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Koopmans' theorem states that if the wave function of a many-electron system is approximated by a
Slater determinant of Hartree-Fock one-electron wave functions, with one-electron energies defined as the
difference in energy of (%+1)- and lV-particle systems, then these one-electron energies are given by the
expectation value of the Hartree-Fock Hamiltonian with respect to the one-electron wave functions.
Koopmans' theorem is here generalized to include correlation effects by using Hubbard's expression for
the total energy of a free-electron gas. The resulting one-electron Hamiltonian contains in erst-order
screened exchange. Hubbard s lowest polarization diagram gives, in addition, part of the screened second-
order Coulomb interactions, which is small for metallic densities. Collective terms are also obtained. Com-
parison with the Bohm-Pines Hamiltonian shows a one-to-one correspondence, but with different cutoff
functions in each term. Following Hubbard, we extend the method to include the effects of a periodic
potential to Grst order. The resulting one-electron Hamiltonian provides a convenient and accurate basis
for self-consistent energy band calculations including exchange and correlation in metals and semiconductors.

1. INTRODUCTION
' 'T has been apparent for some time that in spite of
~ - the success of the Hartree-Fock scheme for mole-
cult:s, neglect of screening of the exchange interaction
can lead to serious errors in one-electron energies in
crystals. The way in which correlation removes singu-
larities in the momentum dependence of the single-
particle energy for the free-electron gas has been
described by Quinn and Ferrell' in terms of self-energies
of quasi-particles. The quasi-particle formalism has
also recently been extended by Pratt' to the periodic
potential problem, using the general methods of
Hubbard' ' to treat the screening of Coulomb inter-
actions through electron correlation.

It is our opinion that in spite of the elegance of the
method, the quasi-particle formalism often tends to
obscure rather than clarify the relationship between
many-electron and one-electron wave functions. ' ' For
this reason we present here an alternative approach to
effective single-particle Hamiltonians based on an
extension of Koopmans' derivation9 of the Hartree-Fock
Hamiltonian.

A simple definition of one-electron energies is given
by the following procedure. Construct a complete set
of one-electron wave functions P, (x). If perturbation
theory converges starting with these functions, we may
calculate the total energy E~ of an X-particle system,
as a function of occupation numbers X; of the f,(x).
Similarly, neglect resonant processes and calculate the
(real) energy E&~ ' of an (X—1)-particle system with
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one electron removed from state k. The one-electron
energy eI, is

—PX jCf' X—1

Koopmanss showed that (1.1) led to particularly simple
results when the system wave function 4' was approxi-
mated by a Slater determinant of the one-electron
wave functions 1t;. Then the total energy of the 1V-

electron system is
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Here V(r) is the external (lattice) potential, 1V, is the
one-electron occupation number for the Hartree-Fock
orbital lt;,

p,, (r) =P,*(r)P,(r), (1.3)

and we have assumed that each orbital state is occupied
equally by electrons of up and down spin. A short
calculation gives
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where A is the exchange operator:
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If the one-electron wave functions f, (x) are now chosen
as self-consistent eigenfunctions of H", then H~ is just
the Hartree-Pock Hamiltonian.

In deriving (1.4) it is assumed in the usual discus-
sions" that f, (x) is unchanged by the ionization of
electron k if f, (x) is of the extended (Bloch) type. For
the free-electron gas this is easily seen to be the case,
but this conclusion is not valid in general. In the
presence of an external potential the lowest energy
E&~ ' will be obtained by modifying each P& "(x) by
the admixture of fk "'(x), where e and ss' are band
indices. Each wave function is changed by an amount
of order 1/fV, but since Ã-wave functions change, the
perturbed energy of the (cV—1)-particle system will be
changed by an amount

(a) If it is not (and this is the case for most states
in metals) then 8V is of order V'/EF.

(b) If it is (this applies to a few states of high
symmetry in metals, and to all the states near the
energy gap in semi-conductors) then 8V is of order V.
Since ek is of order Er, we conclude from (1.7a) and
(1.7b) that Koopmans' theorem is valid to fourth or
second order, respectively, depending on P&.

