise to L
—Xd gj. This term may be shown to be associ-

ated with the pseudodiffusivity as follows: With similar
electron and hole distributions that cover a range large
compared with the polarization distance x~ separating
their means,

~
AQ~&&AM holds everywhere. Also, with

fixed separation of the means, Ag changes relatively
slowly; its value is, consistently also with Eq. (45),
substantially that which results from setting Bh g/BU
equal to zero. These considerations give

—(XU) '(cscO~BADR/BO~+cotQ~BA g/BQ~)

865K 8 BOOR—(XU) ' cscO~ —(XU) 'cotO~ cscO
BQ~ BQ~ BQ~

(63)

This approximation for 6 g may now be substituted in
the differential equation for 65K, which then takes the
form

BASE/BU= X 'U 'O'ASK/BQ' (64)

and similar equations for AA', Eqs. (25) for drift with
no diffusion give

BAM BAM Bhg= —U ' cotO~ —U ' cscO~
BV BO BQ~
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for large U. It is easily seen that this is the differential
equation for the result of Eqs. (44) to (46), which ex-
hibits the lifetime decay factor and the pseudo-
diBusivity D,.

In the corresponding analysis for negative X, with
use of exp(t/rp) XAM and exp(t/r~) XAQ as dependent
variables, the term [——',(f'+X)AQ7 is eliminated from
the equation for BAQ/BU. Consistently with this cir-
cumstance and from Eqs. (49), in this case it is «AQ
—IXIdM that is relatively small in magnitude; and
exp(f/r&) times this quantity changes relatively slowly.
The former condition is equivalent to (v„, v~)An-
+(v„„—v„)Ap being substantially zero: The hole de-

pletion rate determined by the excess of the electron
recombination. frequency v„„over the hole dielectric
relaxation frequency v„ is balanced algebraically by the
corresponding electron depletion rate. That is, depletion
is matched by generation and dielectric relaxation. If
dielectric relaxation is negligible, then the net recom-
bination rate (R is substantially zero, as was pointed out
in connection with Fig. 2.

While this brief exploration of consistencies in an-
other formulation in itself adds nothing materially new,
its motivation has been the heuristic value of the analy-
sis it entails for extensions to nonlinear cases. It has
appeared, for example, that if independent variables X
and U are employed, then the assumption (for positive
)) of slowly varying Ag seems to lead to a wrong
pseudodi6usivity, 27 an apparent inconsistency the
reason for which is not yet entirely evident.

3.3 A Nonlinear Case

If the strength of an injected pulse of current carriers
is increased so that the condition for substantially un-

perturbed applied field is no longer met, then the trans-
port is significantly modified. If ) is positive, so that
there is no carrier depletion, then injection of the pulse
results in locally decreased Geld through mutually
consistent space-charge and conductivity-modulation
mechanisms: It is readily seen that the condition of
Eq. (58) for relatively small decrease in. field according
to Poisson's equation is also essentially the condition
that the maximum relative increase in conductivity
from the continuous distribution of Eqs. (56) be small. "
Field decreased over a certain finite region exhibits a
minimum within this region, and in a neighborhood of
this minimum the divergence of the Geld is small and
substantial neutrality obtains. The minimum Geld may
be relatively quite small, particularly with injection in
material of high resistivity. Since diGusion is pre-
dominant in a near-neutral region of small Geld, trans-
port in its early stages following injection may occur
principally through this mechanism, with distributions

~' Pseudodiffusivity D, times (0.0/e;)' results for no recombina-
tion and equal mobilities.

~'Equation (58) is equivalent to e(P&&I~&. If X is negative,
then, from Eqs. (57), relatively small maximum conductivity
change from the continuous distribution implies e P&&I7 p.

that are approximately Gaussian in shape. The ampli-
tude of the distributions is then approximately
(P/2(prD;t)' and the dispersion, (D,t)&, with D; the
ambipolar diffusivity for intrinsic material. Comparing
this amplitude with the majority-carrier concentration
gives an estimate of the time over which modulation
nonlinearity may persist, and the dispersion may be
calculated for this time. The time and dispersion so
calculated will be appreciably larger than the dielectric
relaxation time and the polarization distance, respec-
tively, if (P is sufFiciently large and the resistivity not
too small.

