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demonstrated that the 02 molecule-ion is present in
alkali halide crystals treated with oxygen. Measure-
ments of the resonance signals from portions of crystals
used in these experiments were kindly made for us by
Ka,nzig, and it was found that the signals increased as
the intensity of Quorescence increased. In one case an
accurate value for the ratio of signals from the two
crystals KBr+KCN and KBr "pure, " both grown in
oxygen, was obtained. The ratio was 7, whereas the
ratio of Quorescent intensities, which can be measured
more accurately, was 6.6. Thus we assume, from the
optical results and the paramagnetic resonance measure-
ments, that the center responsible for the absorption
and Quorescence is an O~ molecule-ion substituted for
a halide ion in the crystal, aligned along the (110)
directions, as found by Kanzig and Cohen.

Some of the results are more difficult to explain, how-
ever. One would expect that some polarization of
Quorescence would be observed at 4.2'K. However, the
local temperature in the vicinity of the excited 02
molecule-ion may be quite high„since a rather large

Stokes shift (2.5 ev) is observed. Perhaps half the
energy, over 1.2 ev, may be given off as phonons before
the center emits. This process may destroy any polariza-
tion. "Also, there is no other evidence to account for
the fact that the Quorescence emission of KCl at 4.2 K
has a quite different structure from the other two
alkali halides NaCl and KBr. Finally, the very small
absorption coefFicients associated with oxygen might
be due either to. forbidden electronic transitions, or to
the fact that the observed band is actually a subsidiary
band, the main band lying in wavelength regions beyond
our limits of measurement.
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A treatment of magnetoconductivity is developed for high electric 6elds and general energy-band structure
using a partial solution of the Boltzmann equation in a form similar to that set up by McClure for low
electric fields. The present treatment is valid when the scattering processes are such that the distribution
function varies but a small amount over an entire constant-energy surface, or, in the case of the many-valley
band structure, over the part of a constant-energy surface within each valley. In the latter case, different
distribution functions must be used for the different valleys. The elements of the magnetoconductivity
matrix that results are expressed in terms of carrier concentration, total or within each valley, and averages
over the carriers of a quantity involving the momentum relaxation time and the S tensor dehned by McClure.
This tensor, which depends on the shape of the constant-energy surfaces and on the magnetic-field strength,
is evaluated for the individual valleys in a nondegenerate many-valley semiconductor. The magnetocon-
ductivity matrix is then in a form convenient for calculation of conductivity and galvomagnetic effects for
either low or high electric 6elds. It is used to obtain expressions for anisotropy voltage and Hall coefticient in
high electric 6elds involving the number of carriers in each valley, orientation of the valleys, and valley
averages over quantities involving relaxation time and energy.

I. INTRODUCTION
' 'N connection with many of the investigations of con-

- ductivity in high electric fields, the Hall effect has
been of interest because of the possibility of chang, . in
carrier concentration due to impact ionization or other
processes. It has become apparent, however, that the
Hall coefFicient R, measured with due care, may change
in high electric fields even though carrier concentration
does not. The change in the distribution function, which
is the basis of the so-called hot carrier effects, can itself

cause a change in E.' Changes in the band structure,
such as change in curvature of energy vs crystal mo-
mentum, as the carriers move to higher energy states
can also cause a change in E.This seems to be a sizeable
effect in P-germanium' where the curvature of the light-

' For a calculation of the change in Hall coefFicient with electric
field, under the assumption that scattering is by acoustic modes
only, see M. S. Sodha and P. C. Eastman, Phys. Rev. 110, 1314
(1958).

~ J. Zucker and E. M. Conwell, Bull. Am, Phys. Soc. 4, 185
(1959).
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hole band changes even at relatively small energies. ' In
a many-valley semiconductor, such as mgermanium, the
anisotropy of the constant-energy surfaces gives rise to
additional complications. In the absence of a magnetic
field there is, at high electric 6eld, a considerable trans-
verse voltage, the anisotropy voltage. 4 The diferent
degree of heating of the different valleys that gives rise
to the anisotropy voltage could itself affect the Hall
coefficient, even more so under some circumstances by
causing a net shift of carriers from one set of valleys to
another.

