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Lagrangian Formalism in Relativistic Dynamics
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A covariant Lagrangian formalism is put forward with an explicit variation of the proper time in the
action functional. This approach conforms with the geometrical interpretation in space-time. A general
equation of motion is derived, which is not identical with the Euler-I agrange equation. Momentum and
mass are unambiguously defined through the requirement of translational invariance. The rest mass is
constant in the special case of electromagnetic 6eld only. A conservation law for the combination of the
momentum and the energy momentum-tensor of the free field is. derived. No satisfactory Hamiltonian
formalism can be established within the framework of the formalism.

1. INTRODUCTION

~DIFFERENT methods have been proposed to
derive the equation of motion of a mass point

in a given external field of a particular transformation
property. A method invented by Dirac' in connection
with the electromagnetic field consists of calculating
the divergence of energy-momentum tensor of the field
within a small tube surrounding the world-line of the
moving particle. This treatment has been later ex-
tended by Bhabha, Harish-Chandra, ' and Havas' to
fields other than the electromagnetic. Another ap-
proach, first used by Infeld and YVallace, 4 applies a
small gravitational field in which the equation of motion
follows by virtue of the nonlinearity of the gravitational
equations. The derivation of the equation of motion
from the variation of an invariant Lagrangian has been
used occasionally, but no general method has been
established which could be used independently from
the transformation properties of the field. The present
note aims at pointing out the possibility of such an
approach.

If the behavior of a system —field plus particl"
can be described with the aid of a Lagrangian formalism,
one expects to find an action functional composed of
three parts, '

S—Sparticle+Sinteraction+Sfietd

1.'(j)dr

+

the first part containing the quantities characteristic
of the particle, the third the field variables, while the
interaction term contains both. The variation of S "'""
and 5"" yield the equation of motion of a free particle
and of a free field, respectively; variation of 5'""'"'""
with respect to particle coordinates gives the equation
of motion in the field, and with respect to field coordi-
nates, the inhomogeneous terms in the field equations.
The advantage of such a procedure is obvious: It helps
to define conservation laws unambiguously; the re-
sulting equation of motion may be regarded as based
on a simpler physical principle; the procedure may
pave the way towards the transition from classical to
quantum mechanics. From this point of view it is
essential, though not obvious, that one and the same
interaction term should be used for both of these
equations.

The above program, as it is well known, can be
carried through without any difficulty in the case of
the electromagnetic field. ' The Euler-Lagrange equa-
tions of the interaction Lagrangian give the correct
equation of motion of a particle in an electromagnetic
field. This method does not work, however, if the field
possesses transformation properties other than a vector.
In this event, the Euler-Lagrange equations of a rea-
sonable interaction Lagrangian are not equivalent to
the equation of motion. Nevertheless, it has been shown

by Szamosi, ~ for instance, that the equation of motion
can be derived from an interaction Lagrangian, if two
diferent Lagrangians are chosen for the field equations
and the equation of motion of the particle. It has been
demonstrated also by Szamosi' that if the proper time
r is replaced by a new independent parameter s= r/M,

'

where M is the (generally not constant) rest mass of
the particle, the procedure becomes more natural.

Z2 signify two space-like surfaces; 0-&, 0-2 two arbitrary points on
them, L is the Lagrangian and 2 is the Lagrangian density. @
represents the set of field variables, p( ) one component of it, the
bracketed su%x may correspond to indexes 1, 2 ~ n or may be
omitted, depending on the transformation properties of the field.

See, e.g. , L. Landau and E. Lifschitz, Classical Theory of
Fields (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1951), translated by M. Hamermesh, p. 70.

7 G. Szamosi, Proceedings of the Second United Nations Inter-
national Conference on the Peaceful Uses of Atomic energy, Geneva,
1958 (United Nations, Geneva, 1958), Vol. 30.

G. Szamosi, private communication (to be published).

' P. A. M. Dirac, Proc. Roy. Soc. (London) A167, 148 (1938).
H. J. Bhabha and Harish-Chandra, Proc. Roy. Soc. (London)

A183, 134 (1944); A185, 250 (1946); and Harish-Chandra, Proc.
Roy. Soc. (London) A185, 269 (1946).

e P. Havas, Phys. Rev. 87, 309 (1952); 91, 997 (1953); 93, 882
(1954); and 113, 732 (1959).