For the weakly periodic potentials that obtain in
metals and semiconductors" "the correction estimated
in (1.7) is generally small, even in case b. Heine"' has
suggested that in Al the states at W (case b) may be
affected by as much as 0.1 rydberg by "exciton"
formation. According to (1.7), with 8V 0.1 ry, Ep 1

ry, as in Al, 8E 0.01 ry, which is too small to affect
the order of levels appreciably.

2. SCREENED ONE-ELECTRON POTENTIALS

1

S &' EI;

,2 According to Hubbard, ' the exchange and correlation
energy of a free-electron gas is given by

In practice we are concerned with one-electron exci-
tations that preserve the neutrality of the crystal, so
that 5V in (1.7) refers to the nonconstant part of the
perturbing potential. For the magnitude of bV in the
case that V is weak, there are two possibilities, de-
pending on whether the state k is quasi-degenerate
with another state or not:

h2 2' 8
EH Q I d(u t——an——'——SP4+a~ Bg ~ q'

(2.1)

where h = 8r+s8s. If only the lowest-order polarization
diagram, resulting from one Fourier component q of
the Coulomb interaction, is retained,

&r=1+gr, @s=ns+gs, (2.2)

4me'
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Our one-electron energy is now given by

fi
I

Sr (clris/r)Ek+ clsls/c)Xk) —(rls+ris) Brit/r)Ek 2sre'
ek = r)E~/r)LV k =—p lko

4xa~ h 2+ hss
(2 6)

The most important term in (2.6) is

2X'8I. Brr)ris/8 Vk
rjos

4z- s & br'+bs' s q'

Sr(q, ro)

&"+.~ '(11, (Ek+s —Ek)/&), a '(e,~)=
Srs(q, co)+ Bss(q, oo)

(2.7)

'o F. Seitz, Moderw Theory of Solids (McGraw-Hill Book Company, Inc. , New York, 1940).
"We assume that core effects have been removed by orthogonalization; then the effective potential for valence electrons is weak.
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From (2.7) it can be seen that ski & is just a screened exchange energy. The spatial representation of the one-
electron operator 8 corresponding to (2.7) is

"(r2)
Bf,(ri) = ——',e'Q X, ' — P, (ri), (2.8);

&j'(r12)r12

1 1 p e'2'81(q (E.—E)/A)d'q, (2.9)-„(.) (2-) ~ (81'+h2')q'

in direct correspondence with (1.6). It is often a good approximation to put a(q, co) a. (q,0) = $1(q,0). Then
(2.8) states that the Coulomb interaction in (1.6) should be screened by the static dielectric constant of the
medium.

Let us now consider the remaining terms in (2.6). The terms proportional to giBg2/BV k g2—Bgr/BV k give

2lVQ,

while the terms proportional to &3BY/1/BXk give
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The meanjng of ekisi and e) is& can be seen by comparing (2.10) and (2.11) with the second-order Coulomb term
in the total energy; according to Macke, "

&k &"k"(1—&k~,)(1—&k"-,)(4-e2)2
E"'=XI

I 22 22~q) " Ek+2+Ek 2 Ek —Ek— (2.12)

Thus e, (') and e, (3) represent the functional derivative
of the E2 and part of the N' terms in (2.12), multiplied

by 4 and screened by the dielectric constant. If we

neglect the frequency dependences, the effective
interactions in (2.10) and (2.11) are

4me' 4m.e'

B((u—(u„)coda).
2 2 ~ s1+422=0

(2.16)

implicitly in (2.1) and according to Hubbard' gives a
contribution to E~~ of the form

&(q)q' '*(q)q'

This is a characteristic result of the Hubbard theory,
as has been pointed out by Nozieres and Pines. " In
practice, the second-order terms are negligible since,
compared to first-order exchange, they are of order

(2.13) As a first approximation assume a constant plasma
frequency; then the sum on q in (2.16) cuts off at qi,
where

1e2/8(r, )r,us r,(——
4 EF 168(r,)

where ~mr, ' is the mean volume per electron in Bohr
units and 8(r) is defined as in (2.9). For metallic
densities r, =3, 8(r,)&5 and (2.14) is of order 0.05.