In this paper, a treatment of magnetoconductivity in
high electric 6elds is developed from which expressions
for the Hall coefficient and other galvanomagnetic prop-
erties at high electric 6elds can be derived. The treat-
ment is based on a partial solution of the Boltzmann
equation in a form similar to that set up by McClure for
low electric 6eMs. ' In Sec. II the solution is given. The
validity of this solution at high electric fields requires
that the distribution. function vary but little over an
entire constant-energy surface. The conditions that the
scattering processes must satisfy to make this so are set
up. These conditions will not, in general, be satisfied in
a many-valley semiconductor when intervalley scat-
tering is not sufficiently frequent. In Sec. III, it is shown
for the latter case that, under the less restrictive condi-
tion that the distribution function vary but little over
the portion of a constant-energy surface within each
valley, a magnetoconductivity matrix of form similar to
that obtained in Sec. II can be set up for each valley.
The magnetoconductivity matrix for the whole is, of
course, the sum of the matrices for the individual valleys.
Calculation of the individual S tensors is carried out,
making it possible to express the magnetoconductivity
in terms of averages over functions of relaxation time,
energy, magnetic field. , and orientation of the valleys. In
Sec. IV, expressions are obtained for the anisotropy
voltage and Hall coefIicient in terms of the elements of
the magnetoconductivity matrices of Secs. II and III.
For the many-valley case, it is shown that anisotropy
and Hall voltages can readily be separated at low mag-
netic fields. Expressions are then given for each of them
in terms of the number of carriers in each valley and
averages for each valley of the usual functions of relax-
ation time and energy. In an Appendix, the individual S
tensors are calculated for the case of n-germanium with
current in the (110) plane, a situation that has been
used considerably in experiments. 4

II. MAGNETOCONDUCTIVITY AT HIGH
ELECTRIC FIELDS

The solution of the Boltzmann equation set up by
McClure for low electric fields and arbitrary magnetic

3 E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956).
4W. Sasaki, M. Shibuya, K. Mizuguchi, and Hatoyama, J.

Phys. Chem. Solids 8, 250 (1959). This also gives reference to
earlier work.' J. W. McClure, Phys. Rev. 101, 1642 (1956).

fields assumes the existence of a relaxation time that is
a function of energy only. The form of the solution he
takes to be the usual':

where fo is the Maxwell-Boltzmann distribution for the
cases of interest here, and e is the energy. As a conse-
quence of the electric 6eld being small,

4etfo/&e« fo (2)

Beyond this, McClure's treatment divers from the con-
ventional one in the introduction of a variable s(P)
representing the time at which a carrier precessing about
a constant-energy surface in the presence of a magnetic
field, but no electric field, would be at the point P. The
actual path in P space of the carrier in the magnetic
field is the curve formed by the intersection of the con-
stant-energy surface and a plane perpendicular to H.
This path is called the hodograph. Using the fact that
the velocity v is a periodic function of s, he makes a
Fourier expansion of v in terms of s:

v= Q v(m) expt imps].

With this, P is expressed as a function of s. In the usual
expression for the current density, '

j= ( 2el&') d—'P v@( ~fo/~e), —

where the integration is over the basic Brillouin zone.
McClure replaces the integrand at each point in P space
by its average over the hodograph that passes through
the point. With this he obtains the magnetoconductivity
tensor in the form

e= (2eo/ho) doP( Bfo/Be)rS, —

where S is a tensor, the components of which are given
by

S p=
+ i.(—m)i p(m)

1+imon
(6)

' See, for example, A. H. Wilson, The Theory of iVetals (Uni-
versity Press, Cambridge, England, 1953), 2nd ed.' Note that McClure (reference 5) in his expression (2.9) omits
the factor 2 for summation over both spin directions.

eo being the cyclotron frequency. The quantities v (—m)
and vs(m) are the Fourier coefFicients in the expansion
of the n and P components of v. If the Z axis is chosen as
the magnetic-field direction, this expression for S can be
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v. (—ttt)sp(nt)+u (nt)t p( —ttt)

1+tttsposrs

intror{s. (ttt)np( —m) —w. (—nt)sp(nt)}

1+5' co T
(7)

For discussions of fo(e) in high electric field but no magnetic
field see W. Shockley, Bell System Tech. J. XXX, 990 (1951);J.
Yamashita and M. Watanabe, Progr. Theoret. Phys. (Kyoto) 12,
443 (1954); and H. G. Reik, H. Risken, and G. Finger, Phys. Rev.
Letters 5, 423 (1960).' This condition has been discussed for spherical constant-energy
surfaces by E. M. Conwell, Phys. Rev. 88, 1379 (1952). See also S.
Chapman and T. G. Cowling, hrathematical Theory of Non
Uniform Gases (Cambridge University Press, New York, 1939).

where 8~,=1 for y=s, and zero otherwise. Thus, S de-

pends on the shape of the constant-energy surfaces, and
on the magnetic-6eld strength through the factor co7-.

The feature that limits this treatment to low electric
field is the assumption that the distribution function is
given by (1) with fp(e) the Maxwell-Boltzmann dis-
tribution and the condition rlsBfp/ite« fp satisfied. As a
consequence of the latter condition, the distribution
function has, to a good approximation, the same sym-
metry in low electric field as in the absence of field,
which is the symmetry of e(P). If this symmetry were
still approximately maintained by the distribution func-
tion at high electric fields, it could be written in the form

