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Kapitza Resistance between Helium and Metals in the Normal
and Superconducting States
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The contribution of the conduction electrons of a metal to the heat Qow across a helium-metal interface
has been calculated. It is found that the "totally" reQected phonons from the Quid play an important role
in the transfer mechanism as had been predicted previously. The dominant term in the heat Qow is propor-
tional to T 0T, in agreement with the experimentally observed value on lead. However, the numerical
agreement is poor. The reasons for this are discussed. In the superconducting state it is shown why this
heat transfer becomes inoperative. Several interesting consequences of this calculation are given. In par-
ticular, it is predicted that a phonon-drag effect may be observed between the conduction electrons in the
metal and the phonons in the Quid and vice versa. Also, it is shown that the variation of the Kapitza re-
sistance with applied magnetic field can help to distinguish between the various contributions to the heat
Qow.

' 'N 1941 Kapitza' observed that when a solid was
- - heated while immersed in liquid helium a discon-
tinuous jump occurred in the temperature in crossing
the solid-liquid interface. The thermal resistance which
gives rise to this discontinuity has become known as
the Kapitza resistance. The earlier attempts to under-
stand this effect were based on the properties of the
superQuld, ' He II.

However, Lee and Fairbank4 made the important
observation that the effect occurred when He II was
replaced by He' and, indeed, it occurs also with He I.
Moreover, there has been a considerable amount of
evidence to show that such a temperature discontinuity
occurs at the interface of any two materials and that
this discontinuity becomes more marked as the temper-
ature is lowered. ' Khalatnikov' in 1952 gave a plausible
explanation of the effect. This theory showed that the
acoustic mismatch at the interface between the solid
and the liquid severely limited the Qow of heat across
the interface. The theory depended upon the elastic
properties of the liquid and solid and not the peculiar
properties of the superQuid. It gave a value for the
heat Qow which was appreciable, although considerably
less than the experimentally observed values. While
the agreement between experiment and theory was not
good, it was clear that Khalatnikov's mechanism would
always be present and that any other process of trans-
ferring heat across the boundary would only act in
parallel with it. Some of the details and numerical
values in Khalatnikov's theory have been criticized in
some recent papers~' but these merely stress the fact

that this mechanism is not su%.cient in itself to explain
the phenomenon.

Khalatnikov's idea was elaborated upon in an earlier

paper by the present author and extended to the
general problem of the transfer of heat between dis-
similar solids. ' In this paper the particular problem of
the transfer of heat between a metal and liquid helium

was also discussed. It was shown there that because of
the vast difference between the acoustic velocities in
helium and practically all solids, a large fraction of the
phonons in the Quid would be "totally reQected" by
the solid surface. These "totally reQected" phonons
create a surface disturbance which in the case of a
metal could interact directly with the conduction
electrons. Hence, reQection would be no longer total,
but energy would be transferred directly to or from the
conduction electron. The amplitude of this surface
disturbance was found to be large, and thus this
mechanism could be expected to be an important one.
It was suggested, therefore, that one should expect a
difference in the Kapitza resistance between liquid
helium and a metal in the normal state and one in the
superconducting state. For, in the superconducting
state, the phonon-electron interaction necessary for
this mechanism vanishes and thus the heat Qow would

be reduced. Challis" has observed that this difference
does indeed occur between liquid helium and lead in
the normal and superconducting state.

The purpose of this paper, then, is to develop the
intuitive ideas of the earlier paper and present a
detailed calculation of the effect. In a later paper it is
intended to show the role the anharmonic terms in the
elastic properties of the solid play, and the role the
static imperfections play in scattering energy out of the
surface disturbance; and hence the contribution of
these to the Kapitza resistance.
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OUTLINE OF APPROACH

In this paper we wi11 consider only the contribution
of the conduction electrons to the heat transfer. The
contribution of the refracted phonons is treated
adequately in references 6 and 9. We consider a semi-
ininite solid metal bounded by liquid helium. We
calculate 6rst the amplitude of the disturbance created
in the solid by phonons of the Quid. This disturbance is
treated, next, as a perturbation upon the energy states
of the conduction electrons of the solid. The energy
scattered to or from the electron system due to this
perturbation is then calculated, and hence the heat
Qow across the surface of the metal in the normal state.