An extension for high-level injection using certain
simplifying assumptions now follows. In the present
context, e6'ects associated with the difference in mo-
bilities are comparatively minor, at least for semi-
conductors like germanium and silicon. With. the
assumption of equal mobilities and with divE elimi-
nated by use of Eq. (17), Eqs. (19) reduce to"

Bhm/Bt =DB'8 m/Bx'

IJ[EM q/—Bx+ (8s-e/e) qAq] —(R,
(65)

Bhq/Bt =DB'Aq/Bx'

I.[xaam—/axe (8~e/e)map j
for the transport in one dimension, in which p, denotes
the common mobility and D=kTp/e the diffusivity.
With no trapping, the recombination function R may
properly be written as the steady-state function"
(ppd n+npDp+hnhp)/$r»(n+nt)+ r o(p+ pt)), where
z„o and 7„0 are the respective limiting lifetimes in
strongly extrinsic p and n-typ-e materials.

The angle variable O~ and other dimensionless vari-
ables are now introduced in accordance with Eqs. (22),
(23), (24), and (32); the length and time units reduce to

I.=2yEpr =2yIr—/ap, .

(66)&—= (no+pp)/L2n 'I 4&ep(no+ pp)/e —ro 'I j
for the present case. Use of Eqs. (60) then gives

DAM S r) RAM E/E p BAQ
cscO~ cscO~ — cscO~

BU X'U' BO BQ" U BO

coto~ 8AM —s (f—X)AM+ xDQ —
primp

U BO' —(«/6)5(ii,
(67)

&&Q 5) 8 MQ E/E, RAM
cscO~ cscO" — cscO~

BU X'U' r) 0~ BO~ U' BQ~

cotO BAQ —
o (t'+)t) AQ —PhMAQ,

U BO~

in which
4''r/L'= D/D„—(68)

"Note that (r~ ' r„r)erg+(r„'+r„')—Aq 0 is equivalent
to hn/rn=hP/ry.

Po See reference 3, p. 573 and Eqs. (71).
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is the diffusivity expressed in units of the pseudo- by Eqs. (26). In the first equation, recombinationin the
diffusivity D„(in the linear limit) given by Eq. (46). linear limit accounts for the term in DM and part of the
The parameter p is defined by Eq. (58), and K, X, and f term in LLQ, while

h(R—= (R—v„„An—v„„Ap

Pr»(n, p—,)+r„,(p, n—p)]&m'+2fr, opo r—„pnp]+mttq P—rvo(ni+pp)+r o(pi+no)]&q'
(69)

(np+ po) ro[(no+ pp)r p+r»(Dm 5q)+—r p(Am+Dq)]

linear case. The field may be eliminated from Eqs. (70)
by use of

is the nonlinear contribution to the recombination
function R.

With X positive, it is well to employ the dependent
variables of Eqs. (62) that take recombinative decay
(in the linear limit) into account. Equations (67) then
transform into

(71)E (I+2eDahq/ax)/0 I/o,

which follows from Eq. (12). It is readily seen that the
field given by Eq. (71) is approached asymptotically,
essentially exponentially with time constant p/4zro if
the concentrations (on which o. depends) do not change
appreciably in this time. From Eq. (71), E/Ep may be
replaced by p.p/p. . Then, for U large and Ag«AOR,

for d, g in the second of Eqs. (70) after setting
equal to zero gives

a M 0R E/Ep
cscO~ cscO~

aO U

855K S
BU X'U'

ah$
cscO'

a0

CSCO'

(X+PhM) Uah/ s
8 U A'U' M 9R cosO a ap/o' a69R

X (~o/~) — cscO"
aO U aO' x+Pt1M

a 0~

cotO' ah g—(~+P~M) ~ g.
U aO

ao

(O.o/p. )X t'&OK K azt19R)
+ I, (72)

(x+ paM) U E ao (x+ pzM) U ao' )The nonlinear extension of Eq. (64), the differential
equation in 65K for the Gaussian approximation, can
now be obtained by assuming large U, slowly changing
6 g small compared with ABR, and O~ O~„, where 0'

given in Eqs. (41), is the value for the maximum in the

the second form applying, from Eqs. (41), for O~ 0'

and substituting this 6 g in the first of Eqs. (70) results
in

cotO ahoz solving

+(.—P~Q) a g a~ g/aU
U aO —(rL/6') Lexp (t/rp) ]h (R,

(70)
a a6 g E/Ep a65R

CSC 0~ CSC 0~ — CSC 0"

a 0~ U

(X+PAM)2

n (~o/~)' (K—paQ) (~o/~)-U' —+ + cosO~ cscO~ cscO~

X+PhM aQ~ aQ"