(1) for that case also, with fp a function of e only and the
condition (2) still satisfied. Of course, in high fields, fp
would no longer be a Maxwell-Boltzmann distribution
at the lattice temperature. For Eqs. (1) and (2) to be
applicable at high electric fields, the scattering processes
must be such as to produce the required randomization
of the velocity gained from the held. To do this, they
must have the following properties. First, they must be
predominantly elastic, ' and they must not give rise to
predominantly forward or backward, i.e. 180', scat-
tering. Satisfaction of this pair of conditions should pro-
duce the required small variation in f over connected
portions of a constant-energy surface, i.e., within a
valley. It will also be sufficient to produce small varia-
tion in f over the entire constant-energy surface in a
many-valley semiconductor for the special case that the
6elds are so oriented as to supply energy to all valleys
at the same rate. A second condition must be added for
arbitrary field orientations in a many-valley semicon-
ductor, e.g., the scattering must be such as to afford
su%cient communication between unconnected parts of
a constant energy surface to maintain approximately
the same distribution function on all parts. The first
pair of conditions should be satis6ed in germanium and
silicon, for example, when scattering is mainly by

acoustical lattice modes" and/or optical modes with
phonon energy much smaller than the energy of the
carriers. This is the case over a considerable range of
fields for both materials. The second condition on the
scattering processes, as remarked earlier, may not be
satis6ed in n-germanium over a considerable range of
fields.

In the remainder of this section we shall consider only
the case where fp in high fields varies little over the entire
constant-energy surface. The case of the many-valley
semiconductor in which the first condition is satisfied
but the second is not will be taken up in the next
section.

When the distribution function in high fields can be
written in the form of Eq. (1) with &Bfp/etc« fp, the
solution for P is the same in high electric fields as in low.
The treatment for high fields can then be carried out in
the same way as that for low fields, and the result (5) is
still valid except that fp now represents the distribution
appropriate to high electric fields. In this case, fp may
also depend on magnetic field. The S tensor is still given

by (6) or (7) and is independent of electric-field in-

tensity provided the shape of the constant-energy sur-
faces does not change with increasing energy. It should
be noted, however, that the rr of (5) is no longer a tensor,
i.e., a linear vector operator, for high electric 6elds be-
cause fp depends on electric-Geld intensity.

If the band structure is such that contributions to the
current come from more than one band, as in p-
germanium for example, the total j and e are made up
of the sums of expressions (4) and (5), respectively, over
the contributing bands.

III. MAGNETOCONDUCTIVITY FOR THE
MANY-VALLEY BAND STRUCTURE

As indicated earlier, the treatment of the last section
will be valid for a many-valley semiconductor when all
valleys have approximately the same distribution func-
tion, whether through special orientation of the applied
fields, or sufficient intervalley scattering. In this section,
we shall take up the case where the first pair of condi-
tions on the scattering is satisfied, so that the distribu-
tion function does not vary much over a constant-energy
surface within a valley, but does vary substantially
from valley to valley. For this case, we assign to the ith
valley a distribution function ft'&(e). The over-all dis-

"Sasaki et al, , reference 4, in attempting to account for the
anisotropy voltage observed at high electric field for P-germanium,
postulate that this pair of conditions is not satisfied for acoustical
phonon scattering in that case. Specifically, they suggest that, for
the approximately cubic heavy-hole constant-energy surfaces,
transitions between opposite sides are more frequent than transi-
tions between adjacent sides. To account for this predominantly
forward or backward scattering, they further postulate highly
anisotropic constant-energy surfaces for the acoustical phonons in
q space. Such anisotropy would require a correspondingly aniso-
tropic sound velocity. In germanium, however, the difference in
sound velocity between the $001j and t 110) directions is only
about 10%.This seems too small to give much of an anisotropy in
scattering probability for the hole temperatures that are involved.
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where

f&i. & —f &i&(~) t&&&i&Bf &i&/Be

&&I&&i&Bf &i&/B~((f &i&(~) (9)

It is readily seen that, when f0&i& is the same for all
valleys, the over-all distribution function can be written

tribution f(e) =P, f&'(e). Since f&'& does not vary much
over a constant-energy surface in the ith valley, it can
be written in the form

2(i3

/
/

so that &t of Sec. II is to be identified with P; P&'& for
this case.

With (8) and (9) valid for f&'&, the solution of the
Boltzmann equation can be carried out for each valley
in the same fashion as set forth in Sec. II. The resulting
magnetoconductivity can be written

e= Q (2e'/h') d'P( —
Bfo&

"/Bp)rs&'&

where the integration is to be taken over the states in
the ith valley, and X is the number of valleys. The
tensor S&'& is given by (6) and (7), where, of course, the
I ourier analysis of v is to be carried out for the constant-
energy surfaces in the ith valley.

For calculations, it is more convenient to have o
expressed in terms of the number of carriers. Since

n& "& = (2/lF) O'P f0&"
'4

Eq. (11) for &r can be transformed into

Pro. 1. Constant-energy ellipsoid and coordinate system for the
ith valley. Z is the magnetic-held direction, and P' and the two
dashed lines are the principal axes of the ellipsoid.

axis of the ellipsoid perpendicular to H, in the sense
Z&'&&&Z. The X axis is perpendicular to I' and Z,
forming with them a right-handed system.

