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In a multivalley band-structure like that of the conduction band of germanium, a contribution to the
absorption of infrared radiation by free carriers is made by a scattering process which does not play a role in
normal transport processes but which may be of importance for hot-electron phenomena; this is the scattering
between nonequivalent valleys of the conduction band. The absorption induced by this extra scattering
process results in a transfer of the electrons from the (111)valleys to the (100) valleys or the [000$ valley. A
quantum-mechanical calculation was made of the partial absorption constant p; due to this scattering on
the basis of a deformation-potential type theory. The final formula obtained for p;* is similar to that derived
previously for the partial absorption constant fMop due to optical intravalley scattering. The physical signi6-
cance of some limiting forms of p;* at low temperatures is discussed.

'HE process of absorption of infrared radiation by
free charge carriers in semiconductors is governed

mainly by the same scattering processes which also are
of importance in the determination of transport phe-
nomena''; these are intravalley lattice-scattering by
acoustical and optical modes, impurity scattering, and
intervalley scattering. However, in those cases, like,
e.g., germanium, where several conduction bands lie
relatively closely together so that "the" conduction
band has subsidiary minima of slightly higher energies
than the main minima, a contribution to the absorption
of light is made by a scattering process which does not
play a role in normal transport phenomena but which
could actually play a role in hot-electron problems: this
is the scattering between the absolute minima of the
conduction band (in germanium the (111)minima) and
the higher lying subsidiary minima (in germanium the
(100) minima and the L000j minimum). That. this
scattering between nonequivalent valleys of the conduc-
tion band should play a role in determining the absorp-
tion constant at photon energies of sufficient magnitude
to bridge the distance between the minima was already
pointed out by Rosenberg and Lax.' Since then more
detailed experimental evidence has been collected' which
points to the necessity of having a theoretical descrip-
tion of the contribution of these processes to the
absorption constant in e-type germanium at wave-
lengths shorter than approximately 14 p.

The calculations which lead to the partial absorption
constant p, ;* due to lattice scattering between non-
equivalent valleys (henceforth shortly called nonequiva-
lent intervalley scattering) are very similar to those
given rather explicitly in reference 1 (henceforth indi-
cated by I). Therefore, after a short description of the

' H. J. G. Meyer, Phys. Rev. 112, 298 I,'1958).' H. J. G. Meyer, J. Phys. Chem. Solids 8, 264 (1959).' R. Rosenberg and M. I.ax, Phys. Rev. 112, 843 (1958),' S. M. de Veer (unpublished results).

model on which the present calculations were based, we
shall content ourselves with giving the final results and
a short discussion of their significance.

Since, in germanium, the energy diRerence AE be-
tween the bottom of a (111)valley and a (100) valley or
the

f 000j valley is about 0.18 ev, at all temperatures not
much higher than room temperature nearly all electrons
are in the (111)valleys at equilibrium. Therefore the
initial state k of an electron before the absorption
process of a photon of frequency v may be considered to
belong to one of the (111)valleys, say the L111$valley.
The energy in this valley is given by

Er, (i'i'/2m) (k —kp) c—r—(k—kp),

Eg ——(h'/2m) (k' —ki) P (k' —ki)+DE, (2)

where ki is the vector belonging to the minimum of the
L100j valley and g is given by

p =
f fm/m, l'pp'

f f.

We now assume that the interaction with the lattice
vibrations which is eRective in inducing the transitions
considered here has the same form as the interaction
with the optical modes if described in the deformation-
potential model; this was first introduced by Harrison'
and treated in detail in I. We then find, in complete
analogy with the calculations in I, for the absorption
constant due to the transition from the L111jvalley to

5 W. A. Harrison, Phys. Rev. 104, 1281 (1956).

where ko is the vector belonging to the minimum of this
valley and cx is the reciprocal eRective-mass tensor multi-
plied by the normal electron mass m, n= ffm/m;, l'"l

ff.