L. Infeld and P. R. Wallace, Phys. Rev. 57, 797 (1940).
5We use the following notations: x„stands for the field co-

ordinates, (~ for the coordinates of the particle. x, ( (without
index) denote the set of four coordinates, dx is the four-dimensional
volume-element divided by ic. v is the proper-time. The fourth
component of @ yector is .imaginary; no metric is introduced. Zi,
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8 (S'+S')=0, (2)

The present approach is based on attaching a geo-
metrical meaning to the variational principle. The
equation

following way:

0'2

p
tTQ r '

AS=5 Ldr= 6Ldr+ ~~ L8dr
O'I 0']

will be regarded as prescribing the extremal of the
weighted path between points o-~ and 0-2 in space-time.
This is an extension of the requirement that a free
particle moves along a geodesic: indeed, if L """'=m
(constant), then (2) gives the equation of motion for a
free particle. This interpretation requires, however,
that r be not regarded as an independent parameter;
indeed, it must be varied together with the coordinates.
Consequently, the Euler-Lagrange equations will not
be the differential equations of the variational principle.
The modified differential equation which we propose
to put identical with the equation of motion will be
derived in Sec. 2. In Sec. 3, momentum and mass will

be defined in the new formalism. In Sec. 4, the existence
of a conservation law for the momentum will be demon-
strated. In Sec. 5, it will be pointed out that it is not
possible, as a rule, to construct a Hamiltonian formalism
in this treatment. In Sec. 6, the equation of motion
obtained will be applied to fields of various trans-
formation properties; it will be shown that the equations
of motion derived from a reasonable interaction
Lagrangian are equivalent to the equations of motion
which are believed to be correct. The special role of the
electromagnetic field will be indicated.

2. THE EQUATION OF MOTION

In this section we drive the generalized equation of
motion of a point particle from a Lagrangian,

%le +J~L'((,g(x),g (x))8(x $)dx—
=L(~,j;~).

In writing down the Lagrangian in this form, we
assumed (i) that the free-particle Lagrangian is —mc',
where m is the constant rest mass, which is equivalent
to the requirement that the free particle should move
along a geodetic; (ii) that the interaction Lagrangian
depends only on the first-order time derivative in the
particle coordinate and the 6rst-order partial deriva-
tives of the field coordinates only. Inclusion of higher
derivatives is not difficult in principle, but it does not
correspond to any known physical system. m is defined
as the mass measured in the particle's rest frame,
infinitely far apart from any other particle with which
it may interact. The negative sign is chosen in order
to obtain a maximum for the varied integral in the case
of an extremum,

In accordance with the philosophy of the previous
section, we decompose the variational integral in the

The first term can be expressed' clearly as

t (BL BL
tLd. =,

~

EBPp Bgp

It must be noted that the 5 and the d/dr operation do
not commute now. Instead, the following relation holds:

~4= (~d4ld~) Pb—l(d~)'3&dr (6)

Employing the identity

8dr =8 ( d$„d$„)—*'= —$„8d$„,

we obtain, by combining the previous equations,

(7)

t
BL t. BL

~~„d.+ (~„„+@i„)~d~„. (g)
~4

f
0Ld7- = . (~..+k.k.)~k.

8$„

BL d BL
+

' —. (~.,+6~,) ~~,d.. (9)
8(~ dT 8gp

The second term in (4) yields, in virtue of (7),

~

~Lbdr = — L)„hd)„
0'2

L$.~4 —+ (Lk.)~b—d& (1o)
0'1 ~ dT

Finally, combining (9) with (10), we obtain

BL
~S= (&„.y j„j—„) I.j„SP„—

f

d BL BL
t+

~

L&.— . (t'"+h.k.) + ~Cd (11)
d7 Bj, 8)„i

If we put 5$„(0~)=8)„(0.2)=0 at the end points, (11)
leads to the following differential equation:

d (BL ) BL BL
4—L l&,+—=

dr (8$„) 8$„8$„ (12)

' From here on we use units c=1.Limits of the integration will
be generally omitted.

The second integral may be transformed considering
that 8d$„=d8)„and applying partial integration.
Finally, one obtains



5)p= tp= const)

of the actual path. In this case, (11) reduces to

(13)

This equation will be regarded as the equation of
motion of the particle described by the Lagrangian L.
It differs from the Euler-Lagrange equation in the
bracketed term on the left-hand side. This term
disappears only if T is not varied in the variation
process.