(K pAQ) (—~p/~)
-

amma—U ' cotO~+ —csc0'
x+phM aO

—(rL/6') /exp(t/ro) jh(R

x'(po/ )' KA(K —PaQ)(oo/ )-a'aaR
~U'—2 +

X X+pAM (X+pQM)2 a 0~2

) (K phQ) (~p—/~)- amore—U ' —K+
a 0~

—(rL/tf') [exp (t/r o) ]h R ((73).
Note the relationships

K PAQ = f 8n.etzq/o+qo/—moro]r,

X+PhM= X[1+Am/mp(1 rg/r p) $, —(74)

which follow by use of Eqs. (26) and (58). Also, with
r given by the second of Eqs. (66), K and X reduce (for

"For negative X, the signs of the expressions on the right are
changed.

positive X) to"
K = qp/n jq X =mo/n, (75)

It is easily verified that, near equilibrium, the co-
e%cient of the first derivative in the second form in
Eq. (73) vanishes, which implies drift at the ambipolar
drift velocity. Thus, near equilibrium, only the second-
derivative contribution remains; and, with )'—~'= 1
from the first of Eqs. (27), the terms inside the brackets
that follow X)/X in the second form reduce to 1/X. Thus,
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consistently with Eq. (64), these terms give the pseudo-
diffusivity of Eq. (46). A generalized concentration-
dependent pseudodiGusivity may accordingly be dined
from Eqs. (46) and (73) as

D„= (o p/o—)[) (ap/o) —»(» —PAQ)/(X+PhM)]
X (pEo)'r/X(X+pDM). (76)

e—p —(esp —pp) rd/rp I
=ep,

1 rd/ro—
(77)

in which ~q and Tp are the equilibrium dielectric relaxa-
tion time and diGusion-length lifetime. The final form
of Eq. (77) is obtained by replacing I/r by 2@I/o p and
by use of Eqs. (74). For small re, this velocity reduces
to the ambipolar velocity previously derived. v The
correction to the ambipolar velocity involving re/rp
vanishes in the small-signal limit for this case of equal
mobilities. Thus, the small-signal correction depends
on differing mobilities, as pointed out in connection
with Eq. (39). The correction may occur for equal
mobilities if there are appreciable concentrations of
injected carriers with space charge.

For suKciently large injection level, ''-this D, ap-
proaches zero inversely as the cube of the conductivity;
note that, from Eq. (72), DQ approaches zero also. As
comparison with the D„ for the linear case of Eq. (47)
indicates, this behavior of the large-signal D, results
from approximate proportionality to the large-signal
dielectric relaxation time divided by the square of the
conductivity, or times the square of the (decreased)
local Geld.

In accordance with Eq. (73), an effective diffusivity
is simply the sum of the (constant) diffusivity D and
the pseudodiffusivity D„of Eq. (76). Note that the
correction" to the diffusivity of order rd/rp associated
with the departure from local electrical neutrality is
absent. It appears, therefore, that this correction de-
pends on diGering electron and hole diGusion constants;
its vanishing for equal diGusion constants is readily
veri6ed.

A velocity function may be evaluated from the term
in r)&~/r)O~ in Eq. (73). In the first form, the contribu-
tion involving cotO~ is canceled by transforming from
(c)EOR/BU)e to (c)ABC/BU)x in accordance with the
second of Eqs. (60). From Eq. (32), the operator
U ' csc08/r)O~ is equal to ,'8/BX, so—that the contribu-
tion with r)AOR/cjO' as factor that remains may be
written as (—s)(op/o)(» —PhQ)(X+PhM) 'BARR/BX.
The velocity function v is accordingly given by

Z(f(X, U)) = e—"f(v U)&7= P(s, U—) (78)

and application of this transform to Eqs. (25) gives

82(AP)/BU
= -', (()t—»)2(5)V) —[(' »+—(1—n)s]Z(AP}),

79
c)2(61V}/cjU

,'( [(-.+—» (1+—n)s]Z{a1V)+()+»)Z(AP)).