In the coordinate system of Fig. 1, the equation of a
constant-energy surface is

&r = Q a&i&e'( (1/fo—&'&) (Bf0&'&/B6) TS&i&)& (12)
*

where the average indicated is to be taken over all the
carriers of the ith valley. In general, the components of
the matrix S&'& will vary with position on a constant-
energy surface. Since fo and 7 are functions of energy
only in the present treatment, the correct values of the
average in (12) will be obtained if 8 p&'& is replaced by
8 p&i&, its average over a constant-energy shell. We can
then write the nP component of the magnetoconductivity
as

where
m& cos'o.

me m]

sin'n

1 sinn cosa sinn cosa.
)

my m)mg

1 sin e cos o.'

m2 mg ml

mg Px' PxPz Pz' Py'—+ + +
m* 2 mg 2m/ 2m/

(14)

0 p= Q n&"e'(—(1/f "&)(Bf& "&/Bp)78 p&") (13)

Calculation of the S&'& tensor will now be carried out
for the case of a many-valley band structure in which
the constant-energy surfaces are spheroids with axis of
revolution the major axis. The coordinate system in P
space to be used for the ith valley is shown in Fig. 1.
The magnetic-field direction is chosen as the Z axis. The
angle between the magnetic-field direction and the
major axis Z&'& of a constant-energy ellipsoid is denoted
by cx&'~. The I" axis is taken to coincide with the minor

It is, of course, understood that the values of o., m~, m~,
and m& for the ith valley must be used even though the
superscripts have been omitted. The quantity m*, it
may be noted, is the cyclotron resonance mass. " From
(14), the components of the velocity are obtained as

&&.= Be/BP.= (m,/m')P, + (1/mi)P„
&&„=Bp/BP„= (1/m&)P„, (1.6)

&&. = Be/BP, = (1/mi)P. ,+ (1/mg)P,
"See, for example, G. Dresselhaus, A. F. Kip, and C. Kittel,

Phys. Rev. 98, 368 (1955).



E. M. CON WELL

'.1.'o express the velocity components as functions of s, Using (18) for v (s) in (19), we obtain
we make use of the I.orentz force equation to obtain

s(P) = (1/eH))" v,
—'dP,

P=Ps
(17)

1 t'2c m"P,') &

V g — g l(d8 g
—to&s

2i & mi mrmg')

m*'v~' mgv~' m-"P, '

2 2m~mg'

where dP is a line element along the hodograph, and v~

is the component of velocity perpendicular to H. Since H
is in the Z direction, vi ——(v,'+v„'): for this case. The
limits of integration have been chosen to give s=0 when
P is in the X direction, or when v has its maximum
value. Using the fact that (14) with P, constant, as well
as e, is the equation of the hodograph, we can express dP
of (17) in terms of P, and P„.Integration of (17) then
leads to an expression for s as a function of v that can
be rewritten to give the desired Fourier expansion of v

1m, t2e m'P')&
~ (s) =-—

I
—

I
(e*-+e '") (18)

2 m. Emi mimi3 )
To find v„(s) it is convenient to rewrite the equation of
the hodograph in terms of v and v„ instead of P and
P„.We then have

The Fourier expansion for v, (s), calculated by use of
(16) and (18), is

me'P 1 m* (2e me'P ') 1

~ (s) = +-—
I
——

I
(e'"'+e '"') (21)

m,m, 2 2m, Em, m, m3)

Kith the Fourier components of v determined, the
expression (7) can be used to calculate the components
of the tensor S'o in the system of axes of Fig. 1. In this
system, the Z axis is the same for every valley, but the
X and I' axes are not. We now choose one set of X and
V axes such that the X and I" axes of the ith valley
must be rotated through an angle p&'& clockwise to be
brought into coincidence with it. The tensor S&o, ob-
tained in the first system of axes, must then be trans-
formed in the usual way to the new set of axes. Referred
to the new axes, which are the same for every valley, the
S tensor for the ith valley is

mg
- cos'p+ sin'p

m*

t' mi p mi mi mi

I
1—

I
sinP cosP — ~ir —cosP+ a&ir sinP—

m2) m2 mi mi

( m)2 $ mg'
S&'& = Vir'

I
1—

I sinP cosP+
m+

m2
cos'p+ sin'p

m4

mg mg
siilp+ ~(r cosp

m$ my
(22)

where

mg mg—cosp &oir sinp- —
m] my

mg mg——sinp ——~&r cosp
m$ mg

m~4 Pg' m"

m, &mg4 @~2 m, 2

m*'PPq (m*'v, ' v„'
I

1(1+cu2r') '=
I +

I
(1+co'r') '