3. MOMENTUM AND MASS

We proceed to establish the connection between
momentum, mass, and the Lagrangian in this for-
malism. It should be recalled that the only unambiguous
deGnition of momentum in classical mechanics can be
achieved through exploiting the translation invariance
of the Lagrangian. ' This method ensures at the same
time that the momentum defined in that fashion will

go over into the proper quantum mechanical quantity,
described by the momentum-operator i7iB/Bx—„. To
this end we consider, as usual, a variation,

where
M= (BL/Bj„)j„L—. (20)

Equation (20) defines the variable rest mass which is
generally a function of ( and j. In view of our definition
of the Lagrangian (3),

(21)

and 635 disappears in the absence of interaction.
Finally, we may consider the remaining part of 85

which is due to the direct variation of $„. Through this
g„may be defined as

g~= ~L/~4~

which is the direct contribution of the field to the
momentum.

An alternative formulation of the foregoing results
can be achieved if 5 is regarded as function of the
coordinates. This can be realized if the S=fLdr value
is attributed to every point in space, the integration
being carried out along the actual trajectory connecting
the point of interest with an arbitrary field point. Then

where
»=IP.( ) —P.( )].,

P.= (~L/~i. )+L(~L/~i. )~, L]i. -
(14) S=S(7 (x),x), (23)

(15) and the following three derivatives are equivalent to
our previous deGnitions:

The condition that 5 should remain invariant under
the translation is that

P, (o-i) =P„(a,).

Equation (15) defines the momentum, while (16)
expresses the conservation of momentum for an isolated
system. Generally, the system is not closed and the
conservation of momentum assumes more complicated
form. This will be discussed in the next section.

In a similar fashion, we shall define mass as the
quantity conjugate to the translation of the proper
time. To do this, we rewrite (11), separating out the
terms which depend on 6)„ through 5r only in the
integrated-out part of the right-hand side.

d 8L 8L—L4—
. (~.,+bi, ) + ~M' (»)

dr Bj, 8$„

We consider a variation of the actual path again, such
that

dP„/dr = BL/8$„,

or defining the kinetic momentum, with

p.=~&. P.=P.+a.
in an alternative form:

(25)

dp„/dr=F„, F„=BL/8&„(d/d—r)(BL/8$—„). (27)

(27) may be regarded as the definition of the force,
and it is the most appropriate formulation for com-
parison with the standard forms of the equation of
motion.

In concluding, it is worthwhile to emphasize that
generally there are two distinct contributions to the
momentum of a particle by the Geld: through the mass
and through g„. Only in special cases does one of these
disappear. The scalar field has no field-momentum,
while the vector Geld leaves m=M invariant.

dS/Cx„=P, ; BS/87= —cV; BS/Bx„=g„(24).
The equation of motion (12) can be written down in a
simple form with the aid of (15), (20), and (22).

6r = —e= const, (18) 4. CONSERVATION OF MOMENTUM

and we concentrate on the change of S which is brought
about on account of this variation only, 5'S. Then we
obtain

6's= LM(0, )—M(o i)]e, (19)
"E. Noether: Nachr. kgl. Ges. Wiss. Gottingen. (1918), Z35;

and J. Rzewuski, Field Theory (Panstwowe Wydawuictwo
Naukowe, Warsaw, 1958), Vol. I, p. 131.

In this section, the conservation law obeyed by the
momentum in a system which is not closed, that is,
where the field does not vanish on the space-like
surfaces Zi, Z2, is considered. The derivation follows
the standard line; the general formulation of the
conservation law is, however, new.

We consider the total Lagrangian density, 2'"'+2""
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discarding the free-particle contribution, which is one is left with the transformation of the expression
constant.