The general solution of Eqs. (79) is

Z{dP)=Q A„;e ~~ ~, Z(61V) =Q'A, e ~r~, (80)

in which the dimensionless decay constants are. readily
found to be given by

The double sign inside the radical —here and in what
follows —relates only to sign of ~'. With the ratios
A „;/A ~, fixed by

A ~ It/i+ts[t »+(1 n)s]—
A„, —,

' ()t—»)

—,'(X+»)
j=1 2—S,+-,'[t+» —(1+n)s]

(82)

the four constants A» and A „;are determined by the
transforms Z(APt) and Z(hart) of the initial concen. —

trations. If these concentrations are equal, then

(A.tl&(~Pt) )
! != —,'(1a (s—),)/[(s —»)'a1]i),
(A„p/@(Apt) J

t'A. t/Z(APt) q

! !=-,'-(1W (s+X)/[(s —»)'W1]*}
EA o/g{APt}2

(83)
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APPENDIX A

A. l Solutions for Drift of an Injected Pulse

The two-sided Laplace transform of f(X,U) with

respect to X is defined by

results. Thus, with Z(APt) given by

Z(d Pt) = 2(-', pr ia ' exp( —X'/4a')} = exp(a' s') (84)

as the transform of a Gaussian initial distribution, the

"The condition ho ~o, which is nm/mo)&1, subsumes the con-
dition pnM))t, which is arm/mo»1 e/4nep(np+po)r—o For posi-.
tive X, this expression on the right is positive.

"See reference 5, Eq. (18).



CURRENT —CARRIER TRANSPORT WITH SPACE CHARGE

transforms of the concentrations are

)Z{AP)y

! != {exp[ass2+2 U(ns —{)]){cosh(-', U[(s—Ic)2&1]f)~(s~X)[(s—K)'&1] &)&sinh(-', U[(s—s)2&1]f)).
(z{~x)) (85)

By use of the identity

ass+2', U—(ns 1)—=a2—(~2%1) ', —U —
Q o(—s)+ (2ass+ 2(r U) (s—s)+a'[(s —K)2+ 1], (86)

and transform formulas previously derived, ' the solution for the initial Gaussian distribution is found to be

hP=-'2r=:a '{exp[a2(1(2m 1)+sX—-', ({—n(() U])
Ip

X exp[—(X+2ass ——,
' (1—n) U)2/4a2] —-2'()(—K) J~ {[q ' —(X+2a'~+ 'rr U-)']'*j

X+2a g+~xaU Jp

p[—(q+lU)'/4 ']— p[—(v —lU)'/4 '])dv
(X) Ii

~ 1 I [~2 (X+2ass+ r~U)2]—1 {[q,2 (X+2a21(+2(r U)2]f)
~ X+2~2ff+~saU Ji

&& {(X+2a2)(+2'(r U —y) ezp[ —(y+'2 U)'/4a'] —(X+2a'I(+2'n U+q) eXp[—(q
——',U)'/4a')) dy,

(87)
61V=-2'2r **a '{exp[a2(K2%1)+sX——',({—(rs) U]}

Ip
exp[ —(X+2a'I(+2'(1+n) U)'/4a'] ——',()(+)() {[y'—(X+2a')(+2'nU)']*')

~ X+2a~v+faU IO

y {exp[ —(y+-', U)'/4a'] —exp[—(q ——',U)'/4a']) dq

Ov I1
[V'—(X+2a"+-,'«)2]—: {[~2—(X+2as.y-,'aU)2]:)

Jl
+2

X+2m'~+-,'~U

&& {(X+2a' +-,' U+q) exp[ —(7+',U)'/4a'] (-X+2a' +—-' U y) exp[ —(y —'U)'/4a']) dp—-

in which the upper and lower signs and functions apply
respectively for real and imaginary v. The limiting solu-
tions of Eqs. (30) and (31) for the injected delta pulse
involve the step-function factor as a result of the re-
quirement that, for contributions in the limit of zero a,
the Gaussian factors in the integrands of Eqs. (87) be
centered at values within the range of integration.