The final state of the electron k' belongs to one of the
(100) valleys or the L000j valley, say the L100j valley.
The energy in this valley is given by



the L100j valley:

e j. Ae2e A2 ~ED '
P [111]~[100] (detn) &

4 3)(8 g yg, ~g$& 27pyg$7 v

Here co;* is the effective angular frequency ascribed to
the phonons responsible for the scattering considered
here, p and n are the arithmet:ic averages of the corre-
sponding diagonalized tensors, e.g. ,

p=l(p+p+p ); (6)
I

dk') dk exp| —E&/kTj

xln(k —k,) —p(k ' —k,)l'

x{N ALE~ —{E,+hv+h~, ')&

+(I +1)SLED.—(Eg+hv —L) )j. (4)

This formula differs from the corresponding expression
(3.6) of I ' if written down explicitly for optical scat-
tering in that a new deformation potential constant D,'
is introduced describing the interaction with the modes
of frequency co and occupation number e responsible
for the scattering between nonequivalent valleys; fur-
thermore, a factor

I
n(k —ks) —p (k' —ki)

I

' is introduced
instead of the factor

I
n(k —k') I' while E~ and Eq are

now given by (1) and (2), respectively. Furthermore,
just as in I, I is the density of the electrons in the con-
duction band, ~ is the volume of a unit cell of the crystal,
M is the mass of a germanium atom and e is the dielec-
tric constant, while all the other symbols have their
conventional meaning. If now n~k and p'k' are intro-
duced as new integration variables, the integrations in
(4) can be performed without much difFiculty if the
usual assumption is made that the frequency of the
high-energy phonons, involved in the scattering process
considered here, does not depend on its wave vector.
The final result does not depend explicitly on the angle
between the two valleys considered, so that the contri-
bution of the various (100) valleys can be added. If the
sum of the squares of the corresponding deformation
potential constants is called D;*' and if the contributions
of the electrons which are initially in the various (111)
valleys are added, we finally get for the partial absorp-
tion constant p;"' due to the scattering between non-
equivalent valleys in the conduction band:

2l e'k'*mls n (D,*) ' toe 1 ( p)
-I 1+—

I

67»'" h4CM4ose& (detn)' E D l to, ~ 2 ( n)

deta' 2z

X T'v '
detpl exp(A4o;*/kT) —1

exp

0+' p n-
x t+'E, (I{+I)+- E,(I{+I)

I{-.
l
p+=

'p n-—
+{=E.(I{=I)+

I{-
I

p+=
' In that formula a factor ~n(k' —kl~' was omitted which, how-

ever, was rightly taken into account in the actual calculations.

the important parameters {+and { occurring in (5) are
defined by

(hv —AE+ Ato, *)/2k T.

turthermore, just as in I, co0 is the frequency of the
optical modes, D is the optical deformation potential
constant, s=hv/2kT and Ei, Es are modified Bessel
functions. Finally we have made use of the equality
{1—I (y —1)/3y])n2 '* ——n/(detn)*, where p=ni/n,

It should be noted that our expression (5) is very
similar to the corresponding expression (5.3) of I, valid
for optical intravalley scattering and for normal inter-
valley scattering between equivalent valleys. The only
more or less qualitative difference is the occurrence of
the first modified Bessel function E1.It is easily verified
that our expression (5) becomes indeed identical with
(5.3) of I if the following substitutions are made:
D,*—4 D, to;* —+ops, P ~ n, AE —+0, which corresponds
to the substitution of the process of scattering between
equivalent valleys instead of the process of scattering
between nonequivalent valleys.

A detailed discussion of the various limiting cases can
be omitted as it would be very similar to the discussions
given in Sec. 5.2 of I. However, some additional re-
marks regarding the physical interpretation of the
special cases which occur if {))1,{((—1, or if t =0 can
be made. In fact, from the limiting behavior of the two
relevant modified Bessel functions for very small and
very large {,viz.

Ei({.)~1/{; E2({.)~2/{s, 8~0)

for {=0, u,*-l(n+P) x2-l(n+P)PEs(l{ I) (9c)

Now the occurrence of the respective factors P, n, and
—,'(n+P) at the right-hand side of (9) is easily understood
as follows:

(a) F'or hv))AE and low temperature ({))1),practi-
cally all electrons contributing to p;* have initially the
same low-energy kT whereas the final energy is much
higher than the minimum energy of the (100) valleys.
Therefore, in the squared matrix element of (4) the
term containing (k' —ki)' is predominant and yields the
factor p in (9a).