We show then why it is that in the superconducting
state this mechanism becomes inoperative and discuss
brieQy the effect of band structure and magnetic fieMs

upon the Kapitza resistance.

and
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At the interface four boundary conditions must be
satisfied. The normal components of the displacement
in each medium must be equal and the resultant
normal and tangential stresses at the boundary must
be zero at all points, and at all times

AMPLITUDE OF SURFACE DISTURBANCE
IN SOLID

Consider a semi-infinite metal bounded at x=0 by
liquid helium. Let the solid lie in the region of positive
s. Let I.arne's constant and the modulus of rigidity of
the liquid and solid be X~ and p~, and X~ and p2, respec-
tively. The displacement vector s(r) in the solid or
liquid must satisfy the appropriate wave equation for
the medium:

8's(r)/82t=CP grad divs(r) —CP curl curls(r), (1.1)

where C& is the velocity of longitudinal waves=[(X
+2@)/p7'*, C& is the velocity of transverse waves
= (t(/p)', and p is the density of the medium.

It is convenient to write the vector s(r) in terms of
a scalar and a vector potential P and»l, respectively.

1 (()s, ()s;)
.+2&aj ai)'

I II I IIq*=q =q q =q

and from the wave equation

where

n2q2 (qi)2 p2q2 (q~~)2

n =C(o)/C)(2) ~ P =C/(o/Cg(2)

q, '= q (n' —sin'8)-'* = i») g,

with i, g=x, y, s.
Utilizing (2), (3), and (4) we get the relations

(1.9)

(1.10)
s (r) =grad& (r, t)+curl»lt(r, t). (1.2)

q,"=q(p' sin'0)'*—=i»)2,

In the liquid the modulus of rigidity p& is zero and
there are no transverse waves. The displacernent is then
purely longitudinal and may be expressed in terms of

gq alone. We expand Pq in a three-dimensional Fourier
series

P&(r,t) =P» n, exp[i(q r—(0»t)7+c.c. (1.3)

In the solid we set

s2 (r) =grad&, (r, t) +curl»t(2 (r, t),

where 0 is the angle q makes with the normal to the
solid surface.

For many solids n and p are about 0.1 so that for a
large range of 0, q, ', and q,

"are imaginary.
In this case the wave is not propagated in the second

medium, but instead a disturbance is created which
decays exponentially away from the surface. After
some calculation, one obtains solutions in the two
media of the form

where

ys(r, t)=Q» p, exp[i(q' r—a)» t)7+c.c.,

o =E»(b» exp[i(q*~+q.y) 7
+P»* exp[ i(q~+q—„y)7) cos(q,s+e), (1.12)

4 =Z f(0)(~.exp[i(q**+q.y)7
+y,+ exp[—i(q,~+q„y) ]) exp( —q,s), (1.&3)

»t)2(r, t) =Q» ~ g»" (y»" exp[i(&" r —~»"t)7+c.c.);
g»" is a unit vector.

0 =2, g(t)) (.(b. «p[i(q*~+q.»7
+())»* exp[ —i(q.x+q„y)7) exp( —»),s). (1.14)
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f(8) is given by

P'(sin'8 —n') /pl'
+I —

I

f'(8) cos'8(2 sm'8 —P')' & p~)

2 sin'8 t' 2[(n' —sm'"8) (P' —sm'8)]& q

I
1+

P' ( 2 sin'8 —P'
(1.15)

g(8) =f(8)
—2 sin8 (n' —sin'8) '*

2 sin'8 —P'

—P'(sin'8 —n') '*

(1.16)
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I

—
I

1—
k p(i

2 sin29 2[(n' —sin'8) (P' —sin'8) ]l

1+—
2 sin'8 —P'

(1.17)

(&p+1I bp*l &p) =
2A(X,+1) '*

o)~q'Vp&

I
2AM,

(x,—1lb, le,)= i

l(o,q'Vp&

In thermal equilibrium the mean value of X, is

$p is a unit vector lying perpendicular to the plane
containing q and the normal to the surface.

The phonon held may be quantized in the usual
way. " We let b~ and b~* play the role of annihilation
and creation operators, respectively. Their matrix ele-
ments are

where V&
——(BV/Bp)pp. The energy eV& is of the order

of magnitude of the Fermi energy, i.e., 1 to 10 ev and

&p/p= (&za+&yp+&sz). (2.4)

The unperturbed Hamiltonian has eigenstates con-
sistent with the boundary condition that Vo vanishes
at s=0:

Pk(r) = (2''/0&) exp[i(k, x+k„y)] sin(k, x+8); (2.5)

0 is the volume of the metal and 6 is a small phase
factor.