Z= Z'(y(x), y,.(x))
(fd () d 8

+ 4'( ),
Edx„ l)g„dx„By(,) „)

+~ L'(i,~( ),~,.( ))~( —r)d. X I(j,y( x),y. (x))S(x g)—drdx (.33)

= ~(&,i,*,~( ),~,-( )) (28)

The total variation of the action integral can be written
down as"

r ~' (()2 dZ BZ
()S= I. ()4+»)+—()o4(.)J zg & 5$„dx„BQ()

8Z
~,y(.),„ Idx. (29)

~~(v), Iv

For a moment we omit the last term in the bracket,
which is present only in the case of some kind of
derivative coupling. Then (33) can be further trans-
formed to yield

1.(j,y( )x) ~(x ~)drdx
Bj„

r~ p+ ~ I.(j,y(x))S(x—g)&dr
J J

8f„=»„=e„,

~0$(v) = 4'(v), IV»pr

~04'(v), v 4'(v), pv»)v

(3o)

The latter relations hold, because the total variation
of g should vanish; therefore, the two variations
compensate each other. (29) now becomes

80 refers to a variation which is due to the change of
the function form of P(x) and not to the variation of x.
We apply a rigid translation of the actual field and of
the actual trajectory together. In this case 8

+J~ 1-(~,$)~.d' (34)
8$„

The third integral here identically vanishes. The first
and second can be transcribed, employing (6), (7), and
(15) and applying partial integration to

dx,
4 (.),.

(-)4(v), v

I
(dZ BZ BZ ()2 )

0 (v) I" ~(v) Irv+ I ~lrdx
J Edxq Q(I)(v) ()p( ), v $$)v)

which also vanishes, in virtue of the constancy of e„.
Finally, only the last integral remains in (34), which,
combined with (31), (32), and (33) gives, if use is
made of the equation of motion (25), the law of con-
servation of momentum

d BZ BZ

-dXv ~4 (v), v ~4 (v) J
P(.),„+ e„dx. (31) (36)

dx„

r ~2dT„„'
dx= P (0 2) P(~,). —

The second bracketed part in this expression dis-
appears by virtue of the field equations. " If the ca-
nonical energy-momentum tensor of the free field,

+&v — 4'(v), y+~ d)yvr

()4'(v), v

(32)

is introduced and the explicit form of 2,' is considered,

' One must distinguish between partial, total, and functional
derivatives here. As a rule, a functional derivative is needed
everywhere, but if the Lagrangian density depends only explicitly
on a variable, it may be replaced by a partial derivative; in the
event that it depends through an undefined functional form, it
may be replaced by a total derivative; otherwise, as in the case
of („, one must retain BZ/Bg„on account of the variation of dr.

"See, e.g., J. Rzewuski, reference 8, p. 99.

We comment on this result, as follows:

(a) The conservation law holds for the canonical
momentum; no conservation law exists for the kinetic
momentum.

(b) Only the free field energy-momentum tensor
shows up in the conservation law. This is, indeed, what
one expects on the basis of a naive physical picture
that describes the process as the liow of momentum
from the field to the particle.

(c) If the interaction Lagrangian contains deriva-
tives of the potential also, the omitted term in (33)
must be taken into account, and the simple law of
conservation (36) does not hold. In this event, one
must work with the total energy-momentum tensor,
which depends on the sources .as well. Conservation
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laws expressed through this tensor are neither physically
illuminating nor practically useful. Moreover, we did
not succeed in deriving a conservation law in a simple
form for this case. One is inclined to believe that the
reason for the complication is that, in physical cases,
derivative coupling exists only when the particle has
some kind of internal structure. " Since the present
considerations concern structureless particles only, it
is not surprising, perhaps, that no consequent de-
scription can be achieved.

Equation (36) can be put in an alternative form by
introducing the energy-momentum tensor of the
particle: Then, since

BS/Br+H($, P) =0. (41)

shown that the remaining conditions are not satisfied.
Any of the following properties may be regarded as
the basic ones: (i) The Hamiltonian should describe
the Hamilton-Jacobi equation. (ii) It should lead to
the canonical equations. (iii) Its numerical value should
be equal to the rest energy of the particle.

We consider here in some detail the possibility of
defining a Hamiltonian through (i) and (ii), as these
results are of certain interest.

Condition (i) defines the Hamiltonian by

4( (&))P,( (&))~( -r)d'

From this, one may deduce

(37)
L=dS/dr =BS/Br+ $„(BS/8$„),

one obtains
H=P„f„L. —

(42)

(43)

p dTpp~ p f'
dx=

~
P,j„5(x—$)drdx

dx„ & ~
"

"dx„

(P.g„)dr
d(„

4—(P $.)dr
dv-

t' t'. . . . dt's. )
dr)

(d/dx„) (T„„'+T„p)=0. (39)

Note that the energy-momentum tensor of the
particle generally is not symmetric.

