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The ferromagnetic properties of rare-earth metals and their alloys are discussed in terms of the indirect
exchange model. It is shown by the molecular-6eld approximation that, in calculating the Curie temperatures
of these metals, the simple theory of Frohlich and Nabarro and Zener is applicable. The second-order energy
terms calculated by Ruderman and Kittel, Kasuya, and Yosida are important in discussing the low-temper-
ature properties. Some numerical results are obtained which are in good agreement with the experiments.

INTRODUCTION

HE theory of ferromagnetism has been based on
the spin exchange interaction between magnetic

atoms or ions. Heisenberg' s' direct exchange interaction
between nearest neighbors has been considered as the
basic interaction that gives rise to ferromagnetism in
transition elements. The necessary condition for this
interaction to take place is that the magnetic electrons
of neighboring ions have overlapping orbits. Conse-
quently, this model does not seem to apply to the
magnetic rare-earth metals in which the magnetic
shells of diGerent ions have little or no overlapping.
Even for transition metals the recent calculation of
Stuart and MarshalP shows that the Heisenberg' s
coupling is not sufficient to account for the observed
magnetic properties.

The indirect exchange model was first proposed by
Frohlich and Nabarro' for the ferromagnetism of the
nuclear-spin system in some metals. They showed that,
due to the hyperfine interaction between the conduction
electrons and the nuclear magnetic moments, the
nuclear spins tend to line up ferromagnetically at low
temperatures. The basic idea is as follows. The hyperfine
interaction can be represented by the following inter-
action Hamiltonian

IIr P;,, As,"I;, ——

where s; is the spin operator of the conduction electron
and I;, the nuclear-spin operator. When the nuclear
spins are aligned, this interaction produces an internal
held that removes the spin degeneracy of the conduction
electrons. As a result, the electrons will distribute
themselves unevenly between the two spin states in
order to minimize the total energy. It turns out that
the total energy of the electron sea is lower in this case
than in the case of unpolarized electrons. The latter
case holds when the nuclear spins are oriented at
random. Hence, at low enough temperatures, the
ferromagnetic state is actually more stable. In 1946
Vonsovsky4 suggested that, in magnetic metals, there
exists an exchange interaction between the conduction

%. Heisenberg, Z. Physik 49, 619 (1928).
2 R. Stuart and W. Marshall, Phys. Rev. 120, 353 (1960).
3 H. Frohlich and F. R. N. Nabarro, Proc. Roy. Soc. (I.ondon)

A175, 382 (1940).' S. Vonsovsky, J. Phys. (U.S.S.R.) 10, 468 (1946).

electrons and the magnetic electrons in the ions. The
Hamiltonian of this interaction was shown to be of
the form

a,=P;,, As; S,, (2)

where S; is the spin of the ion. This Hamiltonian has
the same form as that in Eq. (1).Zener' independently
proposed this interaction Hamiltonian and argued that
a stable ferromagnetic state for the ionic spins should
be possible at low temperatures as a result of the
Frohlich-Nabarro mechanism. This so-called indirect
exchange interaction has been investigated in detail by
Ruderman and Kittel, ' Kasuya, ' and Yosida. ' These
authors worked out a perturbation calculation up to
the second order and showed that the eGective coupling
between diAerent ions can be represented by the
Hamiltonian

II,.,= —P, ,, s(R,,)S,"S,, (3)

where J(E,,) is a function of R,;, the distance between
the ions. Due to the complicated space dependence of
the coupling energy J(R;,), it seems very dificult to
obtain quantitative estimations of the important mag-
netic properties.

In this paper it is shown that the simple theory of
Frohlich and Nabarro and Zener does give good
quantitative estimation of the Curie temperatures of
rare-earth metals and their alloys if the experimental
values of the electron-ion coupling energy are used. In
the molecular-6eld approximation, the second-order
energy terms tend to cancel out each other near the
Curie temperature. At low temperatures, one must
take into account the second-order terms in order to
explain the spin-wave phenomena.

SIMPLE THEORY

In this section, a review of the simple theory based
on the indirect exchange model is given. A solution of
a magnetic metal in a nonmagnetic metal is considered.
The ions of the solute and of the solvent are assumed
to have the same volume. The total Hamiltonian of
the material is assumed to contain the following terms:

C. Zener, Phys. Rev. 81, 440 (1951). C. Zener and R. R.
Heikes, Revs. Modern Phys. 25, 191 (1953).' M. A. Ruderman and C, Kittel, Phys. Rev. 96, 99 (1954).' T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956}.