The matrix elements are then obtained from (2.3),
(2.4), and (1.13):

(1 19) (k, . k' k„leV, (8p/p) Ik, k k„)x,=(x,),.=
exp (M,/k T)

2eVg
P n'f(8) exp[ —i(k 'x+0„'y)] sin(k, '+8')

n

Xexp[i(k x+k„y)] sin(k, s+8)

Xq'(b, exp[i(q.~+q„y)]

+bp* exp[ —i(q,x+q„y)])e»*dxdyds
ELECTRON-PHONON INTERACTION

In obtaining the expression (1.18), we have ignored
the contribution to the phonon Hamiltonian of the
disturbance created in the solid. This is a small part
of the total Hamiltonian if the volume of the liquid,
V contains many complete waves of the phonon.

A2

|7P+eVp(r) =X,.
2m

(2 1)

We expand Up(r) in powers of the deviation of the
density from its equilibrium value,

t BVq pApq
V( ) = Vo( )+pl I I

—I+
Cap)pL p J

V(r) = Vp(r)+ V~(~p/p)+ (2 3)
"I. I. Schiff, Qmantlm Mechanks (McGraw-Hill Hook Com-

pany, Inc. , New York, 1949).

For this problem we take a simple model of a metal.
We consider the electrons as moving in a constant
potential, Vp(r) determined by the ionic lattice and
consider the interaction between the electrons and the
phonons caused by a change of density of this ionic
lattice. The electron Hamiltonian is

e V~S= 2~'f(8) q'(b. +b-p*)I,
0

where

(2.6)

~Op

I= sin(k, 's+8') sin(k, s+8)e»'ds (2 8)

It is convenient to use the notation of second quanti-
zation to describe the perturbation. In this represen-
tation it becomes

2SeVg
Q q' n'f(8)I(b, +b,*)ak *ak,
k, k' Q

(2 9)

where ak* and ak are the Fermi creation and destruction

q, =k, ' —k. ; q„= kp' k„, —(2.7)

and the spin state of k is the same as that of k'. S is
the surface area of interface and



conditions (2.7) and des=0. We may therefore perform
the integration

ld(~~) ds„',t t' dk'

&d(h(o)

Fn. 1. Construction showing how an electron k scatters to k'
off the surface disturbance conserving momentum in the plane of
the surface E~AB but not perpendicular to it.

operators which satisfy the usual anticommutation
rules.

The mean value of the number operator a~*a~ over
an ensemble of systems is

Qg gg g~— (2.10)
expL(Ei, Ef)/kTj+1

CALCULATION OF HEAT FLOW ACROSS
THE INTERFACE

The flow of heat per unit time, Q, across the interface
may now be calculated using time-dependent pertur-
bation theor .

where J'ds„ is an integral over the surface of the k'
hemisphere at constant den.

The frequency integration can now be done, and
after some rearrangement one obtains

8S(eVi)'m t q'n'f'(8)
t

"dE~ 1

(2m)'pih & (u "0

X (K,a~*~kok'ok' (~g+1)Skulk Gk' Gk') ~ (3.4)

The interesting properties of the heat Row come from
considering the properties of J'Pds '. The form of
(2.10) assures us that only those electrons near the
Fermi surface contribute to Q. So that at low temper-
atures

~
q~&&~k( and thus the sines in the integral I

usually vary much more rapidly than the exponential
term. Consequently, the small phase factors 8 and 6'

can be ignored.
The integral I then becomes

4 sin'(thar/2)
(3.1)

th'(Ace)' I
2[(k, +k)+&, (k, ' —k)+&,

(3.5)

where V;; is the matrix element corresponding to the
process in which an electron is scattered and a phonon
destroyed. V,; corresponds to the inverse process.

hh =Et,+her, —Ei, . (3.2)

Utilizing expression (2.9) and (2.7) and transforming
the sums to integrals, one obtains

V 20 0
Q= d' d'k dk '

(2) j, (2) j„2S~
4 sin'(Q, ~/2)

X( [
I'

~ I

'—
I
l'~'I ')h~. . (3 3)

th'(Aced)'

The integral over d'k and dk, ' can be simplified by
noting that the energy of an electron near the Fermi
surface is much greater than A~~. Therefore, in a
scattering process the electron propagation vector k
changes its direction, but its length remains essentially
the same, i.e., ~

k~ = ~k'(. The way in which the inte-
grals may be done may be visualized most easily by the
following construction illustrated in Fig. 1.