5. ON THE HAMILTONIAN FORMALISM

In this section, the possibility of a Hamiltonian
formalism will be touched on, and it will be indicated
that no satisfactory Hamiltonian formalism can be
worked out within the framework of the present theory.
The root of the diQiculties is that

(~L/~4) —=g.&P. (40)

in our formalism, while the canonical equations are
equivalent to the equation of motion only under the
fulhllment of the above condition. In the attempt to
find a partly acceptable Hamiltonian, one may start
by considering various characteristics of the conven-
tional Hamiltonian and singling out one of them,
postulating it as a defining property. Then it can be

'3 This is an empirical fact. In principle, one may have derivative
coupling with structureless particles, of course.

=P.(~2)—P.(~i) (38)

Comparing (36) with (38), we may reformulate the
conservation law,

H($,P)—=0; S= P,df„; BS/Br = 0 (47).

One may exploit these relations in the transition to
quantum mechanics (compare with reference 7).

If condition (ii) is regarded as definition, then the
canonical equations serve as differential equations
de6ning the unknown Hamiltonian. The first canonical
equation,

BH ( BL) 8$„
I +c—,~7t„(8(,i p i7(„

(48)

may be integrated to yield

H= L+g.t. —~(~e /~k. ) $ d4+~(P) (49)

where n(P) is an arbitrary function of the momentum.
Substituting (49) into the second canonical equation,
one obtains

BPp,

BL Bg„
+ 5+g,

BPp BPp l9I p,

9 Bg„8n
$i,d$,+ . (50)

P„~ Bt), BP„

This conforms with the standard form of the Hamil-
tonian. It is easy to show, however, that on account of
(40) it does not satisfy the canonical equations. Indeed,
one receives by differentiation

BH/B&„=P„(B&,/8&„) (BL/8&„—)p

P +(Bg /8$ )PP (BL/Bg )j (44)
and

BH/BP„= &„+(8&,/BP, )$P, (BL/8 $„)]—. (45)

The Hamiltonian (43) has, however, the interesting
property that because of (15)

(46)
and thus
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Since

(~L/~P. ) = (~L/~k. )(~k /~P. ) = g (~&./~P. ) (51)

(50) reduces to

hindered, since in the result of these workers the
"radiation reaction" terms are intertwined with the
direct effect of the field.

The equation of motion in a scalar field takes up
finally the form

cj ( cjg i 8 I'Bg.
(P)=l ~.,— ~~.+ „i ~,«i (52)(3P„( BP„) BP„" cjoy),

d ( g ) 8$
m+~ Ix„=—

gc') ". ax,
(56)

One can demonstrate that (52) cannot be generally
satisfied. In particular cases, however, one may obtain
a solution. Such is the case of the electromagnetic field,
when n=-' m2'P„P„and H=2m '(P~ eg„)(P—„eg,). —
Alternatively, if one is concerned with a scalar field,
g„=0 and (52) is self-contradictory, as the right-hand
side depends on &, while the left-hand side does not.

Finally we note that the definition

B. Vector Field

The Lagrangian in the vector field, which may be
associated with the electromagnetic field (whether the
field-mass is zero or not is irrelevant from our point of
view), with the vector potential g„and interaction
constant e, takes the form

H=M= (BL/Bg„)g„L, — (53)

according to (iii), is of no use for us; as one can easily
see, it does not satisfy either the Hamilton-Jacobi
equation or the canonical equations.

L= —mc'+ ex„p„.

From this, one derives the relations

P„=mx„+eg„; M=m;
F„=eF„.*„;

g„=eP„;

(57)

(58)

6. APPLICATIONS

In this section, we survey the application of the
formalism to concrete physical fields. The motion of a
particle in a scalar, vector (electromagnetic), and tensor
(weak gravitational) field wi]l be considered. The
guiding principle in constructing the interaction
Lagrangian is the "principle of simplicity, ""which
requires that it should be the simplest invariant
expression which can be constructed from the field
quantities and the four-velocity of the particle. One
can easily convince oneself, on the other hand, that the
Lagrangian built up in this fashion leads to the correct
(inhomogeneous) field equations.

which conform with the standard forms of momentum,
mass, and force in the electromagnetic field. It is
worthwhile to point out the root of the rather peculiar
feature of the vector field, that it conserves the rest
mass. A glance at (20) shows the reason for this: As
the interaction Lagrangian is a first-order homogeneous
expression in $„, the two terms BL/Bg„and L com-
pensate each other. At the same time, this consideration
indicates that no other field may have this property.