(m, 2mm, ') 5 2m, 2 2 ) (23)

and ~,=H, /m, =co m* /miSuperscripts (i) are, of course,
to be understood on P, and on m* and mi, which are
functions of n'"' defined in (15). To recapitulate, the
angle n&" is the angle between H and the major axis of
the spheroids in the ith valley, and P&f& is the angle
through which that minor axis of the spheroids in the
ith valley that is perpendicular to H must be rotated
clockwise to be brought into coincidence with the Y
axis. It is to be noted that the components of S obey the
symmetry requirement S t&(H) =Se (—H). '

As stated earlier, in evaluating 0-
p the quantity 5 ~&')

may be replaced by its average over a constant-energy
shell, 8,e "&. The only quantities in the matrix (22) tha, t
vary with position on a constant-energy surface are P,
and, as a result, Vil'. To obtain S t&

"&, it is thus neces-

sary to evaluate averages of VH' and (Lm*' P,
' /mmi2&')

+(m*'Vlr'/mi')$ over a constant-energy shell. Both
quantities can be expressed in, terms of v,' and v„' by use
of Eq. (19), this being shown for Vzz' in Eq. (23). The
velocity components can, in turn, be expressed as func-
tions of the components v ', v„', and v, ' in the principal-
axis system of the ellipsoids by v =v, 'cosa —v, 'sino.
and v„=v„since I' is already a principal axis in the
coordinate system for which Eq. (19) is written. Aver-
ages of quantities v 'vp' can be evaluated very simply by
transforming the constant-energy ellipsoids to spheres
as suggested by Herring. " Thus, ((v,')') = ((v„')')
=2m/3m„((v, ') )=2e/3mi, and (v.'v, ')=0. After aver-

I2 C. Herring, Bell System Tech. J. XXXIV, 237 (1955).
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aging, SI" becomes

mg
cos'p+ sin'p

t mg') mgg gggg ~ggg

~
1—

~
sinP cosP —gdgr —cosP+ gd—gr sinP

mop) mg mi mi

2p ( mP) mg
(8&")=

~

1—
~

sinP cosP+ gpgr

3mg(1+9 r ) ( mg ) m+

mg m$—cosp gpgr siilp
m] my

m, '
cos'p+ sin'p

m4

mg——sinp ——gpgr cosp
m] m$

mg mg——sinp+ —gpgr cosp . (24)
m] m]

m+ m+
+ (1+gp'r')

m~' m~m&

For cases in which gg&@ and fpI'& are the same for all valleys, the integration required to obtain 0 gg
need not

be carried out over each valley separately. Equation (13) can be simplified by replacing NI"' by the total carrier
concentration ef,,&, and 8 ~&'& by its average over the valleys, to give

~.e = gg..ge'( (1/f p) (—graf p/ap) r P ~.p'/N) (25)

1 ( 2mgi
1+

mg]

I 1( mg)
-I 2+—

I3I mg)

The average of 8 p"' over the valleys has been evaluated for the case of a cubic crystal in weak magnetic Gelds. If
we retain only terms linear in H the required summations can be carried out in straightforward fashion to give
for a cubic crystal

II' (8&'I) 2p 1 p 2mg)
I

1+
X 3mg 34 mg)

1( mg)
-I 2+—

I34 mgi

1( mg)
-I 2+—

I

3 E mg].

(26)

It is readily seen that this matrix leads to the correct
low-field conductivity. For low electric field,

(1/fo) (~fp—/~ p) = 1/Ig2' (27)

Using this and (26) in (25), we obtain

1(2 1)
x—

(
—+—~(«)

(3/2)kT 3 Emg mg3

S$0$8 7 E

(28)
mI'& (p)

in the form obtained by Herring. " In the absence of
magnetic field, the off-diagonal components all vanish,
as is correct for low field. It will be shown in the next
section that (25) and (26) lead to the correct low-field
Hall coeS.cient also.

IV. ANISOTROPY VOLTAGE AND HALL EFFECT
AT HIGH ELECTRIC FIELD

We shall consider first the situation in which an elec-
tric Geld is applied but there is no magnetic field.
Whether or not there is anisotropy in the conductivity
depends on the S tensor, or, more basically, on the
symmetry of the constant-energy surfaces. ' Wp shall

confine the discussion of the anisotropy to the many-
valley band structure, for which we have derived the S
tensor, and to cubic crystals.

In a cubic crystal, when Ohm's law is obeyed, 0-
p

must vanish for n WP. Although the S Ig&", and therefore
0 p('), do not vanish in general, when the contributions
of the diGerent valleys to the o6-diagonal elements are
added they cancel to produce, in the absence of magnetic
field, a scalar. LSee (26).$ When a high electric field is
applied, not in a symmetry direction, the valleys may
have different fpI", however, and then the off-diagonal
contributions to o would no longer cancel. When they
do not cancel, the current Rows initially at an angle with
the applied field, until it produces a transverse electric
Geld sufhcient to buck out the transverse Row. We shall
now obtain an expression for this transverse field, the
anisotropy field.