K. Yosida, Phys. Rev. 106, 893 (1957).
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the kinetic energy of the electrons; the interactions
between the magnetic ions and the external magnetic
field, between electrons and magnetic ions, and between
the electrons and the field. Hence

~
I q' 31P p I q'

(2plV) 2Ep &21V)
(10)

K=+;(pP/2m)+P, ; IQ,s;.S;8(r;—R,)
—P; gpH S;—P; 2pH. s;, (4)

where Qo is the volume of the ion, J the energy of
electron-ion coupling, p, the Bohr magneton, g the
Lande factor, and H the external field. The position
vectors of the electrons and the ions are denoted by r;
and R, , respectively. The electron-ion interaction is
localized as indicated by 8(r;—R,). The free-electron
model is used for the electrons. Hence, the wave
function for an electron with wave vector k and spin a
is taken as

)P(r) =Q 'u. exp(ik r), (3)

where 0 is the volume in which the wave function is
normalized, and N, is the Pauli spinor. From the
Hamiltonian in Eq. (4) and the wave function in Eq.
(5), one finds that an electron in the spin-up state has
the energy

p), t = (5 k /2yg) + (I/21V) Q ' S,z

and an electron in the spin-down state has

Mp ——g'ps//V, (12)

where P is the concentration of magnetic ions. Using
Eq. (11), one finds that

In Eq. (9), the term quadratic in H is the energy due
to the paramagnetism of the free electrons. From the
term linear in H one finds that, because of the polar-
ization of the electrons, the g factor of the ions are
modified to

x
C=g =g

2p'Ã 4EJ:X

Since )I)0, the term —-', )I(Q) S,')' in Eq. (9) indicates
that a state of ordered spin (Q, s WO) has lower
energy than a state of random spin (P;S,*=O). This
is the fundamental mechanism that makes a ferro-
magnetic state more stable at low temperatures than a
random spin state or an antiferromagnetic state.

At T=O'K, the energy is a minimum when all the
spins are aligned. Taking E as the number of ions per
cc, one finds the spontaneous magnetization to be

egg = (k'k'/2m) —(I/21V) Q; S '+pH (6)
M'p ——M;+M„ (13)

where 1V=Q/Qp, the number of ions in Q. In later
calculations, 0 will be taken as 1 cc, so S is the number
of ions in a unit volume. The direction of H is taken as
the s direction for convenience. Hence, when the ions
are lined up (P;S WO), the effect of the electron-ion
coupling is to produce an internal field that polarizes
the electrons. The total effective field is

H.)g H (I/2pN)Q; ——S,'.— (7)

At O'K, it can be shown that (see reference 8) the
energy of the electron sea in the presence of this field is

1 (2m): ( I
l
(z~):—lxl H —— 2 s,' l,

Sn-' E A') ( 2plV

where E& is the Fermi energy and p the paramagnetic
susceptibility of the electron sea,

I') p (5'/2') (3s'/V') ——
) x =3p'1P/2E p)

and IV' is the density of electrons. The result in Eq. (8)
does not change appreciably with temperature due to
the nature of the Fermi-Dirac statistics. The total
energy of the electron-ion system is then

Ix
z=zp —-', &(p, s,*)p—

l g&
— lH&;s, *—pxH', (9)

2plV)
where

T,=S(s+1)bIlV /3k, (14)

where k is the Boltzmann constant.
For alloys of two magnetic metals, it can be easily

shown that the Curie temperature should depend
linearly on the composition, i.e.,

T,= $T,g+ (1—$)T„,
where T,» and T,2 are the Curie temperatures of the
two metals in pure state. In an actual alloy system,
the linear relationship may be distorted by other effects.