A.2 Integrals over the Drift Range

The fractions of carriers initially injected that remain
after given elapsed time are given by

(p ) vpt (gp) ~f(l—a)U
f gP)

EF„) ~—.„~ &622) ~—*, ()+a)U &AX~

= {exp[—-2'{ U]) {)v(1(2~1) '* sinh[-,'(K2&1)*'U]

+cosh[2 ()(2&1)' U])
=-pL —:0.—) )U]=exp( —

&/ ). (88)

To establish this result, O~ is first introduced as variable

of integration from Eqs. (32) to (34). Then, comparison

with a solution for AI' and the corresponding F„previ-
ously derived" gives the expression in the second line,

in which the double sign refers to the sign of v2. That
this expression is also P„ is evident from the observa-

tions that it involves a only through its square and that,
in Eqs. (33) and (34), AP and 61V are transformed into

each other if 0' is replaced by 2r —0" and a by its nega-

tive. Since the expression is an even function of (s2&1)&

=!)(!,this quantity may be replaced by )(, and the

first form of the third line follows. The final form then

follows from the second of Eqs. (28).
With Eqs. (32) to (34), the means (Xp) and (X„)

of Eqs. (35) are given by

((X„)) f' (1—n) exp[ ——,
' ()(—)()U] ) I

!
——,

' U'[exp( —2)vU)] exp( —2)(U cosO')
((X„)) E —(1+n) exp[ ——',()(+K)U]) ~o

I
X—I() (tan20~y

&& ! !Is(AU s)nO~)+! !I&(2'U sinO~) sinO'(cosO'+(r)dO' (89)
~.)t+I() ( cot.2O~J

"The aP of Eq. (138) of reference 3 with t replaced by )vis (with a differing definition of 0) formally the same as the &P of Eqs.
(33) and (34) of the present paper. Hence Fp is obtained by replacing P by ) in Eq. (164) of reference 3.
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for v real; for v imaginary, Io is replaced by Io and Ii by (—Ji). The contribution to the integral from the
Bessel function of order zero and with o. as a factor, similar to an integral previously evaluated by transforming it
to a Gegenbauer's integral, " is, by use also of the first of Eqs. (27),

——',n1 1U'/exp( ——,'XU)]
(X+«) & p

t 1—«/X)
exp( ——,'«U cosO)Ip(-,' U sinO) sinOdO = —«n1 1U(1—e "~). (90)

(1+K/X J'

Evaluated by means of the same transformation, a second contribution is

(X—«)——,'U'1
1

Lexp( ——',XU)] ' exp( ——,'«U cosO)Io(-,'U sinO~) sinO cosOdO~
LX+«i Jo

(1—«/Xq= k(«/&)1 IULk(1+~ "')—(1—~ "')/l U]. (»)
( 1+«/X)

Equations (90) and (91) with Io in the integrand in place of Io hold for v imaginary. For the contributions from
the Bessel functions of order one, use is made of

(tan-,'O~)+' sinO~ (cos 0~+a) = +sin'O~+ (1&n) (1&cosO~).
The transformation gives

—-'U' [exp( ——,'XU)] exp( ——,'«U cosO')Ii(-', U sinO~) sin'O~dO~= 'X '—U-t ', (1+-e "U) (1——e "~)/XU], (93)
~0

and, for v imaginary, with (—I&) in the integrand in place of Ii, the sign of the right-hand member is changed.
Also, essentially as previously derived, "the result

f'1 —cosO i—SU'Lexp( ——,'XU)], exp( —~«U cosO~)Ii(2U sinO)1 1dO
0 E 1+cosO)

1
(expL ——,'(&—«) U]) (1+«/X) t 1—«/Xq

1exp( —&U) (94)
I expL ——', Pi+«) U]) E1—«/X) (1+K/X)

follows; note that replacing (1—cosO) by (1+cosO~) simply replaces «by (—«), as may be seen by replacing
0' by ~—O'. Equation (94) with (—Ji) in the integrand in place of Ii holds for v imaginary. Equations (89)
exhibit expressions for the contributions from the delta pulses, and the results for the various integrals may be
combined with these; with Eqs. (92) taken into consideration, Eqs. (35) readily follow, and these equations hold
whether v be real or imaginary.

"See reference 3, Appendix C.