(b) For hv((DE and low temperature, only those

E (f)-E.({) ( /2{)-:-», 0 )

it follows that

for {))1, P'*~ (p4r/)2'*I I{' e»~-pf'Es(l{ I) (9a)

for {((—1, p;*~ n(vr/2)'*lt I''e '"' n' tE(sl I{)& (9b)
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few electrons in the (111)valleys contribute to tt, *which
have a thermal energy ~&& which obeys the equation
hv+ezh=hE. This energy is much higher than the
minimum energy of these valleys while the final energy
is nearly equal to the minimum energy of the (100)
valleys. Now the term proportional to (k —kv)' in (4) is
predominant, yielding the factor zr in (9b).

(c) If by=atE, both terms in the squared matrix
element of (4) are of equal importance, yielding the
factor -', (n+P) of (Sc).

Furthermore, it can be seen from (5) that tz;*

becomes very small for su%ciently low tempera-
tures and su%ciently long wavelengths such that
[hE (hv—+tttol, *)]/AT))1. With DE/k= 2030'K, Aoz;*/h
=316'K~, and T=300'K, we therefore find that the
effect of nonequivalent intervalley scattering on the
absorption constant becomes rapidly negligible at room
temperature if the wavelength X becomes larger than
about 14 p.

7 This corresponds, rather arbitrarily, to a value found by
Weinreich and quoted by Brockhouse, J. Phys. Chem. Solids 8,
400 (1959).
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Different proposals for calculating polycrystal resistivities from single-crystal values are applied to
yttrium metal. It is shown that a simple average yielding pp ly 3 (2pJ.+pl/) gives the best fit to experimental
data.

INTRODUCTION for p&) p~l. Bruggeman' proposes

pp. ly= &{as+L«(galI+a.)]'),

|1 -1 pg 1q--:

PI. -Pl (PII Psl—
(3)Pp. ly=4

Another method, ' which has been proposed more
recently, yields

Irpoly s (2Irs+IrII)q (4)p..l,= s(2p.+p )

' 'T is reasonable to expect that a general relation
~ ~ exists between the principal resistivities of a single o
crystal and the isotropic resistivity of a polycrystalline
sample of the same substance. There is, however, little
agreement in the literature as to the form of this rela-
tion; several methods of calculating the polycrystal
resistivity have been proposed. Voigt' suggests

for the case p&l&p, . This is equivalent to

Lp. (ps —P )1'*
(2)Ppoly=

tanh '(L(p, —P„)/P&]*}
* Contribution No. 994. Work was performed in the Ames

Laboratory of the U. S. Atomic Energy Commission.
t Presently at the Edgar C. Bain Laboratory of the United

States Steel Corporation, Monroeville, Pennsylvania.
W. Voigt, Lehrblch der Eristall physik (B.G. Teubner, Leipzig,

1928), p. 959.
2E. N. da C. Andrade and B. Chalmers, Proc. Roy. Soc.

(London) A139, 413 (1932).

which is the same as

ppoly 3pzpI I/2PI I+Psi

where pal and p& are the principal resistivities of a hex-
agonal crystal measured parallel and perpendicular to
the axis of symmetry, and where p&= 1/o, , p„=1/Ir„,
Pp, ly= 1/op„ly. Andrade and Chalmers' obtain

Lps(PII —P.)]*
Ppoly =

tan —'i L(PI I
—pz)/ps]')

This relation is the result of an average over the total
solid angle of the well-known expression,

p(g) = pII Cos 0+ps sin 0I

for the resistivity along an arbitrary direction of current
flow in a hexagonal crystal. '

Several attempts'' to resolve this question experi-
mentally have been indecisive; if the anisotropy ratio,
p,/p„, is very near unity, the small difference between
values given by any of Eqs. (1)—(4) is masked by the
probable error of the experiment. Recently Hall et at. '
have reported the principal single-crystal resistivities
of yttrium (see Table I). Their values at 300'K lead
to the exceptionally high anisotropy ratio of

P&/PI I
= 2 0 i»

3 D. A. G. Bruggeman, Ann. Physik 25, 645 (1936).
4 J. L. Nichols, J. Appl. Phys. 26, 470 (1955).
'W. Boas and J. K. Mackenzie, Progress in MetaL I'IEysics,

edited by B. Chalmers (Interscience Publishers, Inc. , New York,
1950), Vol. II, p. 90.

s P. M. Hall, S. Legvold, and F. H. Spedding, Phys. Rev. 116,
1446 (1959).