A fourth term remains from Bgs/BXk and the last
term in (2.6):

1
ek'4&= —2m.e2+—1—— (2.15)

I @(q, (Ek+.—Ek)/&) I'-

For large q, 8 —+1so that (2.15) does not diverge.
The fifth and last term comes from the zero-point

energy of plasma oscillations E„. This is contained

W. Macke, Z. Naturforsch. Sa, 192 (1959}.
'4P. Nozieres and D. Pines, Nnovo cimento 9, 470 (1958).

so that

A-„=(5'/2m)(q, '+2q, k~),

I y +2AM�. —
~I�ql&

(2.17)

(2.18)

1 1

qj —pr ~kyar

where y is a constant, then

(v~qrs Ni*'(N"s)' 1V

so that we can add E„ to our one-electron energy in
the form

ek"' BE„/BiV=(1/1V=)E„. (2.19)

The meaning of ~&(') and e&'" can be seen by comparing
them with the collective terms in the Bohm-Pines

~6 P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958}.

The plasma energy acts to shift the zero of energy.
If we use a second approximation popularized by
Nozieres and Pines, "that
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energy'v:
(Aco, 2z Xe')

1V 1V tsar&" 4 2 q' )
(2.20)

Thus a&&4~ is just the self-energy correction to the
plasma energy, which is represented in the Bohm-Pines
theory by the last term in (2.20). We note that in the
Bohm-Pines formalism a universal cutoff (q,) is used,
whereas according to Hubbard the cutoff for e&(5) is q&,

while that for e&c'& is given by the brackets in (2.15),
which are weakly k dependent. Detailed analysis of

h(q, co) for a free-electron gas' or model semiconductor"
shows, however, that ok&4& is nearly constant for I k

near E&;. (Physically this is a, consequence of the
separation of single-particle frequencies from plasma
frequencies. ) Thus, as suggested by (2.20), we can
group &~&4' with ei, (5' and regard both as contributing
an over-all constant to the one-electron Hamiltonian.

We note that our screened exchange energy e&") is
similar to the Bohm-Pines screened exchange, except
that here the cutoff factor is also different [St/(hts
+Bs')j. In second order still another cutoff factor
(1/~ 8~) appears, but by now the correspondence is
breaking down, since ok&') and eg"' represent only part
of the second-order Coulomb energy. Higher-order
polarization diagrams are not expected to supply the
remaining parts. This means that no significance can
be attached to attempts" to carry the Bohm-Pines
theory beyond first order.

3. %'EELY PERIODIC POTENTIAL

The general theory of correlation effects in crystals
has also been developed by Hubbard, ' using Hartree
functions as a basis for perturbation theory. Pratt' has
shown that for constructing effective single-particle
Hamiltonians Hubbard s procedure with minor modifi-
cations can be carried out with self-consistent basis
functions. Following Hubbard and Prat t we now
consider valence-valence exchange and correlation.

We assume that self-consistent calculations have
been carried out with the screened exchange potential
derived below, and one-electron energies E; and wave
functions f, (x) have been obtained. Then following
Hubbard's notation, and retaining only the lowest-order
polarization diagram,

V(x', x) = W(x', x) = (i/A) S(x',x)S(x,x'), (3 1)

S(x',x) = $(t' —t)g(1—iV,)P;(x')P,*(x)e"'"&E'&' "&

—8(t—t')P X,P, (x')P,*(x)e"'"&e'" ". (3.2)

Expand the exchange charge density in a Fourier
series:

p' '(x) =P,*(x)lt, (x)

= exp[ —i(k' —k") .x$P g„""exp( ix x—) (.3.3)

(where k' refers to the largest Fourier component of

f;, and similarly for k" and lt;); then

2z (E, E, —
W(x', x,co) =—P P 1V,(1—X;)p;,*(x')p,, (x)5

~

~E E, —
+P P 1&c';(1—1V;)p,; (x')p;;(x)5~~ +co

~ , (3.4)

p;,*(x')p, , (x) exp[i(k' —k") (x'—x)]P
~
g."~' exp[i' (x' —x)]. (3.5)

after Fourier-transforming W with respect to t We now ne. glect the terms in t&;,*(x')t&;,(x) which do not depend
on (x' —x):

We must now see why this approximation is justified in
the weakly periodic case.