For the initially applied field in a general crystal-
lographic direction, to be taken as the X direction, all
nine components of o might be nonvanishing. If this
were the case, transverse fields in both Y and Z direc-
tions would result. We shall simplify the situation by
choosing the applied field direction such that o-,=o.,„,
=0. Then there will be no component of current, and no
tr@nsvqrse Geld developed. , in the Z direction. This will
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be the case, for example, in e-germanium with the Z
direction taken as $2107, and the X direction anywhere
in the (110) plane, as shown in the Appendix. For such
an orientation we can write

ob talll

(31)

i.=~-(0)E.+~*.(0)Ew(0),

i w=~"(0)E*+~wu(0)Ew(o),

(29a)

(29b)

where 0 indicates the value of the quantity in the
absence of magnetic field, and the 0's are given by (13).
In the steady state j„=0,from which we deduce for the
anisotropy field

since fT is symmetric in the absence of magnetic field. It
is worth noting that, when measurements of j /E, in
the hot-carrier range are made in the usual way on e-
germanium samples, the quantity measured is the one
in brackets in (31).

With the use of (13) we can write tang in terms of the
population and distribution functions of the individual
valleys as

or

~a*(0)
E„(0)= — E„

~we(0)
(30a) 2 &"e'( —(1!fo"')(~fo"/~e) r~ *"'(o))

i=1
. (32)

E„(0)= tang=—
E.

~.*(o)

0.„„(0)
(30b) & I"'"(—(1/f ")(~f "'/~ e) r~ "'(o))

i=1

If fo&o is a Maxwell-Boltzmann distribution at T&'&, this
Eliminating E„(0)from (29) with the use of (30), we can be simplified to

2 ( "'/T")( ~-"'(0))
4=1

P (r& "/T'"')(re)" (1—m '/m*«&') sing& o cosP&o
1=1

N

(+&o/T&&&)(r&)&sr&[cos2p&i&+ (~ /~+& &&2) sin2p&o7

(33)

Use of (32) and (33) can be simplified in practice by
combining terms for different valleys that have the same
f0&'& It is also us. eful to have some idea of the relative
"temperatures" of different valleys when they are not
the same. A quick way of obtaining this information is
to compare the power absorbed by the carriers in differ-
ent valleys at low electric fields. For the electric field in
the X direction, the power absorbed in the z'th valley is

P&"=j&'& K=0. &'&E,'= (e&' e'/kT&4&)(rS, '). (34)

At low electric field, e(') and T(') are the same for all the
valleys, so the ratio of power absorbed in the ith valley
to that absorbed in the jth valley is

P"' 8,&'& (m, /m*&'&)' cos'P&'&+sin'P&"
(35)

P"& 8, &'& (nz, /m. &'&)' cos'P&" +sin'P&&'&

It is expected that if 1 &''&/P&&& is unity for a particular
pair of valleys, they have the same f0&" in high field;
while if P&'&/P&") 1, the ith valley is hotter than the
jth in high field.

Although it is beyond the scope of the present paper
to evaluate expressions (31) and (32) for any particular
case," the 8 p(') tensors have been calculated for e-
germanium with current in the (110) plane and are
presented in the Appendix. Also in the Appendix is a
plot for each of the four valleys in e-germanium of the
quantity (m&/m*&'&)' cos'P&'+sin2P&'&, which appears in
(35), as a function of the angle between the current
direction and the L0017 direction, for current in the
(110) plane.

With the results (13) and (24) it is possible to obtain
readily expressions for magnetoresistance and Hall effect
of a many-valley semiconductor at arbitrary magnetic-
and electric-6eld strengths. " In this paper, we shall
confine ourselves to the Hall effect. For the case of small
magnetic field, or cov-((1, the expression for the Hall

'3 This has been done for a range of fields in n-Ge by H. G. Reik,
:H. Risken, and G. Finger, Phys. Rev. Letters 5, 423 (1960). See
also E. G. S. Paige, Proc. Phys. Soc. (London) 75, 174 {1960).

'4This does not include fields high enough to give rise to
quantum eGects.
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coefFicient takes a relatively simple form which we shall
now derive. The S y(" tensor for small ~r is that of
(24), with (or neglected in the multiplying factor and in
5„.When terms in oPr' are neglected, the off-diagonal
components S p(') consist of a sum of two terms, one
independent of H and already denoted by 8 e&i) (0), the
other linear in H, to be denoted by S e&i)(H). As a
result of this, 0- p(" will consist of a sum of two terms
that can be written

o-e")=o-e")(0)+o-e")(H) (36)

the second term being linear in H. For the calculation of
the Hall coefficient, the directions of magnetic and
electric fields will be chosen so that off-diagonal com-
ponents of the magnetoconductivity involving z (now
the magnetic-field direction) again vanish. Inspection of
(24) shows that the terms occurring as coeKcients of
(oir in S„('& and 8„,&" also occur in 8„&'&(0) and
S„,"&(0). Thus, if o, and o-„, vanish for some set of
directions in the absence of magnetic field, they will do
so also in the presence of the magnetic field. We can then
write for high electric fields and small magnetic fields,
oriented as discussed,

made use of the symmetry of the S matrix. In the steady
state, j„=0, from which we obtain

o"(o) o.*(H)
(H) — + Ew

.o.„„(0) o-„„(0)
(38a)

The transverse voltage is thus the sum of contributions
from the anisotropy and Hall effects. If the magnetic
field were reversed, the sign before o.„,(H) would change.
In that case, the transverse voltage would be

o „,(0) (T„,(H)
Ew( —H) = — — E..