From point A as origin on the surface describe a
hemisphere of radius k. Move from A to 8 a distance,
q sin8. From 8 describe a second hemisphere of radius
k', where k'=k. Drop a perpendicular to the surface
to pass through hemispheres k and k' at points C and
D, respectively. Now an electron represented by the
point C will scatter to the point D satisfying the

P= 1/(4' im) (3 6)

Case (k). If
~
k, ' k,

~
&gi and —

~
k, '+k,

~
&rti, we take

I'= 1/(4ni'). (3.7)

If none of the above conditions are satisfied, we set

12=0. (3.8)

YVe can then find the areas on the k' sphere within
which either case (a) or case (b) conditions are satisfied.
After a little trigonometry, one finds the value of these
integrals to be approximately

Case (a)

whereas in

Case (b)

k'

2nl'

ftan —'f
Eq sin8)

' (3.9)

~I Pds„= g,/8q sine. (3.10)

These areas are shown shaded in Fig. 2. Recalling
that

it i ——q (sin'0 —n')-'*,

In order to make the problem more tractable, we
propose to approximate I' in the following way.

«se (o) If Ik
'—k*1 &q, and

I
k '+k*I &qi we s«
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where

and

t
0")

I

ts' s'ds

L T) ~s (e'—1)(1—e ')

gs (~ )= 732.3,

(3.16)

G(8) = n4f'(8) (sin'e-n')de. (3.17)

we see that the integral in the two cases depends in a
diferent way upon the phonon momentum q. This
gives rise to a diferent temperature dependence for
the two contributions because the Fermi momentum

k~ is essentially independent of temperature while the
mean value of

~ q~ is proportional to it. We note, too,
that the electrons which contribute to the heat Row
come from diRerent parts of the Fermi sphere. This
we will take up later in considering the efkct of band
structure.

Utilizing the anticommutation properties of the u~,
expressions (2.10) and (1.19), and taking the electrons
to be at a temperature T', and the phonons at a tempera-
ture T+hT, the curly bracket of (3.4) simplifies to give

AMq AT
(+q+1)~sos ob' oa'

kT T
(3.11)

The integral of Ek is now trivial and one obtains
after some rearrangement for case (a)

8$ (eVi)'m'k' ( 0)
Q.= g, (

—(F(e)T'ST,
(2s)spihsCis t T)

(3.12)

(0) t
8'r s4ds

94( —
I
=

E T) "s (e'—1) (1—e
—*)

(3.13)

and O~ is the Debye temperature of the liquid helium
=20'K. At low temperatures, g4(0~/T) =26.0.

t''*~ n4f'(8) sin8 tan '(t (sin'0 —n')'/sin8])
F(e) = do.

"~o (sin'8 —o.')
(3.14)

One obtains for case (b)

S(eVi)'mk' (0-l
Qb= g,

~

—iG(e) Tb~T,
(2~)sp,F.,AsCrs & T&

(3.15)

qSIN8

F/G. 2. The regions of the Fermi hemisphere which contribute
to the heat flow across an interface due to processes of type (a)
and (b) described in the text.

Putting in reasonable numerical values, one obtains
approximately

Q= 2.2 X 10'F(8)TshT

+5X10'G(8)T'd T erg sec ' cm '. (3.18)

A numerical evaluation of F(8) has been made for a
solid with Poisson's ratio=0. 33 and

p,/p, =77 and n=0.2.

This gives Q= 5.4X 10 Ts'DT erg sec ' cm ', with a much
smaller contribution from the second term. The major
contribution to F(8) comes from the region close to
the critical angles.

This value is considerably smaller than the value
of approximately 1.5X10'T'hT obtained by Challis"
for lead. This is not entirely surprising because in our
calculation of the electron-phonon interaction we have
ignored the fact that in all metals the potential in
which the electrons move is not constant, but a strong
function of position. Consequently, we obtained in our
derivation an interaction with only the longitudinal
component of the surface disturbance. If we take into
account the periodicity of the ionic potential, we would
obtain in addition an interaction with the transverse
components. In this particular problem, any such
transverse component would be very important for one
can easily show that while the dilation of the solid is
small, the actual displacement at the surface is quite
large.