In the case of first-order exchange the terms neglected
by (3.5) integrate to zero. According to Sec. 2, however,
the correct first-order potential is exchange screened by
a (q, co) 8(q,0). The important point now is that
screening is a property of the entire system of electrons,
and in a weakly periodic potential where band gaps are
small compared to the plasma energy, 8& will be
essentially the same as in a free-electron gas. It is

necessary to retain the oscillatory terms in c)rts/c)1V&,

since these depend explicitly on the interference
between X&,&&(&, and N'&,~sf&,+s but not in h, . We are,
in effect, arguing that local field corrections to the
dielectric constant are small in the weakly periodic

case; this has been known for some time from the

success of the free-electron formula for the plasma

frequency in many crystals. "
From (3.4) and (3.5),

1—8 (q,co) = V*(q,co) =
4m-e' I'(E L~')—

Q 1V,—
q' (E,—E,)'—(Aco)'

4m'e'
i +1V,(1 1V,)[6(E, E—; Ace)—+8(E, E~—+Ace—)j P~g '&~'—c&(k' —k"+~—q), (3.6)
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which is analogous to Hubbard's equation (II, 24). The interference terms are represented by the last factor
in (3.6).

According to the foregoing argument we may approximate the real part of (3.6) by

E,—
q' ' E—E. (3 7)

where we have taken ~=0. Then we obtain a screened exchange operator which in the space representation is

731pk, (rl)—2e Q d r2 1'' (r2) 1', (r2)4 k'(rl) ~

8(r12)r 12

(3.8)

Here n labels irreducible representations and e is a
band index. Since 8 has the full symmetry of the
crystal it has no matrix elements between different
irreducible representations. The operator 8 in (3.8)
is a natural generalization of the exchange operator A

in (1.6) which includes screening.
The operator 8 can be calculated self-consistently in

metals and semiconductors without. prohibitive effort.
A number of matrix elements of A' and 8 for valence-
valence exchange have been calculated for silicon; the
results will be published elsewhere.

As one would expect, there is little screening (8 1)
of valence-core exchange. This can be seen explicitly
from (2.7), since valence-core energy differences are
generally of order 10 ry))A~~. For d electrons this
inequality often does not hold, and quite complicated
correlations are possible, e.g. , in the noble metals.

We conclude by comparing our approach with the
quasi-particle viewpoint, as formulated generally by
Hugenholtz" and applied to the electron gas by Pratt. '
Hugenholtz shows that the excited state energy E'&~ '
is in general complex. The one-electron energy e~ in
(1.1) should therefore be taken as Re(E11'—Ek~ ').
Hubbard shows that the exchange and correlation
energy is proportional to i/8; by computing changes
in Im(1/8) we have implicitly applied Hugenholtz's

"N. M. Hugenholtz, Physica. 23, 481 t,'1957}.

prescription to our case. It follows that if the approxi-
mations that we have made are applied to Pratt's Eq.
(27), similar one-electron operators should result.
From Pratt's derivation it is not evident when such
approximations are valid; on the other hand, Koop-
mans' method leads quite simply to accurate one-
electron Hamiltonians for weakly periodic crystals.

1Vote added il proof The c.onnection between Koop-
mans' method and the quasi-particle approach is clari-
6ed by comparing our results with the elegant extension
of the random-phase approximation by Suhl and
Werthamer LPhys. Rev. 122, 359 (1961)].They calcu-
late quasi-particle interactions and so find in lowest
order in Eqs. (21) and (22) screened exchange. When
the quasi-particle energy cok in their (21) is replaced
by Ek+iq(21 —&0+) it can be shown that the real
part of the interaction reduces to our (2.7), but with
exchange omitted from e2 (i.e., g2 ——0). Pines and
Hubbard have emphasized that it is essential to include
exchange in the dielectric function in each order to ob-
tain results valid at intermediate densities (where the
expansion parameter is

~
c(r,) ~

') rather than high den-
sities (expansion parameter r,).
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