(0) (0)—
(38b)

By subtracting (38b) from (38a), the anisotropy voltage
can be eliminated. The Hall 6eld is then

If we now calculate the Hall coefficient from the usual
definition

R=E)r ii/(j H),

E)r„, t)= w(Ew(H) —Ew( —H)]
= —[~"(H)/o-(0))E' (39)

i*=o* (o)E.+Low*(0) —~w. (H))Ew(H), (37a)

J.= L~w. (0)+o"(H))E*+ow.(0)Ew(H), (37b)

where the o's are given by (13) and the matrix (24) with
the terms in (o2r' dropped. In writing (37), we have where

1 cr„,(H)
RH~o = ——

H o-.,(0)o.„„(0)—o.„(0)'

we obtain, neglecting terms of order H2,

(4o)

1 2ea rv ( mi—~„.(H) =
3m (=1 L m*&')) f

(tfo(i)
r2

7

0(&)

o-(0)~.w(0) =
2e' ~ ( m'

Q e&')(
3m, '=a Em. (')2

(jf (i)
cos'p&'&+sin'p(i)

~

— 7 e
) f &'& r)te

2e' )i ( mP q 1 &fo")
p )t&~)

~

cos'p"&+ sin'p'"
~

3m) ~——~ m*&&)' ) f()&» Be

2e' & ( m' ) 1 Bf&')
rr „(0)'= p n"

~

1—
~

sinp"' cosp&'& — re
3m, i=t 5 m. &')'0 f ' Be

For fo&') a Maxwell-Boltzrnann distribution, (41) can be
simplified somewhat by writing

2 1 8fp&'& (r'e)'"'
r c

3 f (i) ()e (e)(i)

1 3 (1+2m,/mt) (r'e)(e)
RH —wO=

e„„,e (2+m, /mi)' (re)'
(42)

etc. When T(" and e"' are all the same, the summations
in (41) can be carried out as they were to obtain the
average of 8 p(" over the valleys. The expression for R
then becomes

For low electric field, this expression is the same as the
one obtained by Herring" for that case.

It is clear from (40) and (41) that, as indicated in the
Introduction, even though the total carrier concentra-
tion remains constant, changes in R will occur as the
electric field is changed due to change in any of the e(')
or f()&')

When cur is not small, it is possible to go through a
rather similar analysis to obtain R. It is seen from (24)
that S„('), and therefore a.„,can again be separated
into two terms, one even in 8 and the other odd. The
term even in H becomes o „,(0) in the limit of small H,
while the term odd in H becomes o.„,(H) in the limit. of
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small H. Thus, the former still gives rise to an anisotropy
voltage, the latter to a Hall voltage, both now modihed
by the presence of EP terms. The expedient of reversing
the magnetic 6eld will again permit separation of the
two voltages. By the same procedure carried out in
Eqs. (37)—(40), we then obtain

and

(o „.—a.„)/2
~H 11 E*

0vu

(~s.—~.s)/2E=—

(44)
I 10

These expressions are valid for any magnetic-field
strength. The product fT „0-„,is the square of the even
term in o.„minus the square of the odd term in 0-„.In
the limit of small H, the square of the odd term can be
neglected, as was done previously, and (45) becomes
identical with (40).

The expression (45) for R is also valid for materials to
which the treatment of Sec. II applies. This is the case
because, as can be seen from the general expression (7)
for S p, cT p can always be broken up into a set of terms
even in H and a set odd in H. Of course, the validity of
(45) requires also that the material have sufficient
symmetry that off-diagonal components of e involving
Z vanish. It must also be remembered here that, if
carriers from more than one band participate in con-
duction, the matrix element 0.

p consists of the sum of
0. p's from each band.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge helpful discussions
with J. Zucker, D. Frankl, and B. Levinger.

APPENDIX

In this Appendix we carry out the evaluation of the
S"' tensors for the case of current in the (110) plane in
n-germanium. The current direction, which is chosen as
the X axis, will be specified by the angle 0 it makes with
the L001] direction, as shown in Fig. 2. The Z direction
is taken as the $110] direction, perpendicular to the
plane of the figure. The S&o tensors of the four valleys
will be expressed as a function of 0, which puts them
into a convenient form for further calculation. Also, the
quantity (m&/m*&")' cos'Pl'&+sin'Pi" which appears in

Ooj

Fro. 2. Plot of (110) plane in crystal momentum space.

the expression (37) for the ratio of power absorbed in
different valleys, will be plotted as a function of 8 for
each of the valleys.