MORE RIGOROUS THEORY

Ruderman and Kittel, ' Kasuya, and Yosida' have
calculated the energy of indirect exchange up to the

where M; is the ionic contribution given by

M';= gps(1V,

and M, is the electronic contribution given by

M, = 31V'Ip/S/4E p. —
At finite temperatures, the ionic spins are no longer

completely aligned, due to thermal excitation. If one
identifies g'pP; S as the spontaneous magnetization,
then the energy associated with the alignment of spins
is ——,')I(g'p) 'M'. Hence, the quantity )I(g'p) ' can be
identified as the molecular-field constant in the con-
ventional theory. From the relationship between the
Curie temperature T, and the molecular-field constant,
one finds



second order of perturbation. The result given by
Vosida is

3Ã'

Carrying out the summation over m, one finds that

exp(iq R„)= (cV—1)8,0,
m mWn

where

XP P P P(q)f(q) exp(iq R„)S„S, (16)

4k '—q2 2k —
qln, R„=R —R„,

4kq 2k+ad

because q is a reciprocal lattice vector. Hence,

3Ã'
H„= 1V

—'(g'p)-'$(S)P (0)f(0) (S—1).
16Ep

Since f(0)=2, P(0)=P, X—1—X, one obtains

and k is the size of the wave vector at Fermi level.
The electron-ion interaction is, strictly speaking, not
localized. Hence, the coupling constant I should depend
on the initial and Anal values of the electron momentum.
However, one usually makes the simplided assumption
that I depends only on the momentum transfer, which
is characterized by the wave vector q. Thus, q is a
lattice vector in the reciprocal lattice.

The last term in the above expression can be sepa-
rated into two parts according to whether m=e or
m/e. The erst part is

z- E„Z,I (q)f(q)s„s„
32L&"p

3X'
-&-'~(~+1)2, I'(q) f (C),

328g

which corresponds to a shift in total energy of the
crystal independent of the spin ordering. The second
part is the coupling term between the ions and can be
written as

where

H„=g (g'p)
—'M,

M =g'gpss(S).

(20)

The molecular-field constant is, therefore,

&=a(g'~) '

which is just what has been found in the last section.
Therefore, as far as the calculation of the Curie temper-
ature is concerned, the simple theory gives the correct
result.

At low temperatures, the excitation of the spin
system is better described by spin waves. For a spin-
product Hamiltonian of the form appropriate to
indirect exchange coupling

II,.,=—Q Q J(R„„)S„S„,
n m, mgn

where
~(q) =2%8(0)—8(q) j,

g(q)=P J(R „)exp( —iq. R „).

one can readily show that, in a pure material, the
dispersion relation for the spin waves is

3E'
X 'I'(q)f(q) exp(iq R„)S

m, m~n q 32+~

Physically, the ground state of the system is ferro-
(18) magnetic if g(q) has a maximum at q=O. Therefore,

for small q, one must have

Hence, one finds that the molecular field acting on the
spin S is

H„= S-'(g'p)-'
jap

where
~(v) =is',

g2

u(q)&0
2 Bq'

&& E ZI'(q)fR) p(q R-)s- (»)
m, mPn q

Near the Curie point, the spins are very much at
random, so one may substitute for S in Eq. (19) the
mean value (S) of all the spins. In an alloy where not
all the ions are magnetic, one has to make another
averaging process. If the concentration of magnetic
ions is $, then the probability that there is a magnetic
ion at the site R is $. Hence, in this case, one should
replace S„by P(S). Thus,

gg—2(g'~) —'(S) P QI'(q) f(q) exp(iq R,„„).
161'.p m, tregn

This dispersion relation leads to the T' law for the
dependence of the spontaneous magnetization on
temperature.

It should be noted that the above result holds only
if g(q) varies smoothly with q in the neighborhood of
q=0. From Yosida's formula Eq. (16), one finds

3g'

which satisfies the requirement. However, from Eq.
(9), one finds that the simple theory gives

9(q) = hno, o,
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which is singular at q=0. Therefore, without the
second-order terms, the theory gives an incorrect
description of the magnetic properties of the metal at
low temperatures.

Physically the second-order terms have an oscillatory
space dependence. As a result they only contribute when
the spin arrangement deviates from a perfectly ordered
state in a periodic fashion. This condition does not hold
either at absolute zero or near the Curie point. There-
fore the Curie temperature, which depends on the differ-
ence in energy between these two states, is correctly
estimated by ignoring these terms. However, when the
spins undergo a collective motion as in spin waves, the
condition of periodic spin deviation is satisfied. Hence,
the second-order terms are important in this case.