C. Tensor Field

The Lagrangian of a tensor field (tensor potential

g„„, interaction constant f) can be chosen as

(59)L= mc' ,'—fx„P„„—x„—
A. Scalar Field

Clearly, the tensor potential p„„should be symmetric;
In the case of a scalar field with scalar potential p if it is not, the antisymmetric part plays no role at all.

and interaction constant g, we choose the Lagrangian" This Lagrangian leads to the following expressions
as for the momentum, etc. :

P„=p„=[m+ (g/c )y jx„; g„=0;'
M=m+(g/c2)y; F„=—g8&/cjx„.

(55)

We note that the rest mass is not constant. This is
in accordance with the results of Marx and Szamosi. ""
Comparison with the results of Havas' and Bhabha
and Harish-Chandra' based on the Dirac method is

' See, e.g. , P. Roman, Theory of E1ementury Particles (North-
Holland Publishing Company, Amsterdam, 1960), p. 101.

'5 We write out c in this section and discard the distinction
between x and (.' G. Marx and G. Szamosi, Acta Physica. Acad. Sci. Hung. 4,
219 (1954).

L= —mc' —g@.

Then we obtain with the aid of (15), (20), (22), and
(27),

P„=[m—(f/2c') x.y.pxp]x„fy„.*., —
3f=m —(f/2c2)x„y. pxp,

g„= fp„x, —
F„=f(xF.„px+x.y.„),

F&pp 2 (4 +p 0+0 &I' p+4 pp &)'

The equation of motion may be written in the fol-
lowing form

(&/~ ) ([m (f/2c')*.0 -p* j*,—f4.-*-)—
;f(8y.p/Bx—„)—xxp (61).

If f is associated with the constant rest mass, (61) can
be recognized as the equation of motion of a particle
in a weak gravitational field. Indeed, if one starts vrith
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the general gravitational equation of motion

g„„(du"/ds) = F—„, su u~,

1/PP &S 2 (gP& P+gPP ~ g~s P)1

and uses the weak field assumption

g"=4 +4",

(62)

(63)

will experience no variation. Whether in the case of
other fields the variability of the rest mass can be traced
back to some similar reason cannot be predicted in the
absence of corresponding nonlinear theories. But specu-
lations along this line' indicate such possibilities.

'7. CONCLUSIONS

neglecting second and higher powers of p„„,the identity
of (61) and (62) is easily established. The only non-
trivial step in doing this is distinguishing between ds
(u"=dh"/ds) on the one hand, and dr (i.=dx,/dr) on
the other:

d7 dt's'&py

ds = gp dx"dx"= (8 +$~„)dx"dx"

=dr'(1 i„y„—„*,),
'

dT—=——= (1+~&A' s*s)—.
ds ds d~ d7.

(64)

'7 Since in the Lorentz frame we do not distinguish between
covariant and contravariant indexes, these are not correct tensor
equations.

Equations (62), (63), and (64)'~ can be now combined
to yield (61).We note that the mechanism which brings
about the variation of the rest mass can be clearly
observed in this case: The physically existing and
measurable proper time is s; 7 is a physically meaning-
less artifice. The observer moving along with the test
particle will Gnd a changing rest mass only, if he
artificially sets his watch to measure 7-, otherwise, he

In this paper, a consequent Lagrangian formalism
has been worked out in covariant form. The equation
of motion in an arbitrary field may be derived in this
way from first principles. The main points in this
formalism have been the following:

(a) The equation of motion is not the Euler-
Lagrange equation for the Lagrangian.

(b) The rest mass generally is not constant; it is
constant in a vector field only.

(c) The canonical momentum generally differs from
the kinetic one; they coincide in a scalar field only.

(d) The canonical momentum and the energy-
momentum tensor of the free field combine into a
conserved system in the case of no derivative coupling;
otherwise they do not.

(e) No satisfactory companion Hamiltonian for-
malism can be built up; generally there is no function
which satisfies the canonical equations.
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