Also shown in Fig. 2 are constant-energy ellipsoids for
the two valleys whose major axis lies in the (110)plane.
The locations of the valleys, i.e., the Z&" axes, have
arbitrarily been chosen along the $111],L111],L111],
and t 111] directions. The same Slfl tensor and con-
ductivity would of course be obtained by replacing any
or all of these directions with its negative, i.e., choosing
the valley location at the opposite end of the body
diagonal. Also indicated in Fig. 2 are the I' axes for the
four valleys. These lie in the L112], t 110], and L112]
directions according to the convention specified, that
the sense of 1' be that of Z") )&Z. Thus, the angle Pl'"',
which is the angle through which I'('") must be rotated
clockwise to be brought into coincidence with the Y
axis, is (cos '0.816+90'+8), P&""=P""'=(180'+8),
and P l""= (cos '0.577+180'+8).

For the L111] and L111] valleys, nl"=90'; while
for L111] it is cos '(—0.816), and for L111] it is
cos '(+0.816).

Because of the similarity in angles, the S tensors for
the L111) and L111]valleys are identical except for a
few signs, and those for the L111]and (111)valleys are
similarly related. The tensors for these pairs of valleys
have therefore been displayed together. Only the low-
magnetic-field case is shown, with 8&"(0) in (46),
8"&(H) in (47). For the L111] and [111]valleys,
8"&(0) is given by

(8 (0))

(~'"(0)) 9mg

—L1+sin'8+ V2 sin28]+ 1+cos'8%&2 sin28
m$,

S1g't
1——

~
[WV2 cos28 —

s sin28]
m(j

~
1——~$WV2 cos28——,

' sin28]
m, )

mg
1+sin'8+V2 sin28+ —L1+cos'8&v2 sin28] 0

m$

3.

(46a)
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For the L111jand L111$valleys, (8&0(0)) is given by

( mi )
l

2+—
l
cos'8+3 sin'8

m, )
1( mi)

m, )
( mi )

av2l 1—
l

cose
m, )

(8'"(o))

(S'"(0)) 9m,

1 | m, )
1——

l
sin28

2( m)
( tg&) ( mi)

3 cos'8+l 2+—
l

sin'8 %&2) 1——
l

sine
E m) ( m)

(46b)

Sing )
Weal 1——

)
cose

m, i
( mi )

%%2l 1——
l

sine
m, )

In (46a) and (46b) where there is a difference in sign, the upper sign refers to the valley on top at the left, the lower
sign to the valley below on the left. The tensors (S&@(H)) for the pairs of valleys are shown in (47a) and (47b),
with the same convention with regard to signs.

(8'"(H))
t

2e
+ (3m, /m, )~,r(S'"(H) ) 9m,

—(3m,/m, )~,r 0-

0, (47a)

(8'"(H))

(8111(H))

26

9m]

( m1)
+l 2+—l~ ~

m, )

f mi i
2+

m, )

0 OJ

m, )
2l 1——lo1&r sine

m, )
('

2I 1——loi, r COSe .
m, )

(47b)

( m, ) t' mg)—loi«sine
E. nzi)

l.0
l ll l I l
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FIG. 3. Plot of (mt/m~('))' cos'P(')+sin'P&'), which is propor-
tional to the low-field power absorption, as a function of angle
between the current and the [001) direction for current in the
(110) plane.

It can readily be seen that if 8&"(0) and S"'(H) are
added to obtain the full (8"') tensor, and the S"&'s
summed over the valleys and divided by four, the tensor
of (26) is obtained, as it should be. For the purpose of
calculating the elements of e, however, the 8&@'s can-
not, of course, all be added before integration is per-

formed because of the different temperatures of different
valleys.

To give an indication of the relative temperature of
different valleys for different field orientations, we have
plotted, in Fig. 3, the quantity (m&/m*&'&)' cos'P&o
+sin'P "&, which is proportional to the low-field power
absorption, as a function of 0. It is seen that the power
absorbed in the L111) and (111)valleys is the same,
independent of 8, as expected by symmetry. Thus, in
high field, these two valleys should be at the same
temperature. The L1117and L1111valleys, on the other
hand, will absorb energy at different rates and thus be
at different temperatures, unless 0=0, 90, 180, or 270'.
This is also as expected by symmetry. It is seen that the
maximum power absorption for a given valley occurs
when the electric field is perpendicular to the longi-
tudinal or Z&" axis, and the minimum when the field is
parallel to the Z"& axis."

Since the $111]and [111$valleys are expected to
have the same fat" at all fields, the S s&"s of these two
valleys may be added before integration. It is seen then
that their off-diagonal components involving s will
cancel each other. Since off-diagonal components 8 p")
involving s are zero for the other two valleys, it is clear
that the off-diagonal components of o involving s will
vanish for current in the (110) plane as stated earlier.
"For further consideration of the variation of power absorption

with direction see L. Gold, Phys. Rev. 104, 1580 (1956).