The dilation is small because of the peculiar phase
relationship between the transverse and normal dis-
placements in the surface disturbance, indeed, almost
complete cancellation (to order n') occurs in the
contribution of each of these to the dilation. This has
the eRect of reducing the cross section by n4. Conse-
quently, one would require a precise knowledge of the
phonon-electron interaction for a particular metal to
obtain a precise numerical check. It should be noted
too, that the usual value of the electron-phonon
interaction obtainable for example from the high-
temperature resistivity may not be used in this case,
for the frequency-Wave number relationship is entirely
diRerent for the surface disturbance and for the body-
phonon, i.e., one is oR the "mass shell. "

Furthermore, one should note that in addition to the
matrix elements considered in (2.9) the electrons will
also be perturbed by the periodic displacement pf &h
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solid surface. This occurs even in our simple model,
for, in the surface, the potential which is assumed
constant in the body of the metal, drops to zero.
Consequently in the surface region the actual potential
depends upon the displacement at that point and the
gradient of Vo. This gives a perturbation

eV,=s grad(eVO). (3.20)

Using our assumption that Vo is constant within the
metal, grad(eVO) must be normal to the surface and
thus the only contribution to (3.20) comes from s,

(ki ~' k-I s grad(«o) lki k k-)

2S
q, (bq+—b,*) sin(q,.z+eo) sin(k, 'z jb')

0

where
Xsin(kz+b)LgradeVO(z) jdz, (3.21)

k,'=q +k, and k, and k„'=q„+k„. (3.22)

If we make the reasonable assumption that eVo(z)
decreases rapidly at a =0, then the terms in the integral
other than the gradient may be considered as constant
and be given their value at z=0. For values of 1/k,
comparable to the lattice spacing, sinb will be somewhat
less than unity, I', while for the phonons sin&0 will be
much less than unity fEq. (1.17)). This perturbation
then becomes

25rr'
(eVo)q cosg sinfo(b, +b,*)ap.*a&. (3.23)

q, k, k' Q

This will give a transfer of heat across the boundary,

where

8S(eVo)'nz'k' t' 0)
Q= g,

~

—(a(g) T'ST,
(2m)4pih'Cis ( T &

(3.24)

1

H(g) = t I"(I")'(sin&0)' cos'g sing(y. (3.25)

I'his transfer of heat will exist for angles of incidence
both less than and greater than the critical angle. One
should note, too, that because of the simplifying
assumption used in obtaining (3.23), all parts of the
Fermi surface contribute equally to (3.24) provided
(3.22) can be satisfied for these electrons.

Putting in numerical values, one obtains approxi-
mately

Q=2X10'T'DT erg sec ' cm '. (3.26)

This is somewhat larger than the contribution from
(3.18) but in the absence of a detailed calculation of
the phonon-electron interaction for a particular metal,
it would be rash to conclude that this surface modu-
lation wouM always dominate.

INTERACTION IN THE SUPERCONDUCTING STATE

In the superconducting state, three types of inter-
action are possible. First, the totally reQected phonon
may create a quasi-particle out of the ground state.
To do this the phonon must have an energy of at least
the energy gap, 3.5kT, . Consequently, the number of
such phonons will fall with temperature approximately
as exp( —3.5T,/T) and will become vanishingly small
at temperatures well below the superconducting
transition temperature.

Second, a thermally excited quasi-particle may be
scattered by the phonon and thereby absorb energy
from the Quid. The number of these quasi-particles will
depend also upon the temperature as exp( —3.5T,/T)
and hence for T((T, will vanish.

Third, the whole superconducting state may be
excited to one of its collective modes, for example, by
the absorption of momentum from the phonons giving
the electrons a net drift. The absence of an appreciable
contribution of these modes to the specific heat indicates
that there can be relatively few of them. Moreover,
the matrix elements for such excitations must be
exceedingly small. For if this were not so, this mecha-
nism (the emission or absorption of a phonon) would
provide a means for a persistent current to decay. The
tremendous stability (or metastahility) of such currents
shows how unlikely these processes are. The smallness
of the matrix elements is probably due to the destructive
interference between the diGerent parts of the element
because of the phase coherence between electrons in
the superconducting state.

From the above we conclude that as the temperature
falls appreciably below the superconducting transition
temperature, all three processes become negligibly small
and hence the contribution of the conduction electrons
to the heat Qow across the boundary vanishes. This
then gives a greater Kapitza resistance for a metal in
the superconducting state than for one in the normal
state.