DISCUSSION

For pure gadolinium, the Curie temperature is
289'K. From Eq. (14), with

)=1& %=3.0X10"per cc, 5=7/2,

one finds
g=2 54X10 '7

From Eq. (10), with E'=31V=9.0&&1 022per cc and
an effective mass ratio of unity, one finds

~I( =2.78)&10 "erg
=0.1.74 ev. .

The interaction Hamiltonian (2) has also been used
by Suhl and Matthias' to explain the reduction of
superconducting transition temperature of lanthanum
when there is gadolinium impurity; and by Kasuya"
and de Gennes and Friedel" to explain the anomalous
resistivity of magnetic metals. In the first case, the
estimated value of I given by reference 9 is

)I~ =0.165 ev.

In the second case, one estimates

]I[
—0.2 ev

from the formula in references 10 and 11. The value
of I measured by Jaccarino et a/. " is about 0.1 ev.

The Lande factor of the ions is

g'= g
—(3W'I/4E~ plV),

from Eq. (11).Using I= —0.174 ev and g= 2, one finds

g' —g =0.0SS.

From the experimental value" of the effective number

' H. Suhl and B.T. Matthias, Phys. Rev. 114, 977 (1959).
' T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 58 (1956)."P.-G. de Gennes and J. Friedel, J. Phys. Chem. Solids 4, 71

{1958).
'~ V. Jaccarino, B. T. Matthias, M. Peter, H. Suhl, and J. H.

Wernick, Phys. Rev. Letters 5, 251 (1960)."J.F. Elliot, S. Legvold, and F. H. Spedding, Phys. Rev. 91,
28 (1953).

IIr=I(g 1)s J, — (22)

where J is the total angular momentum of the ion. The
coupling constant I is approximately the same for all
the elements. Therefore, the Curie temperatures of
these elements are given by

T,= (g—1)'J(J+1)gE/3k. (23)

Since these elements have nearly the same lattice
parameters, q and E are roughly the same for all of
them. Hence, one obtains

T.~ (g—1)'J(J+1) (24)

which is just the Neel" and de Gennes" formula for
the Curie temperature of rare-earth metals.

From Eqs. (11) and (22), one finds that t;he change
in Lande factor for rare-earth metals is

(25)

The calculated values of Ag using I= —0.174 ev are
compared with the experimental values in Table I.
The experimental values for Gd, Tb, and Dy are
calculated from the saturation magnetizations at 0 K;
the others are calculated from the paramagnetic

' R. M. Bozorth, D. D. Davis, and A. J. Williams, Phys. Rev.
119, 1570 (1960).

"W. C. Thoburn, S. Legvold, and F. H. Spedding, Phys. Rev.
110, 1298 (1958)."P.-G. de Gennes, Compt. rend. 247, 1836 (1958)."R.Brout and H. Suhl, Phys. Rev. Letters 2, 387 (1959).'" S. H. Liu, Phys. Rev. 121, 451 (1961)."L.Neel, Compt. rend. 206, 49 (1938).

of Bohr magnctons pcI' ion, one finds tbat

g' —g =0.04~0.01.

The agreement is reasonably good because this quantity
itself is of the same order of magnitude as the experi-
mental error. The contribution of the free electrons to
the magnetic moment amounts to approximately 2%
of the total value. In order to be consistent with the
experiment the sign of I assumed here is opposite to
that measured by Jaccarino et al.

For solutions of magnetic metals in nonmagnetic
metals, Eq. (14) shows that the Curie temperature is
directly proportional to the concentration of magnetic
ions provided that the crystal constants do not change
appreciably with composition. This behavior has been
observed in GdRu2-CeRu2 alloys'4 and Gd-V alloys. "
From the T, vs concentration curve of the latter group,
one flilds

~
I( =0.21 ev.

The alloys of gadolinium and lanthanum show more
complicated behavior. "

For rare-earth metals other than gadolinium, the
spin-orbit coupling in the magnetic shell is important.
The appropriate Hamiltonian for the electron-ion
interaction has been shown to be'
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Element

Gd
Tb
Dy
Ho
Er
Till

Ag (theoret)

0.055
0.028
0.01.8
0.014
0.011
0.009

ag (exp)

0.04 ~0.01
0.04 &0.01'
0.017+0.009b

0 030
0 05'
0d

a W. C. Thorburn, S. Legvold, and F. H. Spedding, Phys. Rev. 112, 56
(1958).

bD. R. Behrendt, S. Legvold, and F. H. Spedding, Phys. Rev. 109,
1544 (1958).