EFFECTS OF BAND STRUCTURE, MAGNETIC
FIELD, AND PHONON-DRAG

If the major contribution to the heat transfer comes
from processes involving the totally rejected phonons,
then one can see from Fig. 2 that the electrons which
contribute come from a fairly narrow band on the
Fermi surface. Any band structure which causes a
deformation of the Fermi surface in this region would
alter the magnitude of the Kapitza resistance. While
it would be difEcult to measure in detail the shape of
the Fermi surface in this way because of the inherent
experimental difhculties and the additional angular
dependence of the phonon-electron interaction, it might
be used as a check of any shape determined in any of
the more usual ways. If the major contribution to the
heat transfer comes from the modulation of the surface,
however, the band structure will be much less impor-
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tant. This could be used to determine which of the two
mechanisms is dominant.

If the former interaction is the dominant one, the
Kapitza resistance should be altered by a magnetic field
applied parallel to the surface. For, in this case the
electron orbits will be curved and the integral (2.8)
will be a function of the field. If the latter type of
interaction is dominant, no such field dependence
should occur, because the integral (3.23) is not sensitive
to the curvature of the electron orbits. Challis' prelimi-
nary results suggest that it is, indeed, the former type
of interaction which is dominant, i.e., the interaction
with the totally reQected phonons.

If this turns out to be the case, then one might expect
in addition to the above, de Haas-van Alphen type of
oscillations to occur in the Kapitza resistance due to
the variation with magnetic field of the density of
states in those regions of the Fermi surface which
contribute to the heat Qow. This would probably be
difFicult to observe except for certain specific orienta-
tions of some metals and very large magnetic fields.

Another consequence of the above theory is the
possibility of observing a phonon-drag phenomenon in
the Quid due to an electron current in the metal. This
is due to the momentum transfer which occurs via the
surface disturbance LEqs. (2.7) and (3.22)j.Conversely,
if there is a drift of the normal Quid past the metallic
surface, it will induce an electrical current in the metal.
This is a rather unusual situation in that the phonons
can be observed in a region where the electrons are not,
and vice versa.

The above theory has been applied to the specific
case of the helium-metal interface, however, it requires
little modification to apply it to any solid-metal
interface. For similar reasons to those given above,
one should expect to find an appreciable difference in
the thermal contact resistance between two dissimilar
metals when one is in the normal state as compared to
it being in the superconducting state. A column com-
posed of many such pairs, e.g. , Cu-Pb-Cu-Pb-Cu,
should exhibit a greater difference in thermal conduc-
tivity in the two states than that of the superconducting
metal alone. The application of this as a thermal valve
is obvious.

DISCUSSION

The treatment of the interaction of the totally
reQected phonons with the conduction electrons has
been shown to give an appreciable contribution to the
heat flow across a helium/metal interface. Numerical
agreement with the measurements on lead, however,
is not good. The reason for this is believed to be due
partly to the rather naive electron-phonon interaction
used in this paper, which has been discussed earlier.
There is another possibility for improving the agree-
ment and that is the one pointed out by Challis and
%ilks" in connection with the Khalatnikov mechanism.
Close to the metal interface the van der Waals attrac-
tive force is sufhcient to solidify a thin layer of helium.
This solid layer will act as an acoustic match between
the liquid and the metal because of its intermediate
acoustic impedance. Consequently, the amplitude of
the disturbance in the solid will be correspondingly
greater than in the absence of such a layer and will
increase the contribution to the heat Qow of both the
transmitted phonons- and the conduction electrons. As
yet no detailed calculation has been made of the
magnitude of this effect; however, it is clear that it
will depend upon the wavelength of the phonons and
consequently will change to some extent the tempera-
ture dependence calculated in this paper as well as the
magnitude.

In conclusion, we may point out that there is a more
general way of calculating the Kapitza resistance than
that used here. The propagation vectors of the phonons
which we have used have been gaea/. However, we have
shown that it is the scattering oI these phonons by the
electrons which give a contribution to the heat Qow.
The scattering attenuates the phonon waves and
consequently one may describe the phonons in terms of
complex propagation vectors. In such a representation,
the interaction with the electrons would be taken into
account automatically. In this case the heat Qow across
the boundary could be calculated as was done by
Khalatnikov' or Little' and would depend upon the
densities, acoustic velocities, aed the attenuation
coe%cients of the longitudinal and transverse phonons
in the two media.

"L.J. Challis and J. Wilks, Physica 24, S 145 (1958).