& F. H. Spedding, S. Levgold, A. H. Daane, and L. D. Jennings, in Prog-
ress im Lour-Temjerature Physics, edited by J. C. Gorter (North-Holland
Publishing Company, Amsterdam, 1957), Vol. II, pp, 368—394.

d D. D. Davis and R. M. Bozorth, Phys. Rev. 118, 1543 (1960).

susceptibilities. The theoretical and the experimental
values agree in order of magnitude.

Many rare-earth metals and alloys undergo a
spontaneous magnetic transition from ferromagnetic to

TABLE I. The change in g factor due to the polarization of
conduction electrons in rare-earth metals; the theoretical values
are calculated from Eq. (25) with I= —0.174 ev.

antiferromagnetic ordering. However, these materials
obey the Curie-Weiss law in the paramagnetic temper-
ature region with positive Curie points. This is a good
indication that the basic interaction in the materials is
ferromagnetic. In such cases, Eqs. (14) and (23) should

apply to the paramagnetic Curie temperatures rather
than the Xeel temperatures.

The indirect exchange model may apply to the
transition elements as well. However, the problem is
hard to analyze because of the complicated band
structures.
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Differential equations are given for a general formulation of
current-carrier transport that includes space charge. Arbitrary
dependences of diffusivities and magnitudes of drift velocities on
electrostatic field are considered, and extension is made for applied
magnetic field. Though excess electron and hole concentrations
are not equal, the small-signal recombination rate depends on a
single lifetime, the "diffusion-length lifetime, " rp. The formulation
is applied to one-dimensional drift with recombination for an in-

jected pulse of electron-hole pairs. The exact electron and hole
distributions are obtained in closed form for the linear small-

signal case. The condition for linearity is given; it is usually the
same as that for substantially unperturbed applied field, Ep. There
are two principal types of solution, essentially according to
whether Tp is larger or smaller than the dielectric relaxation time,
Td. For Tp)rd, , the electron and hole distributions in not too
strongly extrinsic material are ultimately similar Gaussian distri-
butions displaced by the "polarization distance, "xz, the distance
electrons and holes drift apart in time (re '—re ') '. These dis-
tributions drift at a velocity that differs from the ambipolar ve-
locity by an amount which, besides being small for small Tz/Tp,

vanishes for equal mobilities, They spread, exhibiting an apparent
diffusion. A "pseudodiffusivity, " D„ is defined. For Tp))rz and
constant mobilities, D~ is proportional to reap/e, ', with oo the
conductivity. The ambipolar diffusivity and D, are additive. They
are equal in intrinsic material for Ee equal to kT/e divided by the
Debye length (kre/Sme;e')&, or 10 v/cm for silicon at 300'K. An
extension to a nonlinear case involving high-level injection is given;
concentration-dependent D, and velocity function are defined. For
sufficiently strongly extrinsic material and Tp)T&, the minority
carriers drift in a delta pulse that leads the majority carriers dis-
tributed in an exponential tail of characteristic length x~, which
may be quite large. For nonconstant mobilities and Tp) Tg ambi-
polar velocity in the majority-carrier or "reverse" direction may
occur. For Tq )Tp the other principal type of solution gives distri-
butions that in general (and for constant mobilities) drift in the
reverse direction. Involving also regions of local carrier depletion,
and thus generation as well as recombination, these distributions
may persist for times long compared with rp, being attenuated
then with time constant rd.

1. INTRODUCTION

ITH carrier injection and transport in semi-
conductor material of high resistivity, the widely

used approximation of local electrical neutrality fre-
quently does not apply. Thus, for various experiments
and for a number of devices, including semiconductor
detectors of nuclear particles, solutions are needed that
take space charge into account. Extending results previ-

ously reported, ' this paper presents a general formula-
tion of transport with space charge, including applied
magnetic field, and gives solutions for various cases of
one-dimensional drift with recombination. An injected
pulse of electron-hole pairs is considered. For linear
small-signal cases, with relatively small perturbation of
applied electrostatic field, exact solutions are obtained

' W. van Roosbroeck, Bull. Am. Phys. Soc. $, 180 (19/0).


